首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the three-dimensional structure of the lumenal membrane of transitional epithelium, a study was made of sectioned, negatively stained, and freeze-etched specimens from intact epithelium and membrane fractions from rabbit urinary bladder. Particulate membrane components are confined to plaque regions within which the unit membrane is asymmetric, having a thicker outer leaflet. Transversely fractured freeze-etched plaques display a thick (~80 A), particulate lumenal leaflet and a thin (~40 A) cytoplasmic one. Four different faces of the two leaflets can be distinguished: two complementary, split, inner membrane faces exposed by freeze-cleaving the bilayer and two external (lumenal and cytoplasmic) membrane surfaces revealed by deep-etching. On the split, inner face of the lumenal leaflet appear polygonal plaques of hexagonally arranged particles. These fit into holes observed on the complementary, split, innerface of the cytoplasmic leaflet. The particles, which have a center-to-center spacing of ~160 A, also seem to protrude from the external surface of the lumenal leaflet, where their subunits (~50 A in diameter) are revealed by freeze-etching and negative staining. The plaques are separated from each other by smooth-surfaced regions, which cleave like simple lipid bilayers. Since the array of plaque particles covers only ~73% of the membrane surface area, whereas 27% is taken up by particle-free interplaque regions, the presence of particles cannot in itself entirely account for the permeability barrier of the lumenal membrane. Although no particles are observed protruding from the cytoplasmic surface of the membrane, cytoplasmic filaments are attached to it by short, cross-bridge-like filaments that seem to contact the particles within the membrane. These long cytoplasmic filaments cross-link adjacent plaques. Therefore, we suggest that at least one function of the particles is to serve as anchoring sites for cytoplasmic filaments, which limit the expansion of the lumenal membrane during distention of the bladder, thereby preventing it from rupturing. The particle-free interplaque regions probably function as hinge areas between the stiff plaques, allowing the membrane to fold up when the bladder is contracted.  相似文献   

2.
The lumenal plasma membrane has been isolated from transitional epithelial cells (urothelium) lining the urinary bladder in sheep by a modified technique involving treatment with hypotonic thioglycolate. The isolated membranes, like those in situ, are distinguished morphologically by arrays of hexagonal particles (in plague regions) separated by smooth interplaque regions. These plaque regions, specifically, can be isolated from the lumenal plasma membrane. Of the proteins constituting the lumenal plasma membrane, five were found to characterize the plaque regions and, in particular, the 33,000-dalton species appears to be most heavily concentrated in the sodium dodecyl sulfate-polyacrylamide gel pattern of the isolated plaque regions. Lipid analyses showed that there are approximately 0.93 mg of phospholipid and 0.27 mg of cholesterol for each milligram of protein, giving a value of 55% lipids and 45% proteins for the composition of the lumenal plasma membrane. The total sialic acid content was measured to be approximately 0.038 micronmol/mg protein for the plasma membrane. Several plasma membrane marker enzymes were found to be associated with the lumenal plasma membrane fraction, but only the 5'-nucleotidase activity was found to be further enriched in the plaque region fraction. Amino acid analysis of the intrinsic proteins of the plaques indicated a polarity index of 45%.  相似文献   

3.
The ultrastructure of the lumenal plasma membrane of the cow urianry bladder has been studied in thin sections of glutaraldehyde- and glutaraldehyde-H2O2-fixed specimens, by negative staining and freeze fracture. A regular hexagonal array of particles confined to polygonal plaques 0-1-0-4-mum in diameter and separated by 0-02-mum interplaque areas is revealed by all 3 techniques. Cross-sections through particulate areas fixed with glutarayldehyde-H2O2 display a tetralaminar structure consisting of the usual approximately 8-nm-thick trilamellar unit membrane structure, on the external dense leaflet of which is located an additional approximately 4-nm-thick stratum which is occasionally resolved into a row of regulrly spaced approximately 4-nm-diameter particles. Non-particulate areas feature only the approximately 8-nm-thick trilamellar structure. Tangential sections reveal an hexagonal array of particles with a unit cell of approximately 16 nm. Four membrane faces can be revealed by freeze fracture and etching of membranes of the cow urinary bladder; 2 complementary split inner membrane faces (A and B) revealed by the cleaving process and the lumenal and cytoplasmic membrane surfaces exposed by etching. Face B, which belongs to the external membrane leaflet and faces the cytoplasm, displays plaques of particles arranged in a hexagonal lattice with a unit cell of approximately 16 nm. Face A, which belongs to the cytoplasmic membrane leaflet and faces the lumen, displays a complementary array of hexagonally packed pits. The hexagonally arranged particles also protrude into the lumenal membrane surface where they can occasionally be resolved into 6 approximately 5-nm-diameter subunits; the cytoplasmic surface appears smooth. Six approximately 5-nm-diameter subunits are also revealed in negatively stained preparations. The data are consistent with a model for the membrane in which the particles forming the hexagonal structure protrude above the lumenal membrane surface and also bridge most of the thickness of the membrane.  相似文献   

