首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteins as well as materials of low molecular weight have marked effects on the rate of locomotion, adhesion and cell shape of human neutrophil granulocytes in vitro. Plasma protein preparations differ qualitatively with respect to their chemokinetic activity. Human serum albumin (HSA), fibrinogen and acid-treated gamma globulin without polymers have a positive chemokinetic effect on neutrophils suspended in Gey's solution. Standard gamma globulin (SGG) or acid-treated gamma globulin with polymers have marked negative chemokinetic activity. Three different mechanisms are presumably responsible for the low rate of locomotion observed in Gey's solution alone, Gey's solution containing acid-treated gamma globulin with polymers or SGG, respectively: (a) too firm adhesion to the substratum; (b) lack of adhesion to the substratum; and (c) impaired capacity to perform shape changes. The relationship between attachment of cells to the substratum and the rate of neutrophil locomotion has been investigated. It appears that the pattern of adhesion rather than cell attachment as measured by the proportion of neutrophils adhering to the substratum is a meaningful correlate to locomotion. Two different patterns of adhesion can be distinguished by means of reflection-contrast microscopy: (a) the pattern characterized by uniform grey areas is compatible with efficient locomotion; (b) a pattern characterized by large black areas at the cell periphery. It is associated with neutrophils in Gey's solution which fail to displace themselves efficiently. This suggests that reflection-contrast microscopy may be helpful in distinguishing contacts allowing locomotion to occur from contacts impeding neutrophil locomotion.  相似文献   

2.
Contact angle measurements have been used to correlate surface hydrophobicity of a supporting substratum with adhesion and locomotion of polymorphonuclear leukocytes. The binding of human serum albumin, a well-known chemokinetic substance, to hydrophilic glass slides gave rise to hydrophobic surfaces with adhesive properties conducive, to cell polarization thus allowing cell locomotion. Parallel contact angle and cell adhesion measurements suggested that albumin modified the cellsubstratum interaction by increasing the van der Waals forces of attraction and reducing the electrostatic forces. By allowing cells to adhere to a hydrophobic surface (siliconized glass), it was found that protein could be omitted from in vitro test systems for leukocyte locomotion. It is suggested that quantitatively equal cell adhesion values may, depending on the type of attraction forces working in adhesion to the substratum, result in different locomotion patterns.  相似文献   

3.
C Dahlgren 《Cell biophysics》1982,4(2-3):133-141
Contact angle measurements have been used to correlate surface hydrophobicity of a supporting substratum with adhesion and locomotion of polymorphonuclear leukocytes. The binding of human serum albumin, a well-known chemokinetic substance, to hydrophilic glass slides gave rise to hydrophobic surfaces with adhesive properties conductive to cell polarization, thus allowing cell locomotion. Parallel contact angle and cell adhesion measurements suggested that albumin modified the cell-substratum interaction by increasing the van der Waals forces of attraction and reducing the electrostatic forces. By allowing cells to adhere to a hydrophobic surface (siliconized glass), it was found that protein could be omitted from in vitro test systems for leukocyte locomotion. It is suggested that quantitatively equal cell adhesion values may, depending on the type of attraction forces working in adhesion to the substratum, result in different locomotion patterns.  相似文献   

4.
Experiments made on the passage of cells through untreated and siliconized glass beads, and on the adhesion and spread of cultured cells on glass and Teflon surfaces show that, in the absence of serum and in its presence in low concentrations, cell adhesion and spread is sensitive to substratum wettability. On the other hand, in the presence of 100% serum, no differences in adhesive parameters are detectable. It is concluded that arguments correlating cell adhesion to surface wettability, and, by inference, surface free energy, are unsubstantiated in 100% serum, which may well approximate to the in vivo situation. The results also show no correlation between parameters of cell adhesion and cell separation, and thereby support the hypothesis that these are different processes.  相似文献   

