首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two-dimensional x-ray diffraction was used to investigate structural features of cross-bridges that generate force in isometrically contracting skeletal muscle. Diffraction patterns were recorded from arrays of single, chemically skinned rabbit psoas muscle fibers during isometric force generation, under relaxation, and in rigor. In isometric contraction, a rather prominent intensification of the actin layer lines at 5.9 and 5.1 nm and of the first actin layer line at 37 nm was found compared with those under relaxing conditions. Surprisingly, during isometric contraction, the intensity profile of the 5.9-nm actin layer line was shifted toward the meridian, but the resulting intensity profile was different from that observed in rigor. We particularly addressed the question whether the differences seen between rigor and active contraction might be due to a rigor-like configuration of both myosin heads in the absence of nucleotide (rigor), whereas during active contraction only one head of each myosin molecule is in a rigor-like configuration and the second head is weakly bound. To investigate this question, we created different mixtures of weak binding myosin heads and rigor-like actomyosin complexes by titrating MgATPgammaS at saturating [Ca2+] into arrays of single muscle fibers. The resulting diffraction patterns were different in several respects from patterns recorded under isometric contraction, particularly in the intensity distribution along the 5.9-nm actin layer line. This result indicates that cross-bridges present during isometric force generation are not simply a mixture of weakly bound and single-headed rigor-like complexes but are rather distinctly different from the rigor-like cross-bridge. Experiments with myosin-S1 and truncated S1 (motor domain) support the idea that for a force generating cross-bridge, disorder due to elastic distortion might involve a larger part of the myosin head than for a nucleotide free, rigor cross-bridge.  相似文献   

2.
It is becoming increasingly apparent that precise knowledge of the anatomic features of muscle, aponeurosis, and tendons is necessary for understanding how a muscle-tendon complex generates force and accomplishes length changes. This report presents both anatomic and functional data from the human soleus muscle acquired by using magnetic resonance imaging. The results show a strong relationship between the complex three-dimensional structure of the muscle-tendon system and the intramuscular distribution of tissue velocities during in vivo isometric contractions. The proximal region of the muscle is unipennate, whereas the midregion has a radially bipennate hemicylindrical structure, and the distal region is quadripennate. Tissue velocity mapping shows that the highest velocity regions overlay the aponeuroses connected to the Achilles tendon. These are located on the anterior and posterior surfaces of the muscle. The lowest velocities overlay the aponeuroses connected to the origin of the muscle and are generally located intramuscularly.  相似文献   

3.
The regulation of the energy metabolism in contracting skeletal muscle is under close control, and several regulating factors have been reported. The aim of this study was to investigate the importance of the oxygen supply as a limiting factor for muscle performance during contractions and recovery from contractions. To perform well-controlled standardized experiments on contracting skeletal muscle, the perfused rat hind limb model was developed. The 31P NMR technique was adapted to the rat hind limb model. This enabled continuous nondestructive monitoring of the energy state at various levels of muscular activity. Significant correlations were found between oxygen delivery and oxygen consumption, lactate release, and glucose uptake, respectively. An increased degree of fatigue was observed at lower oxygen deliveries. In both soleus and gastrocnemius muscles, oxygen delivery correlated with the intramuscular concentrations of phosphocreatine (PCr), lactate, and glycogen. The 31P NMR experiments showed a correlation between oxygen delivery and the steady-state level of PCr/inorganic phosphate (Pi) during the contraction period. The rate of recovery in PCr/Pi after the contraction was also dependent on oxygen delivery. The results demonstrate a causal relationship between oxygen supply and energy state in contracting as well as recovering skeletal muscles.  相似文献   