4.
The membranes of Limulus (horseshoe crab) sperm were examined before and during the acrosomal reaction by using the technique of freeze-fracturing and thin sectioning. We focused on three areas. First, we examined stages in the fusion of the acrosomal vacuole with the cell surface. Fusion takes place in a particle-free zone which is surrounded by a circlet of particles on the P face of the plasma membrane and an underlying circlet of particles on the P face of the acrosomal vauole membrane. These circlets of particles are present before induction. Up to nine focal points of fusion occur within the particle-free zone. Second, we describe a system of fine filaments, each 30 A in diameter, which lies between the acrosomal vacuole and the plasma membrane. These filaments change their orientation as the vacuole opens, a process that takes place in less than 50 ms. Membrane particles seen on the P face of the acrosomal vacuole membrane change their orientation at the same time and in the same way as do the filaments, thus indicating that the membrane particles and filaments are probably connected. Third, we examined the source and the point of fusion of new membrane needed to cover the acrosomal process. This new membrane is almost certainly derived from the outer nuclear envelope and appears to insert into the plasma membrane in a particle-free area adjacent to an area rich in particles. The latter is the region where the particles are probably connected to the cytoplasmic filaments. The relevance of these observations in relation to the process of fertilization of this fantastic sperm is discussed.  相似文献   

5.
The structural organization and protein composition of lens fiber junctions isolated from adult bovine and calf lenses were studied using combined electron microscopy, immunolocalization with monoclonal and polyclonal anti-MIP and anti-MP70 (two putative gap junction-forming proteins), and freeze-fracture and label-fracture methods. The major intrinsic protein of lens plasma membranes (MIP) was localized in single membranes and in an extensive network of junctions having flat and undulating surface topologies. In wavy junctions, polyclonal and monoclonal anti-MIPs labeled only the cytoplasmic surface of the convex membrane of the junction. Label-fracture experiments demonstrated that the convex membrane contained MIP arranged in tetragonal arrays 6-7 nm in unit cell dimension. The apposing concave membrane of the junction displayed fracture faces without intramembrane particles or pits. Therefore, wavy junctions are asymmetric structures composed of MIP crystals abutted against particle-free membranes. In thin junctions, anti-MIP labeled the cytoplasmic surfaces of both apposing membranes with varying degrees of asymmetry. In thin junctions, MIP was found organized in both small clusters and single membranes. These small clusters also abut against particle-free apposing membranes, probably in a staggered or checkerboard pattern. Thus, the structure of thin and wavy junctions differed only in the extent of crystallization of MIP, a property that can explain why this protein can produce two different antibody-labeling patterns. A conclusion of this study is that wavy and thin junctions do not contain coaxially aligned channels, and, in these junctions, MIP is unlikely to form gap junction-like channels. We suggest MIP may behave as an intercellular adhesion protein which can also act as a volume-regulating channel to collapse the lens extracellular space. Junctions constructed of MP70 have a wider overall thickness (18-20 nm) and are abundant in the cortical regions of the lens. A monoclonal antibody raised against this protein labeled these thicker junctions on the cytoplasmic surfaces of both apposing membranes. Thick junctions also contained isolated clusters of MIP inside the plaques of MP70. The role of thick junctions in lens physiology remains to be determined.  相似文献   

6.
Membrane events involved in myoblast fusion   总被引:3,自引:3,他引:0       下载免费PDF全文
Myoblast fusion has been studied in cultures of chick embryonic muscle utilizing ultrastructural techniques. The multinucleated muscle cells (myotubes) are generated by the fusion of two plasma membranes from adjacent cells, apparently by forming a single bilayer that is particle-free in freeze-fracture replicas. This single bilayer subsequently collapses, and cytoplasmic continuity is established between the cells. The fusion between the two plasma membranes appears to take place primarily within particle-free domains (probably phospholipid enriched), and cytoplasmic unilamellar, particle-free vesicles are occasionally associated with these regions. These vesicles structurally resemble phospholipid vesicles (liposomes). They are present in normal myoblasts, but they are absent in certain fusion-arrested myoblast popluations, such as those treated with either 5-bromo-deoxyuridine (BUdR), cycloheximide (CHX), or pospholipase C (PLC). The unilamellar, particle-free vesicles are present in close proximity to the plasma membranes, and physical contact is observed frequently between the vesicle membrane and the plasma membrane. The regions of vesicle membrane-plasma membrane interaction are characteristically free of intramembrane particles. A model for myoblast fusion is presented that is based onan interpretation of these observations. This model suggests that the cytoplasmic vesicles initiate the generation of particle-depleted membrane domains, both being essential components in the fusion process.  相似文献   

