首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C Longstaff  R R Rando 《Biochemistry》1987,26(19):6107-6113
Bacteriorhodopsin (bR) in purple membranes was permethylated with formaldehyde and pyridine-borane with the incorporation of approximately 12 methyl groups. This new pigment, PMbR, absorbed light in the dark-adapted state with a lambda max at 558 nm, virtually the same as that of bR. Light adaptation of PMbR produced a lambda max of 564 nm with a slightly elevated epsilon. Similar changes occurred with bR. When incorporated into asolectin vesicles, PMbR was able to pump protons in the light with an efficiency similar to that of bR itself. Bleaching of PMbR exposed its active site lysine residue, which was monomethylated to form active site methylated bR (AMbR) after regeneration with all-trans-retinal. This blue pigment, which is a cyanopsin rather than a rhodopsin, showed an extraordinary red shift, absorbing light with a lambda max of 620 nm in the dark-adapted state. Light adaptation of AMbR resulted in a spectral shift to 616 nm with a decrease in epsilon. This change was completely reversible in the dark. This shift was interpreted to mean that an L-like intermediate was accumulating, as would be expected if deprotonation of the protonated Schiff base could not occur to produce the M intermediate. Furthermore, when incorporated into asolectin vesicles, AMbR proved incapable of pumping protons in the light. It was concluded from these experiments that deprotonation of the Schiff base of bR is obligate for light-induced proton pumping.  相似文献   

2.
Purple membrane: color, crystallinity, and the effect of dimethyl sulfoxide   总被引:2,自引:0,他引:2  
C Pande  R Callender  R Henderson  A Pande 《Biochemistry》1989,28(14):5971-5978
In an effort to understand the nature of chromophore-protein interactions in bacteriorhodopsin (bR), we have reinvestigated dimethyl sulfoxide (DMSO)-induced changes in bR [Oesterhelt et al. (1973) Eur. J. Biochem. 40, 453-463]. We observe that dark-adapted bR (bR560) in aqueous DMSO undergoes reversible transformation to a species absorbing maximally at 480 nm (bR480). Beginning at 40% DMSO, this change results in complete conversion to bR480 at 60% DMSO. The kinetics of the reaction reveal that this transformation takes place predominantly through the all-trans isomeric form of the pigment. Thermal isomerization of the 13-cis chromophore to the all-trans form is, therefore, the rate-limiting step in the formation of bR480 from the dark-adapted bR. As in native bR, the chromophore in bR480 is linked to the protein via a protonated Schiff base, and its isomeric composition is predominantly all-trans. The formation of bR480 is associated with minor changes in the protein secondary structure, and the membrane retains crystallinity. These changes in the protein structure result in a diminished chromophore-protein interaction near the Schiff base region in bR480. Thus, we attribute the observed spectroscopic changes in bR in DMSO to structural alteration of the protein. The 13-cis chromophoric pigment appears to be resistant to this solvent-induced change. The changes in the protein structure need not be very large; displacement of the protein counterion(s) to the Schiff base, resulting from minor changes in the protein structure, can produce the observed spectral shift.  相似文献   

3.
The light-driven proton pump bacteriorhodopsin (bR) undergoes a bleaching reaction with hydroxylamine in the dark, which is markedly catalyzed by light. The reaction involves cleavage of the (protonated) Schiff base bond, which links the retinyl chromophore to the protein. The catalytic light effect is currently attributed to the conformational changes associated with the photocycle of all-trans bR, which is responsible for its proton pump mechanism and is initiated by the all-trans --> 13-cis isomerization. This hypothesis is now being tested in a series of experiments, at various temperatures, using three artificial bR molecules in which the essential C13==C14 bond is locked by a rigid ring structure into an all-trans or 13-cis configuration. In all three cases we observe an enhancement of the reaction by light despite the fact that, because of locking of the C13==C14 bond, these molecules do not exhibit a photocycle, or any proton-pump activity. An analysis of the rate parameters excludes the possibility that the light-catalyzed reaction takes place during the approximately 20-ps excited state lifetimes of the locked pigments. It is concluded that the reaction is associated with a relatively long-lived (micros-ms) light-induced conformational change that is not reflected by changes in the optical spectrum of the retinyl chromophore. It is plausible that analogous changes (coupled to those of the photocycle) are also operative in the cases of native bR and visual pigments. These conclusions are discussed in view of the light-induced conformational changes recently detected in native and artificial bR with an atomic force sensor.  相似文献   