4.
Single fibers from the tibialis anterior muscle of Rana temporaria at 0.8-3.8 degrees C were subjected to long tetani lasting up to 8 s. Stretch of the fiber early in the tetanus caused an enhancement of force above the isometric control level which decayed only slowly and stayed higher throughout the contraction. This residual enhancement was uninfluenced by velocity of stretch and occurred only on the descending limb of the length-tension curve. The absolute magnitude of the effect increased with sarcomere length to a maximum at approximately 2.9 micrometers and then declined. The phenomenon was further characterized by its dependence on the amplitude of stretch. The final force level reached after stretch was usually higher than the isometric force level corresponding to the starting length of the stretch. The possibility that the phenomenon was caused by nonuniformity of sarcomere length along the fiber was examined by (a) laser diffraction studies that showed sarcomere stretch at all locations and (b) studies of 9-10 segments of approximately 0.6-0.7 mm along the entire fiber, which all elongated during stretch. Length-clamped segments showed residual force enhancement after stretch when compared with the tetanus produced by the same segment held at the short length as well as at the long length. It is concluded that residual force enhancement after stretch is a property shown by all individual segments along the fiber.  相似文献   

5.
We investigate the isometric transient response of muscle using a quantitative stochastic model of the actomyosin cycle based on the swinging lever-arm hypothesis. We first consider a single pair of filaments, and show that when values of parameters such as the lever-arm displacement and the cross-bridge elasticity are chosen to provide effective energy transduction, the T(2) curve (the tension recovered immediately after a step displacement) displays a region of negative slope. If filament compliance and the discrete nature of the binding sites are taken into account, the negative slope is diminished, but not eliminated. This implies that there is an instability in the dynamics of individual half sarcomeres. However, when the symmetric nature of whole sarcomeres is taken into account, filament rearrangement becomes important during the transient: as tension is recovered, some half sarcomeres lengthen whereas others shorten. This leads to a flat T(2) curve, as observed experimentally. In addition, we investigate the isotonic transient response and show that for a range of parameter values the model displays damped oscillations, as recently observed in experiments on single muscle fibers. We conclude that it is essential to consider the collective dynamics of many sarcomeres, rather than the dynamics of a single pair of filaments, when interpreting the transient response of muscle.  相似文献   

6.
7.
8.
The binding of alkyl polyglucoside surfactants to the integral membrane protein bacteriorhodopsin (BR) and the formation of protein-surfactant complexes are investigated by sedimentation equilibrium via analytical ultracentrifugation and by small-angle neutron scattering (SANS). Contrast variation techniques in SANS enable measurement of the composition of the protein-surfactant complexes and determination of the thickness of the surfactant shell bound to the protein. The results indicate that alkyl polyglucosides can bind to BR as single surfactant layers or as a thicker shell. The thickness of the surfactant shell increases with increasing surfactant tail length, and it is generally unrelated to the aggregation number of the micelles even for a small and predominantly hydrophobic membrane protein such as BR. The aggregation numbers determined by sedimentation equilibrium methods match those measured by SANS, which also allows reconstruction of the shape of the protein-detergent complex. When the surfactant is present as a single layer, the BR loses activity, as measured by absorption spectroscopy, more quickly than it does when the surfactant forms a thicker shell.  相似文献   

9.
10.
The concept of reverberation proposed by Lorente de Nó and Hebb is key to understanding strongly recurrent cortical networks. In particular, synaptic reverberation is now viewed as a likely mechanism for the active maintenance of working memory in the prefrontal cortex. Theoretically, this has spurred a debate as to how such a potentially explosive mechanism can provide stable working-memory function given the synaptic and cellular mechanisms at play in the cerebral cortex. We present here new evidence for the participation of NMDA receptors in the stabilization of persistent delay activity in a biophysical network model of conductance-based neurons. We show that the stability of working-memory function, and the required NMDA/AMPA ratio at recurrent excitatory synapses, depend on physiological properties of neurons and synaptic interactions, such as the time constants of excitation and inhibition, mutual inhibition between interneurons, differential NMDA receptor participation at excitatory projections to pyramidal neurons and interneurons, or the presence of slow intrinsic ion currents in pyramidal neurons. We review other mechanisms proposed to enhance the dynamical stability of synaptically generated attractor states of a reverberatory circuit. This recent work represents a necessary and significant step towards testing attractor network models by cortical electrophysiology.  相似文献   