5.
Normal attachment and spreading of baby hamster kidney cells onto a non-living substratum requires the presence of a specific serum component adsorbed to the substratum surface and Ca2+ ions in the medium. In the absence of the adsorbed serum factor or Ca2+ ions cells attach but do not spread. Thus, although the initial rate of BHK cell attachment is faster in serum-free medium than serum-containing medium, no cell spreading occurs in serum-free medium. Adsorption of serum onto the substratum results in a lag phase in the time course of cell attachment which can be eliminated by blocking the negatively charged groups of the serum components adsorbed to the substratum surface; blocking positively charged groups or free sulfhydryl groups of the adsorbed serum components is without effect. The requirement for serum components can be substituted for by adsorbing molecules such as concanavalin A or polycationic ferritin to the substratum surface; however, only ConA results in normal morphology of cell spreading. The data are discussed in terms of a non-electrostatic direct cell-substratum binding model of cell attachment.  相似文献   

6.
The surface activity and locomotion of deep cells of the Fundulus blastoderm were studied in vivo with time-lapse cinemicrography. During late cleavage, the surfaces of the blastomeres begin to undulate gently. By early blastula, these undulations increase gradually in amplitude and hemispherical surface protrusions called blebs appear. These blebs form and retract rapidly, and at mid blastula some may be seen adhering to the surfaces of other cells. At the same time, they often expand into elongate lobopodia. Cell locomotion is first evident in mid blastula and continues throughout gastrulation. During locomotion, the leading edge of a deep cell behaves in various ways. When blebs and lobopodia adhere to a substratum (other deep cells, the undersurface of the enveloping layer, or the periblast) and retract, the cell may move in the direction of the shortening cell process. Alternatively, blebs and lobopodia may adhere, but not shorten. Locomotion is accomplished rather by protoplasmic flow into the protrusion. Blebs and lobopodia also may flatten and spread on the substratum as lamellipodia. Variations in the contact and locomotory behavior of deep cells and in the rate of their movement during blastula and gastrula stages are described in detail.  相似文献   

7.
Human fibroblasts have been used as an in vitro model to examine the morphology and origin of substrate-attached materials. In cultures of subconfluent cells, no ‘tracks’ or ‘pools’ of material could be detected on substrata by anodic oxide interferometry or electron microscopy. However, a continuous layer of densely staining material was present on Falcon plastic tissue culture dishes never exposed to cells or culture medium. Exposure of substrata to culture medium caused the adsorption of fetal calf serum (FCS) components onto the substratum within a few minutes. Although antigenic FCS components remained on the substrata for several days, they were seldom adsorbed to the cells. The hypothesis was formulated that adhesion was mediated by FCS components on the substrata, but not by cellular materials deposited extracellularly. Support for this hypothesis was obtained by studying serum-dependent differences in cell adhesion. Fibroblasts subcultured in the presence of FCS components were usually separated from the substratum by a distance of at least 30 Å. In the absence of FCS components, the cells were more closely adherent, in the range at which the near van der Walls forces were effective. Fibroblasts subcultured in the absence of serum components could be removed readily from the substratum, leaving lsfootprints’ of cell surface material behind. Although this material has been prepared similarly to ‘microexudates’ from other types of cultured cells, its relationship to those microexudates has not been determined.  相似文献   

8.
《The Journal of cell biology》1996,135(6):1593-1607
The axonal surface glycoproteins neuronglia cell adhesion molecule (NgCAM) and axonin-1 promote cell-cell adhesion, neurite outgrowth and fasciculation, and are involved in growth cone guidance. A direct binding between NgCAM and axonin-1 has been demonstrated using isolated molecules conjugated to the surface of fluorescent microspheres. By expressing NgCAM and axonin-1 in myeloma cells and performing cell aggregation assays, we found that NgCAM and axonin-1 cannot bind when present on the surface of different cells. In contrast, the cocapping of axonin-1 upon antibody-induced capping of NgCAM on the surface of CV- 1 cells coexpressing NgCAM and axonin-1 and the selective chemical cross-linking of the two molecules in low density cultures of dorsal root ganglia neurons indicated a specific and direct binding of axonin- 1 and Ng-CAM in the plane of the same membrane. Suppression of the axonin-1 translation by antisense oligonucleotides prevented neurite outgrowth in dissociated dorsal root ganglia neurons cultured on an NgCAM substratum, indicating that neurite outgrowth on NgCAM substratum requires axonin-1. Based on these and previous results, which implicated NgCAM as the neuronal receptor involved in neurite outgrowth on NgCAM substratum, we concluded that neurite outgrowth on an NgCAM substratum depends on two essential interactions of growth cone NgCAM: a trans-interaction with substratum NgCAM and a cis-interaction with axonin-1 residing in the same growth cone membrane.  相似文献   