7.
The p62/E2 protein of Semliki Forest virus (SFV) is a typical transmembrane glycoprotein, with an amino-terminal lumenal domain, a transmembrane (hydrophobic) domain, and a carboxy-terminal cytoplasmic domain (or tail). Our hypothesis has been that the membrane-binding polypeptide region (membrane anchor) of this protein consists of both the transmembrane domain and the adjacent positively charged peptide, Arg-Ser-Lys, which is part of the cytoplasmic domain. We have investigated three anchor mutants of the p62 protein with respect to both their disposition and their stability in cell membranes. The construction of the three mutants has been described (Cutler, D.F., and H. Garoff, J. Cell Biol., 102:889-901). They are as follows: A1, changing the basic charge cluster from Arg-Ser-Lys(+2) to Gly-Ser-Glu(-1); A2, replacing an Ala in the middle of the hydrophobic stretch with a Glu; A3, changing the charge cluster from Arg-Ser-Lys(+2) to Gly-Ser-Met(0). All three mutants retain the transmembrane configuration of the wild-type p62. In a cell homogenate they have a cytoplasmic domain that is accessible to protease. In living cells an anti-peptide antibody specific for the cytoplasmic tail of p62 reacts with the tails of both wild-type and mutant p62s following its introduction into the cytoplasm. All three mutant proteins have Triton X-114 binding properties similar to the wild-type p62. However, when the membranes of cells expressing the three mutants or the wild-type p62 protein are washed with sodium carbonate, pH 11.5, three to four times as much mutant protein as wild-type p62 is released from the membranes. Thus the stability in cell membranes of the three mutant p62 proteins is significantly reduced.  相似文献   

8.
P L McNeil 《Tissue & cell》1984,16(4):519-533
Freeze-fracture was used to compare the ultrastructure of plasma with phagosomal membranes of digestive cells of green hydra. Changes in both the pattern and density of intramembrane particles (IMP) were evident during the transition from plasma to phagosomal membrane. Small particle-free regions and associated aggregates of three to eight IMP were observed in presumptive adherent and enveloping plasma membranes, as well as in fully formed phagosomal membranes. Larger particle-free regions were observed as rims around the tips of enveloping membranes which had nearly completed enclosure of particles. The density of IMP in newly formed phagosomal membranes was 1.5-fold greater than that in the parent plasma membrane from which they derived, and was greater also than in older phagosomal membranes.  相似文献   

9.
The supramolecular architecture of stacked thylakoid membrane regions of class II spinach chloroplasts has been investigated by means of freeze-fracture electron microscopy. Such membranes contain two basic types of intramembranous particles: laarge particles, which are found on the fracture face of the lumenal membrane leaflet (Bs face), and smaller ones which are found on the fracture face of the external leaflet (Cs face). By analyzing thylakoid membranes containing geometrical arrangements of intramembranous particles it is shown (a) that within the plane of each membrane approximately two small particles are associated with each large particle, and (b) that normal thylakoid stacking involves the connection of large particles of one membrane to small particles of the other and vice versa. If the two types of particles are related to Photosystems I and II, as suggested by circumstantial evidence, then our observations provide support for the idea that maximum Photosystem I-photosystem II interaction is obtained by intermembrane subunit interaction in grana stacks. To this end, our results suggest that stacking should enhance the quantum yield at very low light intensities.  相似文献   

10.
A method is presented for the release of “native” thin filaments from 13-day old embryonic chick muscle without tryptic digestion or desoxycholate (DOC) solubilization of Z bands. The isolated filaments were 50–60 Å in diameter, of variable length, and formed “arrowhead-like” complexes with heavy meromyosin (HMM). In addition, the filaments interacted with purified myosin to form actomyosin as effectively as action extracted from an acetone powder of muscle. The Mg++-dependent ATPase activity and extent of superprecipitation of the synthetic actomyosin required a low concentration of Ca++, strongly suggesting the presence of troponin and tropomyosin on the thin filaments isolated from muscle at this stage of embryogenesis. The native thin filaments were more sensitive to trypsin than synthetic F-actin prepared from an acetone powder based on measurements of flow birefrengence, viscosity and the ability to activate myosin ATPase.  相似文献   