11.
A subpopulation of transient ON/OFF ganglion cells in the turtle retina transmits changes in stimulus intensity as series of distinct spike events. The temporal structure of these event sequences depends systematically on the stimulus and thus carries information about the preceding intensity change. To study the spike events' intra-retinal origins, we performed extracellular ganglion cell recordings and simultaneous intracellular recordings from horizontal and amacrine cells. Based on these data, we developed a computational retina model, reproducing spike event patterns with realistic intensity dependence under various experimental conditions. The model's main features are negative feedback from sustained amacrine onto bipolar cells, and a two-step cascade of ganglion cell suppression via a slow and a fast transient amacrine cell. Pharmacologically blocking glycinergic transmission results in disappearance of the spike event sequence, an effect predicted by the model if a single connection, namely suppression of the fast by the slow transient amacrine cell, is weakened. We suggest that the slow transient amacrine cell is glycinergic, whereas the other types release GABA. Thus, the interplay of amacrine cell mediated inhibition is likely to induce distinct temporal structure in ganglion cell responses, forming the basis for a temporal code. Action Editor: Jonathan D. Victor  相似文献   

12.
A simple mathematical model capable of simulating the major biomechanical attributes of contracting cardiac muscle is presented. This model is based on the phenomenological observations on heart muscle. The form of the equation can be readily extended to describe the pressure-volume-time-velocity of the intact heart as well, thus allowing a direct bridge between the dynamics of papillary muscle and the dynamics of intact heart. Parameters that are sensitive to inotropic state of the muscle can be obtained directly from the isometric tension-time record of the muscle or the isovolumic pressure-time record of the ventricle. These parameters have the potential to serve as quantitative measures of cardiac health.  相似文献   

13.
The metabolic responses of Platynota stultana pupae to reduced O(2), elevated CO(2), and their combinations were investigated using microcalorimetry, and mortality of pupae under elevated CO(2) atmospheres was correlated with metabolic responses. The metabolic heat rate decreased slightly with decreasing O(2) concentration until a critical O(2) concentration (P(c)) below which the heat rate decreased rapidly. The P(c) increased with temperature. The percentage decreases of metabolic heat rate were comparable to the percentage decreases of O(2) consumption rate (RO(2)) at 10, 8, 6, and 4% O(2), but were smaller at 2 and 1% O(2). The metabolic heat rate decreased rapidly at 20% CO(2) relative to 0% CO(2), with little to no further decrease between 20 and 79% CO(2). The percentage decreases of RO(2) under 20 and 79% CO(2) at 20 degrees C were comparable to the percentage decreases of metabolic heat rates. The additive effects of subatmospheric O(2) and elevated CO(2) levels on reducing metabolic heat rate were generally fully realized at combinations of /=4% O(2), but became increasingly overlapped as the O(2) concentration decreased and the CO(2) concentration increased. The high susceptibility of pupae to elevated CO(2) at high temperature was correlated with high metabolic heat rate. The metabolic responses of pupae to reduced O(2) concentrations included metabolic arrest and anaerobic metabolism. The net effect of elevated CO(2) on the pupal respiratory metabolism was similar to that of reduced O(2); however, mechanisms other than the decrease of metabolism were also contributing to the toxicity of CO(2).  相似文献   

14.
Gizzard smooth muscle myosin, the 20,000 Mr light chain (L20) of which had been phosphorylated in vitro with a calmodulin-myosin light chain kinase system, was separated into 5 isolated bands in a pyrophosphate polyacrylamide gel. Their mobilities were in the following order: myosin with 2 unphosphorylated L20 (GM) less than myosin with 1 unphosphorylated and 1 mono-phosphorylated L20 (GMP1) less than myosin with 2 mono-phosphorylated L20 (GMP2) less than myosin with 1 mono-phosphorylated and 1 di-phosphorylated L20 (GMP3) less than myosin with 2 di-phosphorylated L20 (GMP4). We used this pyrophosphate polyacrylamide gel electrophoresis to analyze the phosphorylated state of taenia coli smooth muscle during K+-induced contraction. During the initial 2 min contraction, phosphorylated forms corresponding to GMP1 and GMP2 were detected in addition to the unphosphorylated form.  相似文献   