4.
Similarly to bacteriorhodopsin, proteorhodopsin that normally contains all-trans and 13-cis retinal is transformed at low pH to a species containing 9-cis retinal under continuous illumination at lambda > 530 nm. This species, absorbing around 430 nm, returns thermally in tens of minutes to initial pigment and can be reconverted also with blue-light illumination. The yield of the 9-cis species is negligibly small at neutral pH but increases manyfold (>100) at acid pH with a pK(a) of 2.6. This indicates that protonation of acidic group(s) alters the photoreaction pathway that leads normally to all-trans --> 13-cis isomerization. In the D97N mutant, in which one of the two acidic groups in the vicinity of the retinal Schiff base is not ionizable, the yield of 9-cis species at low pH shows a pH dependence similar to that in the wild-type but with a somewhat increased pK(a) of 3.3. In contrast to this relatively minor effect, replacement of the other acidic group, Asp227, with Asn results in a remarkable, more than 50-fold, increase in the yield of the light-induced formation of 9-cis species in the pH range 4-6. It appears that protonation of Asp227 at low pH is what causes the dramatic increase in the yield of the 9-cis species in wild-type proteorhodopsin. We conclude that the photoisomerization pathways in proteorhodopsin to 13-cis or 9-cis photoproducts are controlled by the charge state of Asp227.  相似文献   

5.
With the aim of preparing a light-stable rhodopsin-like pigment, an analog, II, of 11-cis retinal was synthesized in which isomerization of the C11-C12 cis-double bond is blocked by a cyclohexene ring built around the C10 to C13-methyl. The analog II formed a rhodopsin-like pigment (rhodopsin-II) with opsin expressed in COS-1 cells and with opsin from rod outer segments. The rate of rhodopsin-II formation from II and opsin was approximately 10 times slower than that of rhodopsin from 11-cis retinal and opsin. After solubilization in dodecyl maltoside and immunoaffinity purification, rhodopsin-II displayed an absorbance ratio (A280nm/A512nm) of 1.6, virtually identical with that of rhodopsin. Acid denaturation of rhodopsin-II formed a chromophore with lambda max, 452 nm, characteristic of protonated retinyl Schiff base. The ground state properties of rhodopsin-II were similar to those of rhodopsin in extinction coefficient (41,200 M-1 cm-1) and opsin-shift (2600 cm-1). Rhodopsin-II was stable to hydroxylamine in the dark, while light-dependent bleaching by hydroxylamine was slowed by approximately 2 orders of magnitude relative to rhodopsin. Illumination of rhodopsin-II for 10 s caused approximately 3 nm blue-shift and 3% loss of visible absorbance. Prolonged illumination caused a maximal blue-shift up to approximately 20 nm and approximately 40% loss of visible absorbance. An apparent photochemical steady state was reached after 12 min of illumination. Subsequent acid denaturation indicated that the retinyl Schiff base linkage was intact. A red-shift (approximately 12 nm) in lambda max and a 45% recovery of visible absorbance was observed after returning the 12-min illuminated pigment to darkness. Rhodopsin-II showed marginal light-dependent transducin activation and phosphorylation by rhodopsin kinase.  相似文献   

6.
Proteorhodopsin (PR), found in marine gamma-proteobacteria, is a newly discovered light-driven proton pump similar to bacteriorhodopsin (BR). Because of the widespread distribution of proteobacteria in the worldwide oceanic waters, this pigment may contribute significantly to the global solar energy input in the biosphere. We examined structural changes that occur during the primary photoreaction (PR --> K) of wild-type pigment and two mutants using low-temperature FTIR difference spectroscopy. Several vibrations detected in the 3500-3700 cm(-1) region are assigned on the basis of H(2)O --> H(2)(18)O exchange to the perturbation of one or more internal water molecules. Substitution of the negatively charged Schiff base counterion, Asp97, with the neutral asparagine caused a downshift of the ethylenic (C=C) and Schiff base (C=N) stretching modes, in agreement with the 27 nm red shift of the visible lambda(max). However, this replacement did not alter the normal all-trans to 13-cis isomerization of the chromophore or the environment of the detected water molecule(s). In contrast, substitution of Asn230, which is in a position to interact with the Schiff base, with Ala induces a 5 nm red shift of the visible lambda(max) and alters the PR chromophore structure, its isomerization to K, and the environment of the detected internal water molecules. The combination of FTIR and site-directed mutagenesis establishes that both Asp97 and Asn230 are perturbed during the primary phototransition. The environment of Asn230 is further altered during the thermal decay of K. These results suggest that significant differences exist in the conformational changes which occur in the photoactive sites of proteorhodopsin and bacteriorhodopsin during the primary photoreaction.  相似文献   