9.
The mechanism of diatom locomotion has been widely researched but still remains a hypothesis. There are several questionable points on the prevailing model proposed by Edgar, and some of the observed phenomena cannot be completely explained by this model. In this paper, we undertook detailed investigations of cell structures, locomotion, secreted mucilage, and bending deformation for a benthic pennate diatom Navicula species. According to these broad evidences, an updated locomotion model is proposed. For Navicula sp., locomotion is realized via two or more pseudopods or stalks protruded out of the frustules. The adhesion can be produced due to the pull-off of one pseudopod or stalk from the substratum through extracellular polymeric substances. And the positive pressure is generated to balance the adhesion because of the push-down of another pseudopod or stalk onto the substratum. Because of the positive pressure, friction is generated, acting as a driving force of locomotion, and the other pseudopod or stalk can detach from the substratum, resulting in the locomotion. Furthermore, this model is validated by the force evaluation and can better explain observed phenomena. This updated model would provide a novel aspect on underwater locomotion strategy, hence can be useful in terms of artificial underwater locomotion devices.  相似文献   

10.
11.
Microexudates from Cells Grown in Tissue Culture   总被引:10,自引:0,他引:10       下载免费PDF全文
Cellular substrata of known molecular structure and measurable dimensions can be constructed as transferred films from Langmuir troughs or as adsorbed films. In addition, large molecules in culture media form measurable adsorbates. With the techniques of ellipsometry and surface chemistry it is possible to characterize and measure (within ± 3A) as a function of several parameters a microexudate of molecular dimensions deposited when tissue cultured cells contact certain substrata. The selective attraction of substratum and cell for microexudate has been determined, and the time course of deposition in Eagle's medium is characterized by a rapid initial accretion of material. During this period, microexudate can diffuse several cell diameters and cannot be detected in the culture medium. In Eagle's medium the cells cannot be detached from glass surfaces by versene or trypsin unless the surface of cell or substratum is coated with certain molecules. Trypsin becomes adsorbed to cell surfaces, continues to be enzymatically active on the surface, and digests protein components of microexudate and substratum. Microexudate appears to be a complex mosaic of molecules (including protein) synthesized within or on the surfaces of cells and secreted by cells or transferred from their surfaces to specific substrata. It is proposed that this mosaic plays, on the molecular level, a significant role in cell-to-cell interactions, cell locomotion and adhesion, and the selective application and spreading of cells on various surfaces.  相似文献   

12.
The effects of lanthanum ions (La+++) on the locomotion and adhesion of g lial cells and elongating nerve axons are reported. La+++ increases adhesion of both glia and of nerve growth cones to a plastic substratum. La+++ also markedly reduces glia locomotion, but it does not inhibit nerve elongation. Electron-opaque deposits are seen on the cell surface and within cytoplasmic vesicles of glia and nerves cultured in a La+++-containing medium. Possible modes of action for La+++ are discussed, particularly the possibilities that Ca++ fluxes or Ca++ involvement in adhesion are altered by La+++. The results are consistent with the hypothesis that cell migration and nerve axon elongation differ in mechanism, with respect to both adhesive interactions and the activity of microfilament systems.  相似文献   

13.
The effects of glucose concentration on the chemokinetic effects of the chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMet-Leu-Phe) was evaluated for normal human neutrophils using a direct microscopic assay. fMet-Leu-Phe increased the rate of locomotion in the absence of glucose, but the chemokinetic effect of fMet-Leu-Phe was most potent at 5mM glucose and not further changed at 15 mM glucose. The chemokinetic effects of fMet-Leu-Phe and glucose were essentially the same in blood clot-isolated and gradient-isolated neutrophils. However, in gradient-isolated neutrophils, the rate of locomotion under different experimental conditions was strictly negatively correlated to the fraction of non-locomoting cells and the degree of adhesion to the substratum. These results indicate that the chemokinetic effects of fMet-Leu-Phe are regulated by the glucose concentration by inducing locomotor activity in otherwise non-locomoting cells and by improving adhesion to the substratum.  相似文献   