15.
The effect of isometric exercise on blood flow, blood pressure, intramuscular pressure as well as lactate and potassium efflux from exercising muscle was examined. The contractions performed were continuous or intermittent (5 s on, 5 s off) and varied between 5% and 50% maximal voluntary contraction (MVC). A knee-extensor and a hand-grip protocol were used. Evidence is presented that blood flow through the muscle is sufficient during low-level sustained contractions (less than 10% MVC). Despite this muscle fatigue occurs during prolonged contractions. One mechanism for this fatigue may be the disturbance of the potassium homeostasis. Such changes may also play a role in the development of fatigue during intermittent isometric contractions and even more so in the recovery from such exercise. In addition the role of impaired transport of substances within the muscle, due to long-lasting daily oedema formation, is discussed in relation to fatigue in highly repetitive, monotonous jobs.  相似文献   

16.
It is widely held that many differences among primate species in scapular morphology can be functionally related to differing demands on the shoulder associated with particular locomotor habits. This perspective is largely based on broad scale studies, while more narrow comparisons of scapular form often fail to follow predictions based on inferred differences in shoulder function. For example, the ratio of supraspinous fossa/infraspinous fossa size in apes is commonly viewed as an indicator of the importance of overhead use of the forelimb, yet paradoxically, the African apes, the most terrestrial of the great apes, have higher scapular fossa ratios than the more suspensory orangutan. The recent discovery of several nearly complete early hominin scapular specimens, and their apparent morphological affinities to scapulae of orangutans and gorillas rather than chimpanzees, has led to renewed interest in the comparative analysis of human and extant ape scapular form. To facilitate the functional interpretation of differences in ape scapulae, particularly in regard to relative scapular fossa size, we used electromyography (EMG) to document the activity patterns in all four rotator cuff muscles in orangutans and gibbons, comparing the results with previously published data for chimpanzees.  相似文献   

17.
In innervated and denervated sternohyoid muscles of adult mice the AChE with a pH optimum at 7.2 was shown to occur in all three fiber types in two separate structural areals located: extrafibrillarly (synaptic cleft, postsynaptic folds, subsarcolemmal vesicles, T-tubules, interfibrillar space) and intrafibrillarly (perinuclear cisternae, SR including SR cisternae). There is not a stable connection between the two areas. The functional significance of the intrafibrillar AChE, in particular, is unknown. After muscle denervation, intrafibrillar AChE of the A and B fibers disappeares more quickly than that of C fibers. This phenomenon not only suggests a general, but possibly also a fiber-specific neurotrophic effect.Based on material presented at the Symposium Intercellular Communication Stuttgart, September 16–17, 1982  相似文献   

18.
19.
20.
An improved model of locust skeletal muscle will inform on the general behaviour of invertebrate and mammalian muscle with the eventual aim of improving biomedical models of human muscles, embracing prosthetic construction and muscle therapy. In this article, the isometric response of the locust hind leg extensor muscle to input pulse trains is investigated. Experimental data was collected by stimulating the muscle directly and measuring the force at the tibia. The responses to constant frequency stimulus trains of various frequencies and number of pulses were decomposed into the response to each individual stimulus. Each individual pulse response was then fitted to a model, it being assumed that the response to each pulse could be approximated as an impulse response and was linear, no assumption were made about the model order. When the interpulse frequency (IPF) was low and the number of pulses in the train small, a second-order model provided a good fit to each pulse. For moderate IPF or for long pulse trains a linear third-order model provided a better fit to the response to each pulse. The fit using a second-order model deteriorated with increasing IPF. When the input comprised higher IPFs with a large number of pulses the assumptions that the response was linear could not be confirmed. A generalised model is also presented. This model is second-order, and contains two nonlinear terms. The model is able to capture the force response to a range of inputs. This includes cases where the input comprised of higher frequency pulse trains and the assumption of quasi-linear behaviour could not be confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号