7.
The redox potentials of the oriented films of the wild-type, the E194Q-, E204Q- and D96N-mutated bacteriorhodopsins (bR), prepared by adsorbing purple membrane (PM) sheets or its mutant on a Pt electrode, have been examined. The redox potentials (V) of the wild-type bR were -470 mV for the 13-cis configuration of the retinal Shiff base in bR and -757 mV for the all-trans configuration in H(2)O, and -433 mV for the 13-cis configuration and -742 mV for the all-trans configuration in D(2)O. The solvent isotope effect (DeltaV=V(D(2)O)-V(H(2)O)), which shifts the redox potential to a higher value, originates from the cooperative rearrangements of the extensively hydrogen-bonded water molecules around the protonated C=N part in the retinal Schiff base. The redox potential of bR was much higher for the 13-cis configuration than that for the all-trans configuration. The redox potentials for the E194Q mutant in the extracellular region were -507 mV for the 13-cis configuration and -788 mV for the all-trans configuration; and for the E204Q mutant they were -491 mV for the 13-cis configuration and -769 mV for the all-trans configuration. Replacement of the Glu(194) or Glu(204) residues by Gln weakened the electron withdrawing interaction to the protonated C=N bond in the retinal Schiff base. The E204 residue is less linked with the hydrogen-bonded network of the proton release pathway compared with E194. The redox potentials of the D96N mutant in the cytoplasmic region were -471 mV for the 13-cis configuration and -760 mV for the all-trans configuration which were virtually the same as those of the wild-type bR, indicating that the D to N point mutation of the 96 residue had no influence on the interaction between the D96 residue and the C=N part in the Schiff base under the light-adapted condition. The results suggest that the redox potential of bR is closely correlated to the hydrogen-bonded network spanning from the retinal Schiff base to the extracellular surface of bR in the proton transfer pathway.  相似文献   

8.
The photochemical and subsequent thermal reactions of the mouse short-wavelength visual pigment (MUV) were studied by using cryogenic UV-visible and FTIR difference spectroscopy. Upon illumination at 75 K, MUV forms a batho intermediate (lambda(max) approximately 380 nm). The batho intermediate thermally decays to the lumi intermediate (lambda(max) approximately 440 nm) via a slightly blue-shifted intermediate not observed in other photobleaching pathways, BL (lambda(max) approximately 375 nm), at temperatures greater than 180 K. The lumi intermediate has a significantly red-shifted absorption maximum at 440 nm, suggesting that the retinylidene Schiff base in this intermediate is protonated. The lumi intermediate decays to an even more red-shifted meta I intermediate (lambda(max) approximately 480 nm) which in turn decays to meta II (lambda(max) approximately 380 nm) at 248 K and above. Differential FTIR analysis of the 1100-1500 cm(-1) region reveals an integral absorptivity that is more than 3 times smaller than observed in rhodopsin and VCOP. These results are consistent with an unprotonated Schiff base chromophore. We conclude that the MUV-visual pigment possesses an unprotonated retinylidene Schiff base in the dark state, and undergoes a protonation event during the photobleaching cascade.  相似文献   

9.
The structure and the photocycle of bacteriorhodopsin (bR) containing 13-cis,15-syn retinal, so-called bR548, has been studied by means of molecular dynamics simulations performed on the complete protein. The simulated structure of bR548 was obtained through isomerization of in situ retinal around both its C13-C14 and its C15-N bond starting from the simulated structure of bR568 described previously, containing all-trans,15-anti retinal. After a 50-ps equilibration, the resulting structure of bR548 was examined by replacing retinal by analogues with modified beta-ionone rings and comparing with respective observations. The photocycle of bR548 was simulated by inducing a rapid 13-cis,15-anti-->all-trans,15-syn isomerization through a 1-ps application of a potential that destabilizes the 13-cis isomer. The simulation resulted in structures consistent with the J, K, and L intermediates observed in the photocycle of bR548. The results offer an explanation of why an unprotonated retinal Schiff base intermediate, i.e., an M state, is not formed in the bR548 photocycle. The Schiff base nitrogen after photoisomerization of bR548 points to the intracellular rather than to the extracellular site. The simulations suggest also that leakage from the bR548 to the bR568 cycle arises due to an initial 13-cis,15-anti-->all-trans,15-anti photoisomerization.  相似文献   

