首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arylsulfatase from Artemia salina exists in at least two forms (AS I and AS II). The paper presents characterization of the AS II form of the arylsulfatase. The enzyme was able to hydrolyze p-nitrocatechol sulfate (pNCS) as well as ascorbate sulfate. It exhibited maximum activity at temperature of 50 °C and was stable for 2 h at 4-10 °C. Optimum pH shifted from 6.2 at 4 mM pNCS (substrate) to 4.8 at 20 mM pNCS. The enzyme displayed linear kinetics. AS II arylsulfatase exists in two molecular forms (349 and 460 kDa) composed of identical subunits with molecular mass of 53 kDa. Sulfite and phosphate ions were the most potent inhibitors of the enzyme. Cyanide proved to be a weak inhibitor. Sulfate and low concentrations of silver ions had no effect on the enzyme activity. Based on the above results, modifications in the assay for determination of enzyme activity are proposed.  相似文献   

2.
Summary A simultaneous azo-coupling method for the histochemical localization of d-equilenin sulfatase is described. d-Equilenin is a natural estrogenic steroid hormone, and its sulfuric acid ester was synthesized. It was found that the d-equilenin liberated during hydrolysis of d-equilenin sulfate by tissue sulfatase could be coupled with a diazonium salt to produce a purple precipitate indicating enzyme activity. d-Equilenin sulfatase was found in human tissues, but not in tissues of the rat. The optimum substrate concentration was 0.8 mM, activity was demonstrable over the wide pH range 5.0–8.0. Enzyme activity localized diffusely in the cytoplasm in optimally fixed specimens. Enzyme activity was also fairly well demonstrable in unfixed cryostat sections. Enzyme activity was completely inhibited by 0.1 M phosphate, 1 mM sodium tetraborate, 1 mM p-nitrophenyl sulfate and by 2 mM p-nitrocatechol sulfate. Estrone sulfate at concentration 0.8 mM had no effect, but at 4 mM caused marked inhibition of the reaction. At the same concentrations dehydroepiandrosterone sulfate did not inhibit the reaction. The chemical properties and tissue localizations of d-equilenin sulfatase differed from the properties of arylsulfatases A, B and C and other steroid sulfatases reported previously in the literature.  相似文献   

3.
Green crab (Scylla serrata) alkaline phosphatase is a metalloenzyme that catalyzes the nonspecific hydrolysis of phosphate monoesters. The kinetics of inhibition of the enzyme by vanadate has been studied. The time course of the hydrolysis of p-nitrophenyl phosphate catalyzed by the enzyme in the presence of different Na3VO4 concentrations showed that, at each Na3VO4 concentration, the rate decreased with increasing time until a straight line was approached, the slopes of the straight lines being the same for all concentrations. The results suggest that the inhibition of the enzyme by Na3VO4 is a slow, reversible reaction with fractional residual activity. The microscopic rate constants were determined for the reaction of the inhibitor with the enzyme. As compared with Na2HPO4 (Ki = 0.95 mM), Na2HAsO4 (Ki = 1.10 mM), and Na2WO4 (Ki = 1.55 mM), the results suggest that Na3VO4 (Ki = 0.135 mM) is a considerably more potent inhibitor than other inhibitors.  相似文献   

4.
1. A method is described for the purification of a form of 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (tryptophan) that probably differs from that of the native enzyme. 2. The kinetics of the reaction catalysed by 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (tryptophan) shows that the reaction proceeds via a ping-pong bi-bi mechanism, with activation by phosphoenolpyruvate (P-Prv), the first substrate, and inhibition by erythrose 4-phosphate (Ery-P) the second substrate. At low substrate concentrations, KP-Prv is 0.1 mM and KEry-P is 0.13 mM. 3. The substrates phosphoenolpyruvate and erythrose 4-phosphate and the product inorganic phosphate can protect the purified enzyme against heat denaturation, whereas the inhibitor, tryptophan, has no effect, although it binds to the enzyme in the absence of other ligands. 4. Product inhibition by inorganic phosphate is linear non-competitive with respect to phosphoenolpyruvate (Ki, slope = 22 mM and Ki, intercept = 54 mM) and substrate-linear competitive with respect to erythrose 4-phosphate (Ki, slope = 25 mM). 5. The enzyme has an activity optimum at pH 7.3 and a tryptophan inhibition optimum at pH 6.4, Trp 0.5 is 4 microM. Inhibition by tryptophan is non-competitive with respect to phosphoenolpyrovate and substrate-parabolic competitive with respect to erythrose 4-phosphate. 6. The role of the enzyme in metabolic regulation is discussed.  相似文献   

