首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we tested the hypothesis that phospholipid transfer protein (PLTP) is a plausible mediator of phospholipid (PL) transfer to the N-terminal 1000 residues of apoB (apoB:1000) leading to the initiation of apoB-containing lipoprotein assembly. To this end, primary hepatocytes from wild type (WT) and PLTP knock-out (KO) mice were transduced with adenovirus-apoB:1000 with or without co-transduction with adenovirus-PLTP, and the assembly and secretion of apoB:1000-containing lipoproteins were assessed. PLTP deficiency resulted in a 65 and 72% reduction in the protein and lipid content, respectively, of secreted apoB:1000-containing lipoproteins. Particles secreted by WT hepatocytes contained 69% PL, 9% diacylglycerol (DAG), and 23% triacylglycerol (TAG) with a stoichiometry of 46 PL, 6 DAG, and 15 TAG molecules per apoB:1000. PLTP absence drastically altered the lipid composition of apoB:1000 lipoproteins; these particles contained 46% PL, 13% DAG, and 41% TAG with a stoichiometry of 27 PL, 10 DAG, and 23 TAG molecules per apoB:1000. Reintroduction of Pltp gene into PLTP-KO hepatocytes stimulated the lipidation and secretion of apoB:1000-containing lipoproteins by ∼3-fold; the lipid composition and stoichiometry of these particles were identical to those secreted by WT hepatocytes. In contrast to the WT, apoB:1000 in PLTP-KO hepatocytes was susceptible to intracellular degradation predominantly in the post-endoplasmic reticulum, presecretory compartment. Reintroduction of Pltp gene into PLTP-KO hepatocytes restored the stability of apoB:1000. These results provide compelling evidence that in hepatocytes initial recruitment of PL by apoB:1000 leading to the formation of the PL-rich apoB-containing initiation complex is mediated to a large extent by PLTP.  相似文献   

2.
Chylomicrons labeled with [3H]cholesterol and [14C]triglyceride fatty acids were lipolyzed by hepatic lipase (HL) in vitro and then injected intravenously into normal mice fed low- or high-fat diets, and into apolipoprotein (apo) E-deficient mice. In normal mice fed the high-fat diet and injected with non-lipolyzed chylomicrons, the plasma clearance and hepatic uptake of the resulting [3H]cholesterol-labeled remnants was markedly inhibited. In contrast, chylomicrons lipolyzed by HL were taken up equally rapidly by the livers of mice fed the low- and high-fat diets. The removal of non-lipolyzed chylomicrons lacking apoE from the plasma of apoE-deficient mice was inhibited, but not the removal of chylomicrons lipolyzed by HL. Pre-injection of lactoferrin into normal mice inhibited the plasma clearance of both non-lipolyzed chylomicrons and chylomicrons lipolyzed by HL. The removal of HL from the surface of the lipolyzed particles by proteolytic digestion did not affect their rapid uptake, indicating that the hepatic recognition of the lipoproteins was not mediated by HL. These observations support previous findings that phospholipolysis of chylomicrons by hepatic lipase generates remnant particles that are rapidly cleared from circulation by the liver. They also support the concept that chylomicron remnants can be taken up by the liver by an apolipoprotein E-independent mechanism. We hypothesize that this mechanism is modulated by the remnant phospholipids and that it may involve their interaction with a phospholipid-binding receptor on the surface of hepatocytes such as the class B scavenger receptor BI.  相似文献   

3.
Plasma phospholipid transfer protein (PLTP) and cholesteryl ester transfer protein (CETP) are homologous molecules that mediate neutral lipid and phospholipid exchange between plasma lipoproteins. Biochemical experiments suggest that only CETP can transfer neutral lipids but that there could be overlap in the ability of PLTP and CETP to transfer or exchange phospholipids. Recently developed PLTP gene knock-out (PLTP0) mice have complete deficiency of plasma phospholipid transfer activity and markedly reduced high density lipoprotein (HDL) levels. To see whether CETP can compensate for PLTP deficiency in vivo, we bred the CETP transgene (CETPTg) into the PLTP0 background. Using an in vivo assay to measure the transfer of [(3)H]PC from VLDL into HDL or an in vitro assay that determined [(3)H]PC transfer from vesicles into HDL, we could detect no phospholipid transfer activity in either PLTP0 or CETPTg/PLTP0 mice. On a chow diet, HDL-PL, HDL-CE, and HDL-apolipoprotein AI in CETPTg/PLTP0 mice were significantly lower than in PLTP0 mice (45 +/- 7 versus 79 +/- 9 mg/dl; 9 +/- 2 versus 16 +/- 5 mg/dl; and 51 +/- 6 versus 100 +/- 9, arbitrary units, respectively). Similar results were obtained on a high fat, high cholesterol diet. These results indicate 1) that there is no redundancy in function of PLTP and CETP in vivo and 2) that the combination of the CETP transgene with PLTP deficiency results in an additive lowering of HDL levels, suggesting that the phenotype of a human PLTP deficiency state would include reduced HDL levels.  相似文献   

