首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The five members of the human epidermal growth factor (EGF) family (EGF, transforming growth factor alpha [TGF-alpha], heparin-binding EGF-like growth factor [HB-EGF], betacellulin, and amphiregulin [AR]) are synthesized as transmembrane proteins whose extracellular domains are proteolytically processed to release the biologically active mature growth factors. These factors all activate the EGF receptor, but in contrast to EGF and TGF-alpha, the mature forms of HB-EGF and AR are also glycosylated, heparin-binding proteins. We have constructed a series of mutants to examine the influence of the distinct precursor domains in the biosynthesis of AR. The transmembrane and cytoplasmic domains of the precursor are not required for secretion of bioactive AR from either COS or mammary epithelium-derived cells, although proteolytic removal of the N-terminal pro-region is less efficient in the absence of the membrane anchor. Deletion of the N-terminal pro-region, however, results in rapid intracellular degradation of the molecule with no detectable secretion of active growth factor. AR secretion is preserved by replacing the native pro-region with the corresponding domain of the HB-EGF precursor but not with that of the TGF-alpha precursor. In the absence of any N-terminal pro-region, secretion of the molecule is restored by deleting the N-terminal heparin-binding domain of mature AR. Both EGF and TGF-alpha, in contrast, can be secreted without their pro-regions. However, if the protein is fused with the AR heparin-binding domain, TGF-alpha secretion is inhibited unless the AR pro-region is also present. We propose that the heparin-binding domain of mature AR necessitates the presence of a specific structural motif in an N-terminal pro-region to permit proper folding, and thus secretion, of a bioactive molecule.  相似文献   

2.
3.
We studied the effect of two members of the epidermal growth factor (EGF) family--amphiregulin and heparin-binding EGF-like growth factor (HB-EGF)-on cell proliferation, growth factor and growth factor receptor expression, and cell differentiation in two human colon cell lines of varying liver-colonizing potential. The effect of amphiregulin and HB-EGF was assessed both in cells grown on plastic, as well as on cells grown on hepatocyte-derived extracellular matrix (ECM). We found that both colon cell lines were sensitive to HB-EGF stimulation of cell proliferation. Amphiregulin inhibited cell proliferation in KM12 cells and stimulated the strongly metastatic cell line KM12SM to a slight extent. When the cells were cultured on hepatocyte-derived ECM, amphiregulin inhibited the weakly metastatic KM12 and stimulated the growth of KM12SM. HB-EGF synergistically acted with hepatocyte-derived ECM to enhance cell proliferation in both colon cell lines. Expression of ligands of the EGF family, such as transforming growth factor-alpha (TGF-alpha) and amphiregulin, was decreased in both cell lines when cultured on ECM. Hepatocyte-derived ECM decreased expression of cripto in KM12 and increased it in KM12SM cells. Neither cripto nor TGF-alpha mRNA levels was affected by growing the cells in the presence of amphiregulin. However, amphiregulin increased expression of its own mRNA in the weakly metastatic KM12 and decreased it in the strongly metastatic KM12SM when the cells were cultured on plastic. Amphiregulin and HB-EGF stimulated expression of erb-B2 in both cell lines cultured on plastic. Surprisingly, when the cells were grown on hepatocyte-derived ECM, amphiregulin inhibited erb-B2 expression in both cell lines. We observed no effect of amphiregulin on cell differentiation as assessed by alkaline phosphatase expression. Our studies demonstrate one mechanism that could play a role in site-specific metastasis. We found an inhibitory response to an autocrine growth factor in the context of hepatocyte-derived ECM in a weakly metastatic cell and a stimulatory effect of the same growth factor when strongly metastatic cells were cultured on the same ECM.  相似文献   

4.
We have previously reported that both 12-O-tetradecanoylphorbol-13-acetate (TPA) and epidermal growth factor (EGF) can stimulate the synthesis rate of EGF receptors. We now show that the MDA468 breast cancer cells express the mRNA for the EGF-like molecule, transforming growth factor-alpha (TGF-alpha), and demonstrate that TPA or EGF cause an accumulation of both EGF receptor and TGF-alpha mRNA. The levels of EGF receptor mRNA paralleled our earlier protein data, with peak accumulations of 2-3-fold with 10(-9) M EGF and 3-5-fold with 100 ng/ml TPA seen between 6 and 8 h. A 7-fold accumulation of TGF-alpha mRNA was seen following 4 h of treatment with TPA, and a 2-fold accumulation was seen after 8 h with EGF. These changes in EGF receptor and TGF-alpha mRNAs were observed in the absence of any change in the mRNA level of the alpha-subunit of hexosaminidase A (a lysosomal enzyme), demonstrating some degree of specificity. Detectable quantities of immunoreactive TGF-alpha accumulated in the cell culture medium of MDA468 cell treated with the blocking anti-EGF receptor monoclonal antibody B1D8 while no immunoreactive TGF-alpha was detected in the medium of cells with unblocked receptors. The concentration of B1D8 used was sufficient to block the binding of exogenously added 125I-EGF to undetectable levels but had only minor effects on cell growth and no effect on the expression of the TGF-alpha and EGF receptor mRNA.  相似文献   