5.
Abstract Sulfate uptake was investigated with four species of phototrophic sulfur bacteria. Rhodobacter sulfidophilus and Chromatium vinosum took up 35S-labeled sulfate added in micromolar concentrations. Sulfate uptake by C. vinosum was expressed only under sulfate starvation. R. sulfidophilus took up 10 μM sulfate almost completely and accumulated it up to 5300-fold, also when grown with excess sulfate. Sulfite (1 mM) as an intermediate of sulfate assimilation inhibited sulfate uptake completely within 1 min. Moderate inhibition was observed with cysteine (1 mM) and none with sulfide (1 mM). Transport was not dependent on the cations K+, Na+, Li+ or protons, but was sensitive to uncouplers and to the ATPase inhibitor dicyclohexylcarbodiimide (DCCD). The accumulation of sulfate correlated with the ATP concentration in the cells, indicating an ATP-dependent uptake mechanism.  相似文献   

6.
The structural basis of anomalous kinetics of rabbit liver aryl sulfatase A   总被引:1,自引:0,他引:1  
Rabbit liver aryl sulfatase A (aryl sulfate sulfohydrolase, EC 3.1.6.1) is inactivated during the hydrolysis of nitrocatechol sulfate and the rate of formation of turnover-modified aryl sulfatase A depends on the initial velocity of the enzymatic reaction. Organic solvents such as ethanol and dioxane favor the anomalous kinetic behavior. The turnover-modified enzyme can apparently be reactivated by arsenate, phosphate, pyrophosphate, and sulfate in the presence of nitrocatechol sulfate. The apparent dissociation constants of these ions in the reactivation of the enzyme are similar to their Ki values. Sulfite, which is a competitive inhibitor, does not reactivate the turnover-modified enzyme. Thus, all known activators are competitive inhibitors but not all competitive inhibitors are effective as activators. Inactivation of aryl sulfatase A during hydrolysis of 35S-labeled substrate at pH values near the pH optimum (pH 5–6) is accompanied by the incorporation of radioactivity into the protein molecule and the turnover-modified enzyme is thereby covalently labeled. The stoichiometry of the incorporation of radioactivity corresponds to 2 g atom of sulfur per mole of enzyme monomer, or 1 g atom of sulfur per equivalent peptide chain. It is also shown that isolated turnover-modified rabbit liver aryl sulfatase A has lost approximately 76% of its secondary structure as compared to the native enzyme. The specific activity of the inactive enzyme is also decreased by 82%. Turnover-modified rabbit liver aryl sulfatase A is partially reactivated by sulfate ions in the presence of nitrocatechol sulfate. However, circular dichroism measurements and fluorescence spectra of the isolated “reactivated” turnover-modified enzyme indicate only a further loss of secondary structure. The specific activity of this “reactivated” enzyme is in fact decreased. The loss in secondary structure and the enzyme activity of the “reactivated” aryl sulfatase A is prevented in the presence of sulfate ions. Turnover-modified rabbit liver aryl sulfatase A behaves as a very fragile molecule.  相似文献   