4.
Plasma phospholipid transfer protein (PLTP) interacts with HDL particles and facilitates the transfer of phospholipids from triglyceride (TG)-rich lipoproteins to HDL. Overexpressing human PLTP in mice increases the susceptibility to atherosclerosis. In human plasma, high-active and low-active forms of PLTP exist. To elucidate the contribution of phospholipid transfer activity to changes in lipoprotein metabolism and atherogenesis, we developed mice expressing mutant PLTP, still able to associate with HDL but lacking phospholipid transfer activity. In mice heterozygous for the LDL receptor, effects of the mutant and normal human PLTP transgene (mutPLTP tg and PLTP tg, respectively) were compared. In PLTP tg mice, plasma PLTP activity was increased 2.9-fold, resulting in markedly reduced HDL lipid levels. In contrast, in mutPLTP tg mice, lipid levels were not different from controls. Furthermore, hepatic VLDL-TG secretion was stimulated in PLTP tg mice, but not in mutPLTP tg mice. When mice were fed a cholesterol-enriched diet, atherosclerotic lesion size in PLTP tg mice was increased more than 2-fold compared with control mice, whereas in mutPLTP tg mice, there was no change. Our findings demonstrate that PLTP transfer activity is essential for the development of atherosclerosis in PLTP transgenic mice, identifying PLTP activity as a possible target to prevent atherogenesis, independent of plasma PLTP concentration.  相似文献   

5.
Scavenger receptor class B type I (SR-BI) mediates the selective transfer of cholesteryl ester from HDL to cells. We previously established that SR-BI overexpressed in livers of apolipoprotein A-I-deficient mice processes exogenous human HDL2 to incrementally smaller HDL particles. When mixed with normal mouse plasma either in vivo or ex vivo, SR-BI-generated HDL "remnants" rapidly remodel to form HDL-sized lipoproteins. In this study, we analyzed HDLs throughout the process of HDL remnant formation and investigated the mechanism of conversion to larger particles. Upon interacting with SR-BI, alpha-migrating HDL2 is initially converted to a prealpha-migrating particle that is ultimately processed to a smaller alpha-migrating HDL remnant. SR-BI does not appear to generate prebeta-1 HDL particles. When incubated with isolated lipoprotein fractions, HDL remnants are converted to lipoprotein particles corresponding in size to the particle incubated with the HDL remnant. HDL remnant conversion is not altered in phospholipid transfer protein (PLTP)-deficient mouse plasma or by the addition of purified PLTP. Although LCAT-deficient plasma promoted only partial conversion, this deficiency was attributable to the nature of HDL particles in LCAT-/- mice rather than to a requirement for LCAT in the remodeling process. We conclude that HDL remnants, generated by SR-BI, are converted to larger particles by rapidly reassociating with existing HDL particles in an enzyme-independent manner.  相似文献   

6.
Phospholipid transfer protein (PLTP) facilitates the transfer of phospholipids from triglyceride-rich lipoproteins into HDL. PLTP has been shown to be an important factor in lipoprotein metabolism and atherogenesis. Here, we report that chronic high-fat, high-cholesterol diet feeding markedly increased plasma cholesterol levels in C57BL/6 mice. PLTP deficiency attenuated diet-induced hypercholesterolemia by dramatically reducing apolipoprotein E-rich lipoproteins (-88%) and, to a lesser extent, LDL (-40%) and HDL (-35%). Increased biliary cholesterol secretion, indicated by increased hepatic ABCG5/ABCG8 gene expression, and decreased intestinal cholesterol absorption may contribute to the lower plasma cholesterol in PLTP-deficient mice. The expression of proinflammatory genes (intercellular adhesion molecule-1 and vascular cell adhesion molecule-1) is reduced in aorta of PLTP knockout mice compared with wild-type mice fed either a chow or a high-cholesterol diet. Furthermore, plasma interleukin-6 levels are significantly lower in PLTP-deficient mice, indicating reduced systemic inflammation. These data suggest that PLTP appears to play a proatherogenic role in diet-induced hyperlipidemic mice.  相似文献   