5.
6.
7.
After epithelial disruption by tissue injury, keratinocytes migrate from the wound edge into a provisional matrix. This process is stimulated by growth factors that signal through epidermal growth factor (EGF) receptor, including EGF, heparin-binding EGF-like growth factor (HB-EGF) and transforming growth factor-alpha (TGF-alpha), and by for example keratinocyte growth factor (KGF) and TGF-beta1 that function through different receptors. We have previously shown that keratinocyte migration induced by EGF or staurosporine is dependent on the activity of glycogen synthase kinase-3 (GSK-3). In the present study, we show that keratinocyte migration induced by TGF-beta1, KGF, EGF, TGF-alpha and staurosporine depends on EGFR signaling, involves autocrine HB-EGF expression and is potently blocked by GSK-3 inhibitors SB-415286 and LiCl. Inhibition of GSK-3 also retards wound reepithelialization in vivo in mice. Moreover, inhibition of GSK-3 activity prevented cell rounding that is an early event in EGFR-mediated keratinocyte migration. Isoform-specific GSK-3alpha and GSK-3beta knockdown and overexpression experiments with siRNAs and adenoviral constructs, respectively, revealed that GSK-3alpha is required for keratinocyte migration, whereas excessive activity of GSK-3beta is inhibitory. Thus, induction of keratinocyte migration is conveyed through EGFR, promoted by endogenous HB-EGF and requires GSK-3alpha activity.  相似文献   

8.
The structure of monkey (Chlorocebus aethiops) heparin-binding EGF-like growth factor (HB-EGF) gene has been investigated in this work in comparison with the known structure of human gene. It was shown that HB-EGF short form (SF-HB-EGF) specific exon 3a is mapped between exons 3 and 4 at distance 700 b.p. from exon 4. In a number of human and simian cell lines the main part of SF-HB-EGF mRNA does not contain HB-EGF mRNA specific exons 4 and 5. In comparison with HB-EGF mRNA in SF-HB-EGF mRNA P-form, but not L-form of is predominant, and this mRNA encodes a polypeptide with changed propeptide structure. Labeled SF-HB-EGF competes with HB-EGF and EGF for binding sites at A431 cell surface, which may be due to interaction with specific receptor. All the data suggest a specific role of SF-HB-EGF in cellular signalization.  相似文献   

9.
Amphiregulin (AR) and heparin-binding EGF-like growth factor (HB-EGF) are two recently identified members of the EGF family. Both AR and HB-EGF share with EGF the ability to interact with the type-1 EGF receptor; however, AR and HB-EGF differ from EGF in that both of these mitogens bind to heparin while EGF does not. To determine whether interactions with heparin-like molecules on the cell surface influence binding of AR and HB-EGF with EGF receptors and the subsequent mitogenic activity exerted by these growth factors, murine AKR-2B and Balb/MK-2 cells were treated with either an inhibitor of proteoglycan sulfation (chlorate) or a heparin antagonist (hexadimethrine). As expected, neither treatment significantly altered the specific binding of 125I-EGF on AKR-2B cells. Interestingly, treatment with either chlorate or hexadimethrine inhibited the ability of AR to compete with 125I-EGF for cell surface binding and also attenuated AR-mediated DNA synthesis. Thus, as has been suggested for other heparin-binding growth factors such as basic fibroblast growth factor (bFGF), the interaction of AR with an EGF-binding receptor appears to be facilitated by interaction with cell-associated sulfated glycosami-noglycans or proteoglycans. Unexpectedly, however, neither chlorate nor hexadimethrine treatment caused an inhibition of HB-EGF-induced mitogenic activity. Chlorate treatment did not significantly alter the ability of HB-EGF to compete with 125I-EGF for cell surface binding sites, however, heparin and hexadimethrine reduced the ability of HB-EGF to compete for 125I-EGF binding. These results suggest that, in AKR-2B cells, HB-EGF may mediate its mitogenic response at least in part through a receptor which appears to be selective for HB-EGF and permits HB-EGF-mediated mitogenic responses in the presence of hexadimethrine or heparin. Finally, hexadimethrine inhibited the specific binding and mitogenic activity of bFGF, suggesting that this cationic polymer can function as an antagonist of heparin-binding mitogens other than AR. © 1995 Wiley-Liss, Inc.  相似文献   