14.
Cell locomotion, nerve elongation, and microfilaments   总被引:16,自引:0,他引:16  
A basic difference in locomotion between migratory cells and nerves correlates with a difference in distribution of certain microfilament systems. Lattice filaments are present where extension and movement of cell surface occur in both cell types. Bundles of sheath filaments which bind heavy meromyosin, are present in migratory cells, where displacement of the cell soma over the substratum occurs, but absent from nerves, where the cell body and axon remain fixed upon the substratum and “locomotion” is restricted to the axonal tip. It is proposed that the microfilament lattice is involved in the extension phase of locomotion, and the microfilament sheath in the contractile phase.  相似文献   

15.
Both polyvalent and hybridoma-produced antibodies to fibronectin (Fn) were used to ‘map’ the immunoaccessible subsets of cell surface fibronectin on virus-transformed murine fibroblast SVT2 and rat neuroblastoma B104 cells. As one approach to this end, attachment and spreading responses of cells were measured on tissue culture substrata coated with antibody or with plasma fibronectin to compare their adhesive responses. Both SVT2 and B104 cells adhere poorly to polyvalent anti-Fn-coated substrata over short time intervals, but within several hours changes occur which permit cells to attach and spread as well on anti-Fn as on Fn (post-adsorption of the anti-Fn with Fn also generates a maximal response). This adhesive response could be completely prevented by predigesting the cells with Flavobacterium heparanase, but not with chondroitinase ABC, indicating that the cell surface Fn responsible for antibody-mediated adhesion is associated with heparan sulfate proteoglycans on the cell surface. The compositions of the substratum-attached material (left bound after EGTA-mediated detachment of cells) from cells attaching to anti-Fn or Fn were analysed by SDS-PAGE and found to be identical within the same cell type for the two different substrata. Three hybridoma-produced antibodies, which recognize different determinants on Fn, generated different adhesive responses for SVT2 or B104 cells when adsorbed to the substratum. SVT2 cells adhered well to antibody no. 32-coated substrata but poorly to antibodies 92 or 136; on the other hand, B104 cells responded similarly to all three antibodies over short times of attachment but much better to no. 32 after a several hour incubation. These experiments indicate that (1) much of the cell surface fibronectin is complexed with heparan sulfate proteoglycan and is initially inaccessible to bind to polyvalent antibody on the substratum to promote adhesion; (2) the surface of neuroblastoma cells contains a fibronectin-like molecule which is important in their substratum adhesion; and (3) monoclonal antibodies are valuable tools in ‘mapping’ the orientation of cell surface molecules like fibronectin by measuring adhesive responses to antibody-coated substrata.  相似文献   

16.
Physico-chemical surface characteristics and adhesive properties of a series of mutants of Streptococcus salivarius HB with defined cell surface structures were determined. Zeta potentials showed no relation either with the presence or absence of specific antigens on the bacterial cell surface, or with the adhesive properties of the cells. Hydrophobicity was assessed by surface free energy determination from measured contact angles, by adsorption to hexadecane and by hydrophobic interaction chromatography. Generally, the progressive removal of fibril subclasses from the cell surface resulted in a reduced hydrophobicity. However, specific fibrillar subclasses appeared to contribute to surface hydrophobicity to widely different extents. Bacterial adhesion to polymethylmethacrylate increased with increasing hydrophobicity of the mutants. However, adhesion to a more complex biological substratum, such as saliva-coated hydroxyapatite, correlated only partly with hydrophobicity. The organism, deprived of most of its fibrillar surface structures, clearly showed the least adhesion to hydrophobic ligands, to both polymethylmethacrylate and saliva-coated hydroxyapatite, and had a significantly higher surface free energy than the other mutants and the parent strain.  相似文献   