11.
To examine the freeze-fracture appearance of membrane alterations at sites of exocytosis in mammalian cells, we studied the secretory granule and plasma membrane of rat pancreatic B-cells during glucose-stimulated insulin secretion. Constant features observed were the scarcity of particles in secretory-granule P-fracture faces and the almost total clearance of intramembranous particles in P-and E fracture faces of the plasma membrane in areas of close apposition of these two membranes preceding fusion; also observed was the temporary persistence of particle-cleared regions after the fusion was completed. Our observations thus support the concept that membranes fuse at sites of closely apposed, particle-free regions and that the physiologically created clear areas found in freeze-fracture replicas of the plasma membrane are the hallmarks of incipient or recent membrane fusion.  相似文献   

12.
Urothelial surface is covered by numerous plaques (consisting of asymmetric unit membranes or AUM) that are interconnected by ordinary looking hinge membranes. We describe an improved method for purifying bovine urothelial plaques using 2% sarkosyl and 25 mM NaOH to remove contaminating membrane and peripheral proteins selectively. Highly purified plaques interconnected by intact hinge areas were obtained, indicating that the hinges are as detergent-insoluble as the plaques. These plaque/hinge preparations contained uroplakins, an as yet uncharacterized 18-kDa plaque-associated protein, plus an 85-kDa glycoprotein that is known to be hinge-associated in situ. Examination of the isolated, in vitro-resealed bovine AUM vesicles by quick-freeze deep-etch showed that each AUM particle consists of a 16-nm, luminally exposed "head" anchored to the lipid bilayer via a 9-mm transmembranous "tail", and that an AUM plaque can break forming several smaller plaques separated by newly formed particle-free, hinge-like areas. These data lend support to our recently proposed three-dimensional model of mouse urothelial plaques. In addition, our findings suggest that urothelial plaques are dynamic structures that can rearrange giving rise to new plaques with intervening hinges; that the entire urothelial apical surface (both plaque and hinge areas) is highly specialized; and that these two membrane domains may be equally important in fulfilling some of the urothelial functions.  相似文献   

13.
Caveolin, a protein component of caveolae membrane coats.   总被引:141,自引:0,他引:141  
Caveolae have been implicated in the transcytosis of macromolecules across endothelial cells and in the receptor-mediated uptake of 5-methyltetrahydrofolate. Structural studies indicate that caveolae are decorated on their cytoplasmic surface by a unique array of filaments or strands that form striated coatings. To understand how these nonclathrin-coated pits function, we performed structural analysis of the striated coat and searched for the molecular component(s) of the coat material. The coat cannot be removed by washing with high salt; however, exposure of membranes to cholesterol-binding drugs caused invaginated caveolae to flatten and the striated coat to disassemble. Antibodies directed against a 22 kd substrate for v-src tyrosine kinase in virus-transformed chick embryo fibroblasts decorated the filaments, suggesting that this molecule is a component of the coat. We have named the molecule caveolin. Caveolae represent a third type of coated membrane specialization that is involved in molecular transport.  相似文献   

14.
The lateral mobility of ribosomes bound to rough endoplasmic reticulum (RER) membranes was demonstrated under experimental conditions. High- salt-washed rough microsomes were treated with pancreatic ribonuclease (RNase) to cleave the mRNA of bound polyribosomes and allow the movement of individual bound ribosomesmfreeze-etch and thin-section electron microscopy demonstrated that, when rough microsomes were treated with RNase at 4 degrees C and then maintained at this temperature until fixation, the bound ribosomes retained their homogeneous distribution on the microsomal surface. However, when RNase- treated rough microsomes were brought to 24 degrees C, a temperature above the thermotropic phase transition of the microsomal phospholipids, bound ribosomes were no longer distributed homogeneously but, instead, formed large, tightly packed aggregates on the microsomal surface. Bound polyribosomes could also be aggregated by treating rough microsomes with antibodies raised against large ribosomal subunit proteins. In these experiments, extensive cross-linking of ribosomes from adjacent microsomes also occurred, and large ribosome-free membrane areas were produced. Sedimentation analysis in sucrose density gradients demonstrated that the RNase treatment did not release bound ribosomes from the membranes; however, the aggregated ribosomes remain capable of peptide bond synthesis and were released by puromycin. It is proposed that the formation of ribosomal aggregates on the microsomal surface results from the lateral displacement of ribosomes along with their attached binding sites, nascent polypeptide chains, and other associated membrane proteins; The inhibition of ribosome mobility after maintaining rough microsomes at 4 degrees C after RNase, or antibody, treatment suggests that the ribosome binding sites are integral membrane proteins and that their mobility is controlled by the fluidity of the RER membrane. Examination of the hydrophobic interior of microsomal membranes by the freeze-fracture technique revealed the presence of homogeneously distributed 105-A intramembrane particles in control rough microsomes. However, aggregation of ribosomes by RNase, or their removal by treatment with puromycin, led to a redistribution of the particles into large aggregates on the cytoplasmic fracture face, leaving large particle-free regions.  相似文献   