7.
Plasma phospholipid transfer protein (PLTP) has atherogenic properties in genetically modified mice. PLTP stimulates hepatic triglyceride secretion and reduces plasma levels of high density lipoproteins (HDL). The present study was performed to relate the increased atherosclerosis in PLTP transgenic mice to one of these atherogenic effects. A humanized mouse model was used which had decreased LDL receptor expression and was transgenic for human cholesterylester transfer protein (CETP) in order to obtain a better resemblance to the plasma lipoprotein profile present in humans. It is well known that female mice are more susceptible to atherosclerosis than male mice. Therefore, we compared male and female mice expressing human PLTP. The animals were fed an atherogenic diet and the effects on plasma lipids and lipoproteins, triglyceride secretion and the development of atherosclerosis were measured. The development of atherosclerosis was sex-dependent. This effect was stronger in PLTP transgenic mice, while PLTP activity levels were virtually identical. Also, the rates of hepatic secretion of triglycerides were similar. In contrast, plasma levels of HDL were about 2-fold lower in female mice than in male mice after feeding an atherogenic diet. We conclude that increased atherosclerosis caused by overexpression of PLTP is related to a decrease in HDL, rather than to elevated hepatic secretion of triglycerides.  相似文献   

8.
Increased secretion and levels of ApoB-containing lipoproteins (BLp) commonly occur in familial hyperlipidemia, obesity and diabetes. The plasma phospholipid-transfer protein (PLTP) is known to mediate transfer of phospholipids between BLp and HDL during their intravascular metabolism. To address a possible role of PLTP in dyslipidemia and atherogenesis, we bred mice deficient in the gene encoding PLTP (PLTP-deficient mice) using different hyperlipidemic mouse strains. In ApoB-transgenic and ApoE-deficient backgrounds, PLTP deficiency resulted in reduced production and levels of BLp and markedly decreased atherosclerosis. BLp secretion was diminished in hepatocytes from ApoB-transgenic PLTP-deficient mice, a defect that was corrected when PLTP was reintroduced in adenovirus. The studies reveal a major, unexpected role of PLTP in regulating the secretion of BLp and identify PLTP as a therapeutic target.  相似文献   

9.
Plasma phospholipid transfer protein (PLTP) plays an important role in lipoprotein metabolism. PLTP is an 80-kDa glycoprotein that is expressed/secreted by a wide variety of tissues including lung, liver, adipose tissue, brain, and muscle. PLTP mediates a net transfer of phospholipids between vesicles and plasma HDLs. It also generates from small HDL particles large fused HDL particles with a concomitant formation of small lipid-poor apolipoprotein (apo) A-I-containing particles which are thought to act as the primary acceptors of cell-derived cholesterol from peripheral tissue macrophages. Another important function of PLTP is connected to lipolysis. Its role in the transfer of surface remnants from triglyceride-rich particles, very-low-density lipoproteins, and chylomicrons, to HDL is of importance for the maintenance of HDL levels. Recent observations from our laboratory have demonstrated that in circulation two forms of PLTP are present, one catalytically active (high-activity form, HA-PLTP) and the other a low-activity form (LA-PLTP). In view of the likely relevancy of PLTP in human health and disease, reliable and accurate methods for measuring plasma/serum PLTP activity and concentration are required. In this chapter, two radiometric PLTP activity assays are described: (i) exogenous, lipoprotein-independent phospholipid transfer assay and (ii) endogenous, lipoprotein-dependent phospholipid transfer assay. In addition, an ELISA method for quantitation of serum/plasma total PLTP mass as well as HA-PLTP and LA-PLTP mass is reported in detail.  相似文献   