10.
11.
Pathological cardiac stimulation by angiotensinII (AngII) can cause left ventricular hypertrophy, a major independent risk factor for heart attack and death. We have previously reported that AngII exerts its hypertrophic effects by usurping the epidermal growth factor (EGF) signalling pathway via metalloprotease-dependent transactivation. However, the EGF-like ligand responsible for AngII-mediated transactivation and cardiac hypertrophy remains to be identified. Using phosphorylated ERK1/2 as a read-out of growth pathway activation and an alkaline phosphatase-tagged Heparin-Binding EGF-like Growth Factor (HB-EGF) reporter construct to examine AngII-mediated liberation, we provide evidence that HB-EGF is the soluble growth factor involved in AngII-induced left ventricular hypertrophy.  相似文献   

12.
The structure of the green monkey Chlorocebus aethiops heparin-binding EGF-like growth factor (HB-EGF) gene was compared with that of the corresponding human gene. Exon 3a, characteristic of the short form of HB-EGF (SF-HB-EGF), was mapped between exons 3 and 4, approximately 700 bp away from the latter. In several human and simian cell lines, most of the SF-HB-EGF mRNA proved to lack exons 4 and 5, specific to the HB-EGF mRNA. In contrast to the HB-EGF mRNA, the SF-HB-EGF mRNA occurred predominantly in the P, rather than L, form, which codes for a protein with a different propeptide structure. Labeled SF-HB-EGF competed with HB-EGF and EGF for binding to the surface of A431 cells, suggesting its interaction with the specific EGF receptor. The results indicate that SF-HB-EGF plays a specific role in cell signaling.  相似文献   

13.
14.
Molecular cloning of the partial cDNA coding sequences of the four erbB receptors and the epidermal growth factor (EGF)-like ligands EGF, transforming growth factor alpha (TGF), and heparin-binding EGF (HB-EGF) has provided the basis for a comprehensive analysis of the spatiotemporal expression pattern of the EGF receptor/ligand system during the peri-implantation period in the rabbit. Employing nonradioactive in situ hybridization and immunolocalization, we observed differential expression of erbB1-erbB3 within the trophectoderm of the blastocyst. ErbB1 was strongly expressed in the cytotrophoblast but was downregulated upon syncytium formation. ErbB3 was a product of both the cyto- and syncytiotrophoblast. Despite the expression of erbB2 mRNA, the trophectoderm was devoid of immunoreactive ErbB2. ErbB4 gene activity was exclusively detected in the trophoblast at midpregnancy. The luminal and glandular epithelium and stroma of the nonpregnant, pseudopregnant, and pregnant rabbit uterus at Day 6 of gestation also expressed ErbB1-ErbB3. In the peri-implantation period, gene activities of erbB1-erbB3 were upregulated upon decidualization. At the site of implantation, uterine luminal epithelial cells apposing the preimplantation blastocyst displayed a distinct membrane immunolocalization of ErbB2, identifying the uterine epithelium as target for EGF, TGFalpha, and HB-EGF derived from both the embryonic trophectoderm and the uterine epithelium. In the luminal epithelium at the antimesometrial uterine site, HB-EGF gene activity was upregulated at the time of blastocyst attachment, but this upregulation was not reflected in an increase in immunoreactive HB-EGF. The detection of tyrosine phosphorylated ErbB2 in the rabbit placenta indicated the presence of a functional ErbB/EGF-like system in the pregnant rabbit uterus. This study provides strong evidence for a role of the ErbB/EGF-like system in embryo/maternal interactions during the peri-implantation period in the rabbit.  相似文献   

15.
In all secreted proteins related to the epidermal growth factor (EGF), EGF domains that occur in a mature factor are each encoded by two exons, and those that do not, by one exon. During splicing, additional exon 3a can be inserted between exons 3 and 4, which code for the EGF domain of the mature heparin-binding EGF-like growth factor (HB-EGF). The resulting mRNA codes for the short form of HB-EGF (SF HB-EGF), which retains the signal peptide, the propeptide, and the heparin-binding domain. However, its EGF domain lacks the C-terminal subdomain essential for the interaction with the EGF receptor (EGFR). Structural analysis suggested that SF HB-EGF is a secreted polypeptide that has high affinity for heparin, but weakly, if at all, interacts with EGFR. Data obtained in three different systems indicated that SF HB-EGF possesses a mitogenic activity but utilizes a signal transduction pathway other than that of HB-EGF.  相似文献   

16.
In all secreted proteins related to the epidermal growth factor (EGF), EGF domains that occur in a mature factor are each encoded by two exons, and those that do not, by one exon. During splicing, additional exon 3a can be inserted between exons 3 and 4, which code for the EGF domain of the mature heparin-binding EGF-like growth factor (HB-EGF). The resulting mRNA codes for the short form of HB-EGF (SF HB-EGF), which retains the signal peptide, the propeptide, and the heparin-binding domain. However, its EGF domain lacks the C-terminal subdomain essential for the interaction with the EGF receptor (EGFR). Structural analysis suggested that SF HB-EGF is a secreted polypeptide that has high affinity for heparin but weakly, if at all, interacts with EGFR. Data obtained in three different systems indicated that SF HB-EGF possesses a mitogenic activity but utilizes a signal transduction pathway other than that of HB-EGF.  相似文献   