15.
The helical hairpin, two closely spaced transmembrane helices separated by a short turn, is a recurring structural element in integral membrane proteins, and may serve as a compact unit that inserts into the membrane en bloc. Previously, we have determined the propensities of the 20 natural amino acids, when present in the middle of a long hydrophobic stretch, to induce the formation of a helical hairpin with a lumenally exposed turn during membrane protein assembly into the endoplasmic reticulum membrane. Here, we present results from a similar set of measurements, but with the turn placed on the cytoplasmic side of the membrane. We find that a significantly higher number of turn-promoting residues need to be present to induce a cytoplasmic turn compared to a lumenal turn, and that, in contrast to the lumenal turn, the positively charged residues Arg and Lys are the strongest turn-promoters in cytoplasmic turns. These results suggest that the process of turn formation between transmembrane helices is different for lumenal and cytoplasmic turns.  相似文献   

16.
Fixation of HeLa cells with a mixture of 100 mM glutaraldehyde, 2 mg/ml tannic acid and 0.5 mg/ml saponin allows the tannic acid to penetrate intact cells without disruption of membranes or extraction of the cytoplasmic matrix. After subsequent treatment with OsO4 cytoplasmic structures are stained so densely that fine details are visible even in very thin (dark gray) sections. Actin filaments are protected from disruption by OsO4 so that straight, densely stained filaments are seen in the cell cortex, filopodia, ruffling membranes, and stress fibers. Stress fibers also have 15-18-nm densities similar in appearance to myosin filaments. Tannic acid staining reveals that the coats of coated vesicles, pits, and plaques have a 12-nm layer of amorphous material between the membrane and the clathrin basketwork. HeLa cells have very large clathrin-coated membrane plaques on the basal surface. These coated membrane plaques appear to be a previously unrecognized site of cell-substrate adhesion.  相似文献   

17.
Intercellular junctions which are similar in ultrastructure and protein composition to typical desmosomes have so far only been found in epithelial cells and in heart tissue, specifically in the intercalated disks of cardiac myocytes and at cell boundaries between Purkinje fiber cells. In epithelial cells the cytoplasmic side of desmosomes, the 'desmosomal plaque', represents a specific attachment structure for the anchorage of intermediate filaments (IF) of the cytokeratin type. Cardiac myocytes do not contain cytokeratin filaments. In primary cultures of rat cardiac myocytes, we have examined by immunofluorescence and electron microscopy, using single and double label techniques, whether other types of IF are attached to the desmosomal plaques of the heart. Antibodies to desmoplakin, the major protein of the desmosomal plaque, have been used to label specifically the desmosomal plaques. It is shown that the desmoplakin-containing structures are often associated with IF stained by antibodies to desmin, i.e., the characteristic type of IF present in these cells. Like cytokeratin filaments in epithelial cells, desmin filaments attach laterally to the desmosomal plaque. They also remain attached to these plaques after endocytotic internalization of desmosomal domains by treatment of the cells with EGTA. These desmin filaments do not appear to attach to junctions of the fascia adherens type and to nexuses (gap junctions). These observations show that anchorage at desmosomal plaques is not restricted to IF of the cytokeratin type and that IF composed of either cytokeratin or desmin, specifically attach, in a lateral fashion, to desmoplakin-containing regions of the plasma membrane. We conclude that special domains exist in these two IF proteins that are involved in binding to the desmosomal plaque.  相似文献   