7.
The activity of two purified homogeneous phosphoprotein phosphatases types P I and P II) (phosphoprotein phosphohydrolase, EC 3.1.3.16) from rabbit liver (Khandelwal, R.L., Vandenheede, J.R., and Krebs, E.G. (1976) J. Biol. Chem. 251, 4850-4858) were examined in the presence of divalent cations, Pi, PPi, nucleotides, glycolytic intermediates and a number of other compounds using phosphorylase a, glycogen synthase D and phosphorylated histone as substrates. Enzyme activities were usually inhibited by divalent cations with all substrates; the inhibition being more pronounced with phosphorylase a. Zn2+ was the most potent inhibitor among the divalent cations tested. The enzyme was competitively inhibited by PPi (Ki = 0.1 mM for P I and 0.3 mM for PII), Pi (Ki = 15 mM for P I and 19.8 mM for P II) and p-nitrophenyl phosphate (Ki = 1 mM and 1.4 mM for P I and P II, respectively) employing phosphorylase a as the substrate. The compounds along with a number of others (Na2SO4, citrate, NaF and EDTA) also inhibited the enzyme activity with the other two substrates. Severe inhibition of the enzyme was also observed in the presence of the adenine and uridine nucleotides; monophosphate nucleotides being more inhibitory with phosphorylase a, whereas the di- and triphosphate nucleotides showed more inhibition with glycogen synthase D and phosphorylated histone. Cyclic AMP had no significant effect on enzyme activity with all the substrates tested. Phosphorylated metabolites did not show any marked effect on the enzyme activity with phosphorylase a as the substrate.  相似文献   

8.
Purine nucleoside phosphorylase (EC 2.4.2.1) from bovine spleen is allosterically regulated. With the substrate inosine the enzyme displayed complex kinetics: positive cooperativity vs inosine when this substrate was close to physiological concentrations, negative cooperativity at inosine concentrations greater than 60 microM, and substrate inhibition at inosine greater than 1 mM. No cooperativity was observed with the alternative substrate, guanosine. The activity of purine nucleoside phosphorylase toward the substrate inosine was sensitive to the presence of reducing thiols; oxidation caused a loss of cooperativity toward inosine, as well as a 10-fold decreased affinity for inosine. The enzyme also displayed negative cooperativity toward phosphate at physiological concentrations of Pi, but oxidation had no effect on either the affinity or cooperativity toward phosphate. The importance of reduced cysteines on the enzyme is thus specific for binding of the nucleoside substrate. The enzyme was modestly inhibited by the pyrimidine nucleotides CTP (Ki = 118 microM) and UTP (Ki = 164 microM), but showed greater sensitivity to 5-phosphoribosyl-1-pyrophosphate (Ki = 5.2 microM).  相似文献   

9.
Aspartokinase from Streptococcus mutans BHT was purified to homogeneity and characterized. The molecular weight of the native enzyme was estimated to be 242,000 by gel filtration. Cross-linking of aspartokinase with dimethyl suberimidate and polyacrylamide gel electrophoresis of the amidinated enzyme in the presence of sodium dodecyl sulfate showed the enzyme to be composed of six identical subunits with a molecular wieght of 40,000. The optimal pH range for enzyme activity was 6.5 to 8.5. The apparent Michaelis-Menten constants for aspartate and ATP were 5.5 and 2.2 mM, respectively. The enzyme was stable within the temperature range of 10 to 35 degrees C. Aspartokinase was not feedback inhibited by individual amino acids, but was concertedly inhibited by L-lysine and L-threonine (93.5% inhibition at 10 mM each). The inhibition was noncompetitive with respect to aspartate (Ki = 10 mM) and mixed with respect to ATP. L-Threonine methyl ester and L-threonine amide were able to substitute for L-threonine in feedback inhibition, but the requirement for L-lysine uas strict. The feedback inhibitor pair protected the enzyme against heat denaturation. Aspartokinase synthesis was repressed by L-threonine; this repression was enhanced by L-lysine, but was slightly attenuated by L-methionine.  相似文献   