10.
Archaeal rhodopsins, e.g. bacteriorhodopsin, all have cyclic photoreactions. Such cycles are achieved by a light-induced isomerization step of their retinal chromophores, which thermally re-isomerize in the dark. Visual pigment rhodopsins, which contain in the dark state an 11-cis retinal Schiff base, do not share such a mechanism, and following light absorption, they experience a bleaching process and a subsequent release of the photo-isomerized all-trans chromophore from the binding pocket. The pigment is eventually regenerated by the rebinding of a new 11-cis retinal. In the artificial visual pigment, Rh(6.10), in which the retinal chromophore is locked in an 11-cis geometry by the introduction of a six-member ring structure, an activated receptor may be formed by light-induced isomerization around other double bonds. We have examined this activation of Rh(6.10) by UV-visible and FTIR spectroscopy and have revealed that Rh(6.10) is a nonbleachable pigment. We could further show that the activated receptor consists of two different subspecies corresponding to 9-trans and 9-cis isomers of the chromophore. Both subspecies relax in the dark via separate pathways back to their respective inactive states by thermal isomerization presumably around the C(13)=C(14) double bond. This nonbleachable pigment can be repeatedly photolyzed to undergo identical activation-relaxation cycles. The rate constants of these photocycles are pH-dependent, and the half-times vary between several hours at acidic pH and about 1.5 min at neutral to alkaline pH, which is several orders of magnitude longer than for bacteriorhodopsin.  相似文献   

11.
K R Babu  A Dukkipati  R R Birge  B E Knox 《Biochemistry》2001,40(46):13760-13766
Short-wavelength visual pigments (SWS1) have lambda(max) values that range from the ultraviolet to the blue. Like all visual pigments, this class has an 11-cis-retinal chromophore attached through a Schiff base linkage to a lysine residue of opsin apoprotein. We have characterized a series of site-specific mutants at a conserved acidic residue in transmembrane helix 3 in the Xenopus short-wavelength sensitive cone opsin (VCOP, lambda(max) approximately 427 nm). We report the identification of D108 as the counterion to the protonated retinylidene Schiff base. This residue regulates the pK(a) of the Schiff base and, neutralizing this charge, converts the violet sensitive pigment into one that absorbs maximally in the ultraviolet region. Changes to this position cause the pigment to exhibit two chromophore absorbance bands, a major band with a lambda(max) of approximately 352-372 nm and a minor, broad shoulder centered around 480 nm. The behavior of these two absorbance bands suggests that these represent unprotonated and protonated Schiff base forms of the pigment. The D108A mutant does not activate bovine rod transducin in the dark but has a significantly prolonged lifetime of the active MetaII state. The data suggest that in short-wavelength sensitive cone visual pigments, the counterion is necessary for the characteristic rapid production and decay of the active MetaII state.  相似文献   

12.
Opsin readily undergoes Schiff base formation between an active site lysine and 9-cis- or 11-cis-retinaldehyde to form the visual pigments isorhodopsin (lambda max = 487 nm) and rhodopsin (lambda max = 500 nm), respectively (Dratz, 1977). It would be predicted that 9-cis-retinoyl fluoride (1), an isostere of 9-cis-retinal, should be an active site directed, mechanism-based labeling agent of opsin, since a stable peptide bond should be formed instead of a Schiff base. It is shown here that 9-cis-retinoyl fluoride (1) reacts with opsin in a time-dependent fashion (t1/2 = 9 min at 25 microM 1) to form a new, nonbleachable pigment with a lambda max of approximately 365 nm. beta-Ionone competitively slows down the rate of the reaction. The absorbance of the new pigment at approximately 365 nm is similar to that of model amide compounds. This result is consistent in a general and qualitative way with the Nakanishi-Honig point-charge model for visual pigments which requires that the chromophore be charged, a situation not possible when the retinoid is linked to opsin via a peptide bond rather than a protonated Schiff base [Honig, B., Dinur, U., Nakanishi, K., Balogh-Nair, V., Gawinowicz, M.A., Arnabaldi, M., & Motto, M.G. (1979) J. Am. Chem. Soc. 101, 7084-7086]. 9-cis-Retinoyl fluoride (1) is approximately 4-fold more potent than all-trans-retinoyl fluoride (2) as an inactivator of bovine opsin. Importantly, 13-cis-retinoyl fluoride (3) is inactive, and no new absorption band at 365 nm is observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
With the aim of preparing a light-insensitive bacteriorhodopsin-like pigment, bacterio-opsin expressed in Escherichia coli was treated in phospholipid-detergent micelles with the retinal analog II, in which the C13-C14 trans-double bond cannot isomerize due to inclusion in a cyclopentene ring. The formation of a complex with a fine structure (lambda max, 439 nm) was first observed. This partially converted over a period of 12 days to a bacteriorhodopsin-like chromophore (ebR-II) with lambda max, 555 nm. An identical behavior has been observed previously upon reconstitution of bleached purple membrane with the analog II. Purification by gel filtration gave pure ebR-II with lambda max, 558 nm, similar to that of light-adapted bacterio-opsin reconstituted with all-trans retinal (ebR-I). Spectrophotometric titration of ebR-II as a function of pH showed that the purple to blue transition of bacteriorhodopsin at acidic pH was altered, and the apparent pKa of Schiff base deprotonation at alkaline pH was lowered by 2.4 units, relative to that of ebR-I. ebR-II showed no light-dark adaptation, no proton pumping, and no intermediates characteristic of the bacteriorhodopsin photocycle. In addition, the rates of reaction with hydroxylamine in the dark and in the light were similar. These results show, as expected, that isomerization of the C13-C14 double bond is required for bacteriorhodopsin function and that prevention of this isomerization confers light insensitivity.  相似文献   