17.
Normal human mammary epithelial cells (HMECs) proliferate in a serum-free defined growth medium in the absence of epidermal growth factor (Li and Shipley, 1991). Amphiregulin (AR) is a heparin-regulated, EGF-like growth factor. Our observation that one strain of HMECs produce AR mRNA (Cook et al., 1991 a) stimulated us to determine whether AR expression was a common phenomenon in HMECs and whether AR could act as an autocrine growth factor to support the EGF-independent growth of these cells. In this study, we detected high levels of AR expression in four separate HMEC strains while one immortal mammary cell line (HBL-100) and six mammary tumor-derived cell lines had low to undetectable levels of AR. The EGF-independent growth of HMECs was blocked by the addition of heparin or a monoclonal anti-EGF receptor antibody to the culture medium, implicating AR as an autocrine growth mediator. This hypothesis is further supported by the fact that medium conditioned by HMECs contains secreted AR protein. A mammary tumor-derived cell line, Hs578T, which proliferates in an EGF-independent manner, does not express detectable levels of AR and is not growth inhibited by heparin. Examination of the same cell types for expression of transforming growth factor type-alpha (TGF-alpha) mRNA revealed coordinate expression of AR and TGF-alpha in these cells. These data suggest that both AR and TGF-alpha mRNA are produced in much greater abundance by normal HMECs than in tumor-derived cells in culture, and that AR is an important autostimulatory factor for the growth of normal HMECs.  相似文献   

18.
19.
Heparin-binding EGF-like growth factor (HB-EGF), which belongs to the EGF-family of growth factors, was isolated from the conditioned medium of macrophage-like cells. To investigate the effect of N- and C-terminal residues of the EGF-like domain of HB-EGF in the binding affinity to the EGF receptor on A431 cell. We synthesized HB-EGF(44-86) corresponding to the EGF-like domain of HB-EGF and its N- or C-terminal truncated peptides. Thermolytic digestion demonstrated three disulfide bond pairings of the EGF-like domain in HB-EGF is consistent with that of human-EGF and human-TGF-alpha. HB-EGF(44-86) showed high binding affinity to EGF-receptor, like human-EGF. The truncation of the C-terminal Leu86 residue from HB-EGF(44-86), HB-EGF(45-86) or HB-EGF(46-86) caused a drastic reduction in the binding affinity to the EGF receptor. These results suggest that the EGF-like domain of HB-EGF plays an important role in the binding to the EGF receptor, and its C-terminal Leu86 residue is necessary for binding with the EGF-receptor. In addition, the deletion of the two N-terminal residues (Asp44-Pro45) from HB-EGF(44-86) caused a 10-fold decrease in relative binding affinity to the EGF receptor. This indicates that the two N-terminal residues of the EGF-like domain of HB-EGF are necessary for its optimal binding affinity to the EGF receptor.  相似文献   

20.
Previous studies have indicated that heparin differentially regulates heparin-binding EGF-like growth factor (HB-EGF) and amphiregulin (AR) mitogenic activity. To further explore this phenomenon, these mitogens were compared under identical cell culture conditions in two different assays. The results of our present investigation demonstrated that AR-mediated mitogenic activity in the murine AKR-2B fibroblast-like cell line was inhibited by heparin, while HB-EGF activity was enhanced. However, the absolute effect of heparin appeared to be cell type specific since HB-EGF mitogenic activity was not dramatically affected by coincubation with heparin when tested on human dermal fibroblasts. Several studies have indicated that mutation of a conserved leucine in the carboxyl-terminal region of both EGF and transforming growth factor-α results in decreased affinity for EGF receptors. Since this leucine is present in the analogous position of HB-EGF, but absent in AR, we examined the effect of deleting this residue by carboxyl-terminal truncation of HB-EGF. Analysis of recombinant forms of HB-EGF demonstrated that HB-EGF can be converted to a heparin-inhibited growth factor if the putative mature form of the protein is truncated by two residues (leucine76 and proline77) at the carboxyl terminus. Further analysis demonstrated that only leucine76 appears to be required for heparin-dependent enhancement of HB-EGF-mediated mitogenic activity, indicating that this amino acid may play a pivotal role in controlling the response of HB-EGF to heparin or related glycosaminoglycan sulfates. Our results also suggest that expression of different HB-EGF forms in vivo could result in the production of HB-EGFs with divergent responses to sulfated glycosaminoglycans and proteoglycans. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号