10.
A sulfatase acting upon chondroitin sulfate polymers, free of beta-glucuronidase and beta-N-acetylhexosaminidases, was isolated from extracts of the mollusc Anomalocardia brasiliana. The enzyme totally desulfates both chondroitin 4- and 6-sulfates without concomitant depolymerization of the compounds. It has no activity upon heparan sulfate, heparin, dermatan sulfate, and chondroitin sulfate disaccharides. It shows a pH of 5.0 and a temperature of 37 degrees C for optimum activity with a Km of 4 x 10(-5) M. The sulfatase is inhibited by sulfate and phosphate ions and HgCl2. The latter inhibition is reverted by sodium tetrathionate. Contrary to the sulfatases described so far the enzyme is activated by the lactone of D-saccharic acid when in the presence of beta-glucuronidase and beta-N-acetylgalactosaminidase. Several experiments indicate that the sulfatase is the first enzyme in the sequential degradation of chondroitin sulfate in the mollusc. This differs from the pathway of degradation of this compound in vertebrates and bacteria.  相似文献   

11.
DNA kinase has been purified to homogeneity from calf thymus. The purified enzyme, with a specific activity of 16.7 units/mg protein at 25 degrees C, exhibited a sharp pH/activity curve with a pH optimum at 5.5 and low activity at alkaline pH. The molecular weight of the enzyme was estimated by dodecylsulfate/polyacrylamide gel electrophoresis to be 5.4 X 10(4). The enzyme has a sedimentation coefficient of 4.0 S. An apparent molecular weight of 5.6 X 10(4) and a Stokes' radius of 3.3 nm were estimated by gel-filtration on Sephadex G-100. The enzyme phosphorylates neither yeast RNA nor poly(A) instead of DNA. Compared with rat liver DNA kinase, calf thymus DNA kinase is relatively resistant to the inhibition by sulfate (Ki = 7 mM) and pyrophosphate (Ki = 5 mM). The enzyme activity is markedly stimulated by polyamines at the sub-optimal concentration of Mg2+ but not by monovalent cations.  相似文献   

12.
The enzymatic properties of a homogeneous sterylsulfatase preparation isolated from human term placenta were studied. The enzyme exhibited both arylsulfatase and sterylsulfatase activity: it catalysed the hydrolysis of sulfuric acid esters of (in the order of decreasing specific activity) non-steroidal phenols, of a phenolic steroid, and of neutral 3 beta-, 21- and (though at a very low rate) 17 beta-hydroxysteroids. However, among all the substrates tested only the 3-sulfates of phenolic and neutral steroids exhibited high affinity towards the sulfatase. Vitamin D3 sulfate was not hydrolysed by the sterylsulfatase but strongly inhibited its activity. The products of the catalytic reaction, free steroids or phenols as well as the sulfate anion or analogues thereof, likewise interfered with the enzyme's activity. Ki values of unconjugated steroids were ten- to hundredfold higher than Km values of the respective sulfoconjugates. Inorganic sulfate only slightly inhibited the sulfatase activity; its inhibitory potency, however, increased in a time-dependent manner when it was preincubated with the enzyme prior to assay. In contrast to sulfate, the hypothetical transition-state analogues sulfite and vanadate acted as strong inhibitors of the sulfatase activity. According to the results of an analysis of the effect of pH on sterylsulfatase kinetics, enzyme constituents with pK values of approximately 5.8 and 8.0 are involved in a general acid-base catalysed reaction. Treatment of the sulfatase with amino-acid side chain modifying reagents directed against arginine, cysteine, cystine, serine or tyrosine residues did not result in significant alteration of its activity. Diethyl-pyrocarbonate known to react primarily with histidyl groups, however, rapidly inactivated the enzyme; this inactivation reaction was markedly retarded in the presence of substrate. Histidine thus appears to be essential for the catalytic activity of the sulfatase. Taken together, the present results reveal a considerable similarity between the catalytic mechanism of human placental sterylsulfatase and the ones already proposed for the lysosomal arylsulfatases A and B. Taurocholate, salicylate, ouabain, and 4,4'-substituted stilbene-2,2'-disulfonates are well known inhibitors of carrier-mediated transport of anions across cellular membranes. With the exception of ouabain, these compounds likewise turned out to inhibit the enzymatic hydrolysis of steryl sulfates; the pattern of dose dependences of their interference with the sulfatase activity resembles the one reported for inhibition of anion transport. Since the sterylsulfatase in vivo strongly is associated with cellular membranes including the plasma membrane of the syncytiotrophoblast, this finding supports the speculation that similar molecular structures may be involved in both placental transport and hydrolysis of anionic steryl sulfates.  相似文献   