14.
Rhodopsin bears 11-cis-retinal covalently bound by a protonated Schiff base linkage. 11-cis/all-trans isomerization, induced by absorption of green light, leads to active metarhodopsin II, in which the Schiff base is intact but deprotonated. The subsequent metabolic retinoid cycle starts with Schiff base hydrolysis and release of photolyzed all-trans-retinal from the active site and ends with the uptake of fresh 11-cis-retinal. To probe chromophore-protein interaction in the active state, we have studied the effects of blue light absorption on metarhodopsin II using infrared and time-resolved UV-visible spectroscopy. A light-induced shortcut of the retinoid cycle, as it occurs in other retinal proteins, is not observed. The predominantly formed illumination product contains all-trans-retinal, although the spectra reflect Schiff base reprotonation and protein deactivation. By its kinetics of formation and decay, its low temperature photointermediates, and its interaction with transducin, this illumination product is identified as metarhodopsin III. This species is known to bind all-trans-retinal via a reprotonated Schiff base and forms normally in parallel to retinal release. We find that its generation by light absorption is only achieved when starting from active metarhodopsin II and is not found with any of its precursors, including metarhodopsin I. Based on the finding of others that metarhodopsin III binds retinal in all-trans-C(15)-syn configuration, we can now conclude that light-induced formation of metarhodopsin III operates by Schiff base isomerization ("second switch"). Our reaction model assumes steric hindrance of the retinal polyene chain in the active conformation, thus preventing central double bond isomerization.  相似文献   

15.
We consider the problem of color regulation in visual pigments for both bovine rhodopsin (lambda max = 500 nm) and octopus rhodopsin (lambda max = 475 nm). Both pigments have 11-cis-retinal (lambda max = 379 nm, in ethanol) as their chromophore. These rhodopsins were bleached in their native membranes, and the opsins were regenerated with natural and artificial chromophores. Both bovine and octopus opsins were regenerated with the 9-cis- and 11-cis-retinal isomers, but the octopus opsin was additionally regenerated with the 13-cis and all-trans isomers. Titration of the octopus opsin with 11-cis-retinal gave an extinction coefficient for octopus rhodopsin of 27,000 +/- 3000 M-1 cm-1 at 475 nm. The absorption maxima of bovine artificial pigments formed by regenerating opsin with the 11-cis dihydro series of chromophores support a color regulation model for bovine rhodopsin in which the chromophore-binding site of the protein has two negative charges: one directly hydrogen bonded to the Schiff base nitrogen and another near carbon-13. Formation of octopus artificial pigments with both all-trans and 11-cis dihydro chromophores leads to a similar model for octopus rhodopsin and metarhodopsin: there are two negative charges in the chromophore-binding site, one directly hydrogen bonded to the Schiff base nitrogen and a second near carbon-13. The interaction of this second charge with the chromophore in octopus rhodopsin is weaker than in bovine, while in metarhodopsin it is as strong as in bovine.  相似文献   