10.
Vitamin E is a lipophilic anti-oxidant that can prevent the oxidative damage of atherogenic lipoproteins. However, human trials with vitamin E have been disappointing, perhaps related to ineffective levels of vitamin E in atherogenic apoB-containing lipoproteins. Phospholipid transfer protein (PLTP) promotes vitamin E removal from atherogenic lipoproteins in vitro, and PLTP deficiency has recently been recognized as an anti-atherogenic state. To determine whether PLTP regulates lipoprotein vitamin E content in vivo, we measured alpha-tocopherol content and oxidation parameters of lipoproteins from PLTP-deficient mice in wild type, apoE-deficient, low density lipoprotein (LDL) receptor-deficient, or apoB/cholesteryl ester transfer protein transgenic backgrounds. In all four backgrounds, the vitamin E content of very low density lipoprotein (VLDL) and/or LDL was significantly increased in PLTP-deficient mice, compared with controls with normal plasma PLTP activity. Moreover, PLTP deficiency produced a dramatic delay in generation of conjugated dienes in oxidized apoB-containing lipoproteins as well as markedly lower titers of plasma IgG autoantibodies to oxidized LDL. The addition of purified PLTP to deficient plasma lowered the vitamin E content of VLDL plus LDL and normalized the generation of conjugated dienes. The data show that PLTP regulates the bioavailability of vitamin E in atherogenic lipoproteins and suggest a novel strategy for achieving more effective concentrations of anti-oxidants in lipoproteins, independent of dietary supplementation.  相似文献   

11.
12.
Plasma phospholipid transfer protein (PLTP) transfers phospholipids between lipoproteins and mediates HDL conversion. PLTP-overexpressing mice have increased atherosclerosis. However, mice do not express cholesteryl ester transfer protein (CETP), which is involved in the same metabolic pathways as PLTP. Therefore, we studied atherosclerosis in heterozygous LDL receptor-deficient (LDLR(+/-)) mice expressing both human CETP and human PLTP. We used two transgenic lines with moderately and highly elevated plasma PLTP activity. In LDLR(+/-)/huCETPtg mice, cholesterol is present in both LDL and HDL. Both are decreased in LDLR(+/-)/huCETPtg/huPLTPtg mice (>50%). An atherogenic diet resulted in high levels of VLDL+LDL cholesterol. PLTP expression caused a strong PLTP dose-dependent decrease in VLDL and LDL cholesterol (-26% and -69%) and a decrease in HDL cholesterol (-70%). Surprisingly, atherosclerosis was increased in the two transgenic lines with moderately and highly elevated plasma PLTP activity (1.9-fold and 4.4-fold, respectively), indicating that the adverse effect of the reduction in plasma HDL outweighs the beneficial effect of the reduction in apolipoprotein B (apoB)-containing lipoproteins. The activities of the antiatherogenic enzymes paraoxonase and platelet-activating factor acetyl hydrolase were both PLTP dose-dependently reduced ( approximately -33% and -65%, respectively). We conclude that expression of PLTP in this animal model results in increased atherosclerosis in spite of reduced apoB-containing lipoproteins, by reduction of HDL and of HDL-associated antioxidant enzyme activities.  相似文献   

13.
Phospholipid transfer is a prerequisite for PLTP-mediated HDL conversion   总被引:2,自引:0,他引:2  
Phospholipid transfer protein (PLTP) is an important regulator of high-density lipoprotein (HDL) metabolism. The two main functions of PLTP are transfer of phospholipids between lipoprotein particles and modulation of HDL size and composition in a process called HDL conversion. These PLTP-mediated processes are physiologically important in the transfer of surface remnants from lipolyzed triglyceride-rich lipoproteins to nascent HDL particles and in the generation of prebeta-HDL, the initial acceptor of excess peripheral cell cholesterol. The aim of the study presented here was to investigate the interrelationship between the two functions of PLTP. Plasma PLTP was chemically modified using diethylpyrocarbonate or ethylmercurithiosalicylate. The modified proteins displayed a dose-dependent decrease in phospholipid transfer activity and a parallel decrease in the ability to cause HDL conversion. Two recombinant PLTP mutant proteins, defective in phospholipid transfer activity due to a mutation in the N-terminal lipid-binding pocket, were produced, isolated, and incubated together with radioactively labeled HDL(3). HDL conversion was analyzed using three methods: native gradient gel electrophoresis, ultracentrifugation, and crossed immunoelectrophoresis. The results demonstrate that the mutant proteins (i) are able to induce only a modest increase in HDL particle size compared to the wild-type protein, (ii) are unable to release apoA-I from HDL(3), and (iii) do not generate prebeta-mobile particles following incubation with HDL(3). These data suggest that phospholipid transfer is a prerequisite for HDL conversion and demonstrate the close interrelationship between the two main activities of PLTP.  相似文献   