13.
Ethanol inhibits antibody-dependent cell-mediated cytotoxicity in a dose-dependent manner. The inhibitory effect of ethanol was reversed by the addition of excess calcium or calcium ionophore A23187. Excess calcium at 4-8 mM concentrations was required to reverse 50% of the inhibition caused by ethanol. In seven of nine experiments, 16 mM excess calcium completely reversed the inhibition and produced greater lysis than the control. Excess calcium in the absence of ethanol induced a dose-dependent increase in lytic activity by the spleen cells. However, the reversal of inhibition by ethanol could not be attributed to a simple additive effect resulting from the increased cytolytic capacity of the lymphocytes in the presence of excess Ca2+. Ionophore A23187 at 1 microM also partially reversed the inhibitory effect caused by ethanol. Ionophore alone did not potentiate lytic activity. When target cells were not sensitized with antibody, excess calcium had no effect on the lysis of target cells in the presence of ethanol-treated or untreated lymphocytes. These data suggest that ethanol inhibits antibody-dependent cell-mediated cytotoxicity at a calcium-dependent step.  相似文献   

14.
Crystalline L-histidine ammonia-lyase of Achromobacter liquidum was prepared with a 24% recovery of the activity. The specific activity of the pure enzyme (63 mumol of urocanic acid min-1 mg-1) is similar to those so far reported for the enzyme from other sources. The purified enzyme appeared to be homogeneous by analytical disc electrophoresis and isoelectric focusing (pI = 4.95). The molecular weight determined by Sephadex G-200 gel filtration is 200000. The optimum pH is 8.2, and the optimum temperature is 50 degrees C. The enzyme showed strict specificity to L-histidine (Km = 3.6 mM). Several histidine derivatives are not susceptible to the enzyme but do inhibit the enzyme activity competitively; the most effective inhibitors are L-histidine methyl ester (Ki = 3.66 mM) and beta-imidazole lactic acid (Ki = 3.84 mM). L-Histidine hydrazide (Ki = 36 mM) and imidazole (Ki = 6 mM) noncompetitively inhibited the enzyme EDTA markedly inhibited enzyme activity and this inhibition were reversed by divalent metal ions such as Mn2+, Co2+ Zn2+, Ni2+, Mg2+, and Ca2+. These results suggest that the presence of divalent metal ions is necessary for the catalytic activity of histidine ammonia-lyase. Sodium borohydride and hydrogen peroxide inhibited the enzyme activity.  相似文献   

15.
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity in microsomes isolated from cultured lymphoid (IM-9) cells or freshly isolated human leukocytes was markedly decreased by either ascorbic acid or its oxidized derivative, dehydroascorbate. Inhibition of IM-9 leukocyte HMG-CoA reductase activity was log linear between 0.01 and 10 mM ascorbic acid (25 and 81% inhibition, respectively) and 0.1 and 10 mM dehydroascorbate (5 and 75% inhibition, respectively). Inhibition was noncompetitive with respect to HMG-CoA (Km = 10.2 microM (RS); ascorbic acid, Ki = 6.4 mM; dehydroascorbate, Ki = 15 mM) and competitive with respect to NADPH (Km = 16.3 microM; acetic acid, Ki = 6.3 mM; dehydroascorbate, Ki = 3.1 mM). Ascorbic acid and dehydroascorbate are interconverted through the free radical intermediate monodehydroascorbate. Reducing agents are required to convert dehydroascorbate to monodehydroascorbate, but prevent formation of the free radical from ascorbate. In microsomes from IM-9 cells, the reducing agent, dithiothreitol, abolished HMG-CoA reductase inhibition by ascorbate but enhanced inhibition by dehydroascorbate. In addition, the concentration of monodehydroascorbate present in ascorbate solutions was directly proportional to the degree of HMG-CoA reductase inhibition by 1.0 mM ascorbate. Fifty per cent inhibition of enzyme activity occurred at a monodehydroascorbate concentration of 14 microM. These data indicate that monodehydroascorbate mediates inhibition of HMG-CoA reductase by both ascorbate and dehydroascorbate. This effect does not appear to be due to free radical-induced membrane lipid modification, however, since both ascorbate and dehydroascorbate inhibited the protease-solubilized, partially purified human liver enzyme. Since inhibition of HMG-CoA reductase occurs at physiological concentrations of ascorbic acid in the human leukocyte (0.2-1.72 mM), this vitamin may be important in the regulation of endogenous cholesterol synthesis in man.  相似文献   