17.
Cell adhesion molecules of the Ig superfamily are implicated in a wide variety of biological processes, including cell migration, axon guidance and fasciculation, and growth control and tumorigenesis. Expression of these proteins can be highly dynamic and cell type specific, but little is known of the signals that regulate such specificity. Reported here is the molecular cloning and characterization of rat CDO, a novel cell surface glycoprotein of the Ig superfamily that contains five Ig-like repeats, followed by three fibronectin type III–like repeats in its extracellular region, and a 256-amino acid intracellular region that does not resemble other known proteins. In rat embryo fibroblasts, cdo mRNA expression is maximal in confluent, quiescent cells. It is rapidly and transiently down-regulated by serum stimulation of such cells, and is constitutively down-regulated in oncogene-transformed derivatives of these cells. CDO protein levels are also dramatically regulated by cell–substratum adhesion, via a mechanism that is independent of cdo mRNA expression. The amount of CDO produced at the surface of a cell may therefore be governed by a complex balance of signals, including mitogenic stimuli that regulate cdo mRNA levels, and substratum-derived signals that regulate CDO protein production. cdo mRNA is expressed at low levels in most adult rat tissues. A closely related human gene maps to chromosome 11q23–24, a region that displays frequent loss of heterozygosity in human lung, breast, and ovarian tumors. Taken together, these data suggest that loss of CDO function could play a role in oncogenesis.  相似文献   

18.
The role of pyruvate and autocrine polypeptide factors (APF) secreted by cytotoxic IL-2-dependent CTLL-2 cells in cell defense from oxidative stress was investigated. The addition of a conditioned medium (CM) containing pyruvate and APF into CTLL-2 cell cultures significantly increased the cell survival under oxidative stress conditions induced by hydrogen peroxide (H2O2). The kinetics of (H2O2) removal from cell cultures with added CM has been registered. It has been shown that, at the beginning of oxidative stress (less than 15 min), H2O2 was mostly removed by means of its reaction with pyruvate contained in CM. Pyruvate content in CM was estimated as 138 ± 7 μM. Gel filtration on a column with Bio-Gel P-10 was used to eliminate pyruvate from CM. Gel filtration resulted in three CM fractions (A, B, and C) corresponding to three chromatogram peaks. Pyruvate was not detected in any fraction. The fraction A was the first to be eluted from the column and contained the largest molecules. In the cell survival test, fraction B had the highest protective ability for CTLL-2 cells under oxidative stress. Fraction A supported cell survival to a lesser degree and fraction C did not show any protective abilities. Fraction B added to cells under oxidative stress kept intracellular ATP content at a significantly higher level then in control cells. Moreover, it was found that APF from fraction B was able to react with H2O2 directly and inactivate it in the absence of cells. APF from fraction A did not have such properties.  相似文献   

19.
A detailed kinetic analysis of the distribution of cytoplasmic myosin during the capping of various lymphocytic surface molecules revealed two distinct capping mechanisms. (a) Some cell surface molecules, including immunoglobulin, Fc receptor, and thymus leukemia antigen, all cap spontaneously in a small fraction of lymphocytes during locomotion. Cytoplasmic myosin becomes concentrated in the cytoplasm underlying these spontaneous caps. Exposure to specific antibodies causes all three of these surface molecules to cap rapidly with a concomitant redistribution of cytoplasmic myosin to the area of the cap. These antibodies also stimulate cell locomotion. (b) Other lymphocyte surface molecules, including H2 and Thy.1, do not cap spontaneously. Moreover, exposure to antibodies to these molecules causes them to cap slowly without a redistribution of cytoplasmic myosin or stimulation of cell locomotion. Exposure to concanavalin A gives a response intermediate between these two extremes. We believe that the first type of capping is active and may involve a direct link between the surface molecules and the cytoplasmic contractile apparatus. The second type of capping appears to result simply from aggregation of cross-linked molecules in the plane of the membrane.  相似文献   

20.
We have previously described a group of three plasma membrane glycoproteins that are recognized by an adhesion-disrupting antiserum and that are involved in fibronectin-mediated BHK cell adhesion. A peculiar property of these molecules is their resistance to tryptic digestion. We have now extended this study in the attempt to identify the active component within this group of molecules. SR/BALB mouse fibroblasts, used in this work, expose at their surface only two trypsin-resistant glycoproteins, gp1 (150 K) and gp2 (135 K), that are recognized by the adhesion-disrupting anti-BHK serum. Controlled proteolysis of the cell surface in the presence of a reducing agent results in the loss of cell adhesion to fibronectin-coated substratum. gp2 is selectively cleaved under these conditions. Moreover, cells treated with trypsin and reducing agent can no longer adsorb the adhesion-relevant antibodies from the anti-BHK serum. These data indicate that gp2 plays a critical role in the adhesion of SR/BALB fibroblasts to fibronectin-coated substratum, and that disulfide bonds are important in the conformation and function of this molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号