14.
Human atherosclerotic lesions contain mast cells filled with the neutral protease chymase. Here we studied the effect of human chymase on (i) phospholipid transfer protein (PLTP)-mediated phospholipid (PL) transfer activity, and (ii) the ability of PLTP to generate pre-beta-high density lipoprotein (HDL). Immunoblot analysis of PLTP after incubation with chymase for 6 h revealed, in addition to the original 80-kDa band, four specific proteolytic fragments of PLTP with approximate molecular masses of 70, 52, 48, and 31 kDa. This specific pattern of PLTP degradation remained stable for at least 24 h of incubation with chymase. Such proteolyzed PLTP had reduced ability (i) to transfer PL from liposome donor particles to acceptor HDL(3) particles, and (ii) to facilitate the formation of pre-beta-HDL. However, when PLTP was incubated with chymase in the presence of HDL(3), only one major cleavage product of PLTP (48 kDa) was generated, and PL transfer activity was almost fully preserved. Moreover, chymase effectively depleted the pre-beta-HDL particles generated from HDL(3) by PLTP and significantly inhibited the high affinity component of cholesterol efflux from macrophage foam cells. These results suggest that the mast cells in human atherosclerotic lesions, by secreting chymase, may prevent PLTP-dependent formation of pre-beta-HDL particles from HDL(3) and so impair the anti-atherogenic function of PLTP.  相似文献   

15.
Previous studies have shown that diacylglycerols (DAG) are formed during triglyceride hydrolysis in very low density lipoproteins (VLDL), a process that is accompanied by an elevated phospholipid transfer protein (PLTP)-mediated transfer of phospholipids (PL) from VLDL to high density lipoprotein. Because PLTP has been also shown to transfer DAG, we hypothesized that DAG might modulate PL transfer through a mechanism of competition with respect to PLTP. To address this question we performed in vitro PL transfer assays using specifically designed PL donor particles. These were single bilayer vesicles (SBV) and large (EM-L) or small (EM-S) lipid emulsions, containing various proportions of DAG. The PLTP-mediated transfers of PL decreased as the volumes of the particle cores increased (SBV > EM-S > EM-L). In all cases, these transfers were inhibited by DAG in a concentration-dependent manner. We determined the core-to-surface distribution of DAG and we measured their relative affinity for PLTP by comparison with that of PL. From these parameters, we calculated the theoretical effects of DAG on PL transfers that would result from a competition mechanism. The experimental data showed that the inhibiting effects of DAG on PL transfers were much more important than those predicted from our calculations. Additional data showed that a large part of DAG effects was in fact due to their ability to increase the viscosity of the particle PL surfaces, as calculated from electron spin resonance experiments.These results show that DAG can modulate the PLTP-dependent PL transfers, both by competition with PL and by increasing the viscosity of the particle surfaces. These findings might be physiopathologically relevant in situations where elevated plasma concentrations of DAG might result from hypertriglyceridemia.-Lalanne, F., C. Motta, Y. Pafumi, D. Lairon, and G. Ponsin. Modulation of the phospholipid transfer protein-mediated transfer of phospholipids by diacylglycerols. J. Lipid Res. 2001. 42: 142;-149.  相似文献   

16.

Objective

Elevated plasma phospholipid transfer protein (PLTP) expression may increase atherosclerosis in mice by reducing plasma HDL and increasing hepatic VLDL secretion. Hepatic lipase (HL) is a lipolytic enzyme involved in several aspects of the same pathways of lipoprotein metabolism. We investigated whether the effects of elevated PLTP activity are compromised by HL deficiency.

Methods and results

HL deficient mice were crossbred with PLTP transgenic (PLTPtg) mice and studied in the fasted state. Plasma triglycerides were decreased in HL deficiency, explained by reduced hepatic triglyceride secretion. In PLTPtg mice, a redistribution of HL activity between plasma and tissue was evident and plasma triglycerides were also decreased. HL deficiency mitigated or even abolished the stimulatory effect of elevated PLTP activity on hepatic triglyceride secretion. HL deficiency had a modest incremental effect on plasma HDL, which remained present in PLTP transgenic/HL−/− mice, thereby partially compensating the decrease in HDL caused by elevation of PLTP activity. HDL decay experiments showed that the fractional turnover rate of HDL cholesteryl esters was delayed in HL deficient mice, increased in PLTPtg mice and intermediate in PLTPtg mice in an HL−/− background.