16.
alpha-L-Glycerolphosphate dehydrogenase (sn-glycerol-3-phosphate:NAD+ 2-oxidoreductase, EC 1.1.1.8) from Saccharomyces carlsbergensis was purified 400-fold. The enzyme preparation is free of interfering activities, such as glyceraldehyde phosphate dehydrogenase, alcohol dehydrogenase, triose phosphate isomerase and glycerolphosphatase. At pH 7.0 it is specific for NADH (Km = 0.027 mM with 0.8 mM dihydroxyacetone phosphate) and dihydroxyacetone phosphate (Km = 0.2 mM with 0.2 mM NADH). Between pH 5.0 and 6.0 the enzyme functions with NADPH, but only at 7% of the rate with NADH. Various anions (I- greater than SO42- greater than Br- greater than Cl-) act as inhibitors competing with the substrate dihydroxyacetone phosphate. Inorganic phosphate (Ki = 0.1 mM), pyrophosphate and arsenate are strong inhibitors. The nucleotides ATP and ADP are also inhibitory, but their action seems to be of the same type as the general anion competition (Ki = 0.73 mM for ATP). The results are consistent with the notion that the enzyme may regulate the redox potential of the NAD+/NADH couple during fermentation.  相似文献   

17.
Phosphofructokinase from oyster (Crassostrea virginica) adductor muscle occurs in a single electrophorectic form at an activity of 8.1 mumol of product formed per minute per gram wet weight. The enzyme was purified to homogeneity by a novel method involving extraction in dilute ethanol and subsequent precipitation with polyethylene glycol. Oyster adductor phosphofructokinase has a molecular weight of 3400000 +/- 20000 as measured by Sephadex gel chromatography. Mg2+ or Mn2+ can satisfy the divalent ion requirement while ATP, GTP, or ITP can serve as phosphate donors for the reaction. Oyster adductor phosphofructokinase displays hyperbolic saturation kinetics with respect to all substrates (fructose 6-phosphate, ATP, and Mg2+) at either pH 7.9 OR PH 6.8. The Michaelis constant for fructose 6 phosphate at pH 6.8, the cellular pH of anoxic oyster tissues, is 3.5 mM. In the presence of AMP, by far the most potent activator and deinhibitor of the enzyme, this drops to 0.70 mM. Many traditional effectors of phosphofructokinase including citrate, NAD(P)H,Ca2+, fructose 1,6-bisphosphate, 3-phosphoglycerate, ADP, and phosphoenolpyruvate do not alter enzyme activity when tested at their physiological concentrations. Monovalent ions (K +, NH4+) are activators of the enzyme. ATP and arginine phosphate are the only compounds found to inhibit the adductor enzyme. The inhibitory action of both can be reversed by physiological concentrations of AMP(0.2- 1.0mM) and to a lesser extent by high concentrations of Pi (20 mM) and adenosine 3' :5'-monophosphate (0.1 mM). The two inhibitors exhibit very different pH versus inhibition profiles. The Ki (ATP) decreases from 5.0 mM to 1.3 mM as the pH decreases from 7.9 to 6.8, whereas the Ki for arginine phosphate increases from 1.3 mM to 4.5 mM for the same pH drop. Of all compounds tested, only AMP, within its physiological range, activated adductor phosphofructokinase significantly at low pH values. The kinetic data support the proposal that arginine phosphate, not ATP or citrate, is the most likely regulator of adductor phosphofructokinase in vivo under aerobic, high tissue pH, conditions. In anoxia, the depletion of arginine phosphate reserves and the increase in AMP concentrations in the tissue, coupled with the increase in the Ki for arginine phosphate brought about by low pH conditions, serves to activate phosphofructokinase to aid maintenance of anaerobic energy production.  相似文献   