18.
We examined the filaments associated with the cytoplasmic surface of the plasma membrane in rabbit exudate PMNs during phagocytosis of particles, or during “frustrated phagocytosis” with exocytosis of storage granules. Cells were plated onto yeast particles glued to coverslips with polylysine or onto coverslips coated with sheets of heat-agglutinated IgG. After periods ranging from 1 to 15 min, we disrupted the cells by a jet of salt solution and exposed their inner membranes. These broken cells were fixed immediately and processed for SEM. Whole cells were also prepared for SEM or TEM. At the site of PMN adherence to an opsonized yeast particle, a network of globular centers and thin, branched filaments appears on the cytoplasmic surface of the plasma membrane, while the outstretching lamellipodia contain a mesh of such filaments but no globular centers. Within 1 to 2 minutes, these structures disappear from the invaginating portion of the developing vacuole, and the cell's storage granules fuse with the barren membrane regions. These activities occur in rapid sequence over the vacuolar membrane after the first contact, until the phagocytosed particle is wholly encircled by a smooth, loose membrane, separated from the cell surface. A comparable filament pattern or complex was seen during “frustrated phagocytosis” on IgG sheets. At times between 1 and 5 min after plating, the cytoplasmic surfaces of these adherent membranes contain denuded central regions and peripheral nets of globular centers with radiating, thin, branched filaments. Granules apparently fuse with the bare areas. Thus we have obtained evidence of filament association with the plasma membrane at sites of adherence (to phagocytosable or nonphagocytosable surfaces) and have traced the subsequent disappearance of the filaments with degranulation.  相似文献   

19.
Summary The functional role of cytokeratin intermediate filaments in the translocation of asymmetric membrane plaques between cytoplasm and surface of apical urothelial cells was investigated during contraction and expansion of rat urinary bladders. A stereological investigation of electron micrographs provided estimations of surface area, volume, and number of discoidal vesicles and infoldings per unit volume of urothelial apical cell cytoplasm. Contracted and distended bladders incubated in 0.01 M sodium bicarbonate were compared to identical preparations experimentally incubated in 5 mM thioglycolic acid. The latter reagent disrupts the intermediate filament network by reducing sulfhydryl bridges. Densities of discoidal vesicles in cells contracted after incubation in thioglycolate were similar to density estimations in cells expanded under control conditions. Similarly, densities of vesicles in cells expanded after exposure to thioglycolate were comparable in number to those in normally contracted cells. Thus, membrane translocation to and from the luminal surface was blocked by thioglycolate treatment. The lack of normal membrane transfer at the luminal surface induces apical cells exposed to experimental conditions to undergo extraordinary adjustments in response to external pressures of bladder contraction and distension. During contraction, the apical-intermediate cell interface unfolded while the luminal surface ballooned out into the lumen. In distended bladders, large intercellular spaces formed between apical cells along their lateral margins. The results support a model published earlier implicating the filament network as a critical mediator of membrane translocation.  相似文献   

20.
The terminal web. A reevaluation of its structure and function   总被引:33,自引:29,他引:4  
The apical cytoplasm of epithelial cells of the small and large intestines has been examined by freeze-etch techniques as well as conventional and high voltage electron microscopy of sectioned material to gain a better understanding of the fine structural organization of the terminal web region. In the small intestine the terminal web exhibits a distinct stratification caused by the association of different sets of filaments with the three members of the junctional complex. Individual filaments of this network are closely associated with the sealing elements of the tight junctions, the surface of the core microfilament bundles, and the intermicrovillar plasma membrane. This region of the terminal web is the apical zone. The adherens zone appears as a band of interwoven filaments of two different diameters extending across the cytoplasm at the level of the intermediate junction. Within this region of the terminal web, individual 60-70 A actin-like filaments separate from the bundles of core microfilaments to interact with one another and with filaments of similar diameter from the zonula adherens. 100 A tonofilaments also contribute to the adherens zone, presumably stabilizing the orientation of the actin-like filaments. The basal zone which underlies the adherens zone consists of closely interwoven bundles of tonofilaments that are anchored to and interconnect the spot desmosomes. Within the large intestine the cytoplasmic microfilaments form a looser and less clearly stratified network which nevertheless retains the same basic organization found in the small intestine. Transmembrane linkers appear to originate within the cytoplasmic plaques of the spot desmosomes, pass through the plasma membranes, and meet in a staggered configuration in the intercellular space; these linkers may thus mediate the actual mechanical coupling between the cytoskeletal networks of tonofilament bundles of adjacent cells. This integrated system of cytoplasmic filaments and intercellular junctions endows the apical cytoplasm with both the flexibility and the stability necessary for the normal functioning of the epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号