Conclusions

HL affects hepatic VLDL. Elevated PLTP activity lowers plasma HDL-cholesterol by stimulating the plasma turnover and hepatic uptake of HDL cholesteryl esters. HL is not required for the increase in hepatic triglyceride secretion or for the lowering of HDL-cholesterol induced by PLTP overexpression.  相似文献   

17.
Plasma phospholipid transfer protein (PLTP) is thought to be involved in the remodeling of high density lipoproteins (HDL), which are atheroprotective. It is also involved in the metabolism of very low density lipoproteins (VLDL). Hence, PLTP is thought to be an important factor in lipoprotein metabolism and the development of atherosclerosis. We have overexpressed PLTP in mice heterozygous for the low density lipoprotein (LDL) receptor, a model for atherosclerosis. We show that increased PLTP activity results in a dose-dependent decrease in HDL, and a moderate stimulation of VLDL secretion (相似文献   

18.
Mice that lack apolipoprotein E (apoE) display a severe hypercholesterolemia, caused by the accumulation of apolipoprotein B-48 (apoB-48)-carrying remnants of chylomicrons and very-low-density lipoproteins in the plasma. Statins are potent inhibitors of cholesterol synthesis that, when administered to mice lacking apoE, cause paradoxical further increases in plasma cholesterol levels. In the present study, we examined the mechanisms responsible for this phenomenon. ApoE-deficient mice fed a chow diet containing simvastatin developed, as anticipated, an enhanced increase in plasma cholesterol and a decrease in plasma triglycerides. Fractionation of the plasma lipoproteins by FPLC revealed that the lipid changes were confined to the lipoprotein remnants. Western blot analysis of the remnants from the untreated and simvastatin-treated mice showed no differences in their apoB-48 content, indicating that both groups of animals accumulated similar numbers of remnant particles in the plasma. Following the injection of Triton WR-1339, the simvastatin-treated mice accumulated in the plasma significantly more cholesterol and significantly less triglycerides than the untreated animals. These results indicate that the enhanced hypercholesterolemia observed in apoE-deficient mice treated with simvastatin is not the result of an increased number of remnant particles in circulation but is caused by synthesis and secretion into the plasma of lipoproteins that are enriched in cholesterol and depleted of triglycerides.  相似文献   

19.
Phospholipid transfer protein (PLTP), hepatic lipase (HL), and lipoprotein lipase (LPL) have all been reported to be intricately involved in HDL metabolism but the effect of PLTP on the apolipoprotein B-containing lipoproteins relative to that of HL and LPL has not been established. Due to our previous observation of a positive correlation of PLTP activity with plasma apoB and LDL cholesterol, the relationship of PLTP with the LDL subfractions was investigated and compared with that of HL and LPL. Plasma lipoproteins from 50 premenopausal women were fractionated by density gradient ultracentrifugation. Correlations were calculated between the cholesterol concentration of each fraction and plasma PLTP, HL, and LPL activity. Plasma PLTP activity was highly, positively, and selectively correlated with the cholesterol concentration of the buoyant LDL/dense IDL fractions, yet demonstrated a complete absence of an association with the dense LDL fractions. In contrast, HL was positively correlated with the dense LDL fractions but showed no association with buoyant LDL. LPL was also positively correlated with several buoyant LDL fractions; however, the correlations were weaker than those of PLTP. PLTP and LPL were positively correlated and HL was negatively correlated with HDL fractions. The results suggest that PLTP and HL may be important and independent determinants of the LDL subpopulation density distributions.  相似文献   

20.
The LDL receptor and the LDL receptor-related protein (LRP) mediate the removal of chylomicron remnants. The LRP pathway involves sequestration of particles in the space of Disse. It has been proposed that either alone or in combination with other factors, such as apolipoprotein E and proteoglycans, hepatic lipase (HL) may contribute to the sequestration of chylomicron remnants. To test this hypothesis, we generated two lines of transgenic mice producing rat HL as a native or as a membrane-anchored form. These animals express HL at levels similar to normal rat. Chylomicron remnants were perfused in a single nonrecirculating pass into the livers of the rat HL transgenic, HL-deficient, and wild-type (WT) mice for 20 min, and the rate of chylomicron remnant removal was measured. Chylomicron remnants were removed at a rate of approximately 50% per pass in WT mice. It was slightly increased in both transgenic mice and reduced in HL-deficient mice compared with the WT mice. Confocal microscopy of liver sections showed that a modest amount of HL colocalized with chylomicron remnant clusters in the transgenic mice, suggesting that HL is a component of the LRP-proteoglycan clusters. These data suggest that HL helps to direct cholesterol to the tissues in which it is localized by a nonenzymatic mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号