18.
The effect of metal ions on the activity of trout kidney and liver PBG-synthase was investigated. Heavy metals inhibited the kidney enzyme in a complex manner. Kinetic analysis of the inhibition of liver activity by Pb2+ (Ki = 1.3 mM) was consistent with non-competitive inhibition, whereas Zn2+ (Ki = 1.3 mM) and Mg2+ (Ki = 3.5 mM) were competitive inhibitors.  相似文献   

19.
O,S,S,-Trimethyl phosphorodithioate (OSS-TMP), an organophosphate esterase inhibitor, has been shown to block the effector phase of the cytolytic reaction mediated by murine and human cytotoxic T lymphocytes (CTL) and human natural killer cells. The murine interleukin 2-dependent CTLL-1 (anti-Iad) clone was used to determine the phase of the cytolytic pathway inhibited by OSS-TMP. Pretreatment of the CTL or target cell with OSS-TMP was not effective at blocking lysis; however, inhibition of lysis was achieved if the reaction was carried out in the continuous presence of OSS-TMP (IC50 = 55 microM) or when CTL-target conjugates were performed and incubated with OSS-TMP (IC50 = 640 microM). Two structural analogues of OSS-TMP were unable to inhibit CTL-mediated lysis. In contrast to OSS-TMP, N-alpha-p-tosyl-L-lysine chloromethylketone required only a 5-min preincubation with the CTL to inhibit lysis. OSS-TMP did not block recognition-adhesion step(s) of the reaction since the ability to form conjugates was not impaired; however, the lytic efficiency of individual CTL-target pairs were blocked. OSS-TMP did not appear to be an inhibitor of the major granule-associated protease that cleaves the substrate, N-alpha-benzyloxycarbonyl-L-lysine thiobenzylester. Ca2+ pulse and kinetic experiments indicated that the OSS-TMP-sensitive site was at a pre-Ca2+-dependent phase but after recognition-adhesion. Human CTL and natural killer cell activity was also inhibited by OSS-TMP, suggesting the presence of a common site of action among these cytolytic systems. The results indicate that OSS-TMP may be a useful reagent in characterizing the early post-recognition events in the cytolytic pathway of CTL and natural killer effector cells.  相似文献   

20.
N-Acetylgalactosamine-6-sulfate sulfatase from human placenta was purified 33,600-fold using beta-N-acetyl-D-galactosamine 6-sulfate-(1----4)-beta-D-glucuronic acid-(1----3)-N-acetyl-D-[3H]galactosaminitol 6-sulfate as the substrate. This enzyme is an oligomer with a molecular mass of 120 kDa and consists of polypeptides of 40 and 15 kDa. The 15 kDa polypeptide is a glycoprotein. This purified protein has activities of N-acetylgalactosamine-6-sulfate sulfatase and galactose-6-sulfate sulfatase. Rabbit antiserum was raised against the purified protein. The antibody titrated N-acetylgalactosamine-6-sulfate sulfatase and galactose-6-sulfate sulfatase. The size of the precursor of the enzyme is 60 kDa, as determined by cell-free translation. The optimal pH values of the N-acetylgalactosamine-6-sulfate sulfatase and galactose-6-sulfate sulfatase activities are pH 3.8-4.0, and the Kms are 8 and 13 microM, respectively. Sulfate and phosphate ions are potent competitive inhibitors for the enzyme and their inhibition constants are 35 and 200 microM, respectively. Cross-reactive materials of 40 and 15 kDa were detected by immunoblot analysis, in the placenta, liver, and normal fibroblasts, but not in fibroblasts from a patient with Morquio disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号