16.
Our previous solid-state 13C NMR studies on bR have been directed at characterizing the structure and protein environment of the retinal chromophore in bR568 and bR548, the two components of the dark-adapted protein. In this paper, we extend these studies by presenting solid-state NMR spectra of light-adapted bR (bR568) and examining in more detail the chemical shift anisotropy of the retinal resonances near the ionone ring and Schiff base. Magic angle spinning (MAS) 13C NMR spectra were obtained of bR568, regenerated with retinal specifically 13C labeled at positions 12-15, which allowed assignment of the resonances observed in the dark-adapted bR spectrum. Of particular interest are the assignments of the 13C-13 and 13C-15 resonances. The 13C-15 chemical resonance for bR568 (160.0 ppm) is upfield of the 13C-15 resonance for bR548 (163.3 ppm). This difference is attributed to a weaker interaction between the Schiff base and its associated counterion in bR568. The 13C-13 chemical shift for bR568 (164.8 ppm) is close to that of the all-trans-retinal protonated Schiff base (PSB) model compound (approximately 162 ppm), while the 13C-13 resonance for bR548 (168.7 ppm) is approximately 7 ppm downfield of that of the 13-cis PSB model compound. The difference in the 13C-13 chemical shift between bR568 and bR548 is opposite that expected from the corresponding 15N chemical shifts of the Schiff base nitrogen and may be due to conformational distortion of the chromophore in the C13 = C14-C15 bonds.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The chromophore of octopus rhodopsin is 11-cis retinal, linked via a protonated Schiff base to the protein backbone. Its stable photoproduct, metarhodopsin, has all-trans retinal as its chromphore. The Schiff base of acid metarhodopsin (lambda max = 510 nm) is protonated, whereas that of alkaline metarhodopsin (lambda max = 376 nm) is unprotonated. Metarhodopsin in photoreceptor membranes was titrated and the apparent pK of the Schiff base was measured at different ionic strengths. From these salt-dependent pKs the surface charge density of the octopus photoreceptor membranes and the intrinsic Schiff base pK of metarhodopsin were obtained. The surface charge density is sigma = -1.6 +/- 0.1 electronic charges per 1,000 A2. Comparison of the measured surface charge density with values from octopus rhodopsin model structures suggests that the measured value is for the extracellular surface and so the Schiff base in metarhodopsin is freely accessible to protons from the extracellular side of the membrane. The intrinsic Schiff base pK of metarhodopsin is 8.44 +/- 0.12, whereas that of rhodopsin is found to be 10.65 +/- 0.10 in 4.0 M KCl. These pK values are significantly higher than the pK value around 7.0 for a retinal Schiff base in a polar solvent; we suggest that a plausible mechanism to increase the pK of the retinal pigments is the preorganization of their chromophore-binding sites. The preorganized site stabilizes the protonated Schiff base with respect to the unprotonated one. The difference in the pK for the octopus rhodopsin compared with metarhodopsin is attributed to the relative freedom of the latter's chromophore-binding site to rearrange itself after deprotonation of the Schiff base.  相似文献   

18.
The primary events in the photosynthetic retinal protein bacteriorhodopsin (bR) are reviewed in light of photophysical and photochemical experiments with artificial bR in which the native retinal polyene is replaced by a variety of chromophores. Focus is on retinals in which the critical C13=C14 bond is locked with respect to isomerization by a rigid ring structure. Other systems include retinal oxime and non-isomerizable dyes noncovalently residing in the binding site. The early photophysical events are analyzed in view of recent pump–probe experiments with sub-picosecond time resolution comparing the behavior of bR pigments with those of model protonated Schiff bases in solution. An additional approach is based on the light-induced cleavage of the protonated Schiff base bond that links retinal to the protein by reacting with hydroxylamine. Also described are EPR experiments monitoring reduction and oxidation reactions of a spin label covalently attached to various protein sites. It is concluded that in bR the initial relaxation out of the Franck–Condon (FC) state does not involve sub-stantial C13=C14 torsional motion and is considerably catalyzed by the protein matrix. Prior to the decay of the relaxed fluorescent state (FS or I state), the protein is activated via a mechanism that does not require double bond isomerization. Most plausibly, it is a result of charge delocalization in the excited state of the polyene (or other) chromophores. More generally, it is concluded that proteins and other macromolecules may undergo structural changes (that may affect their chemical reactivity) following optical excitation of an appropriately (covalently or non-covalently) bound chromophore. Possible relations between the light-induced changes due to charge delocalization, and those associated with C13=C14 isomerization (that are at the basis of the bR photocycle), are discussed. It is suggested that the two effects may couple at a certain stage of the photocycle, and it is the combination of the two that drives the cross-membrane proton pump mechanism.  相似文献   

19.
Resonance raman spectroscopy of an ultraviolet-sensitive insect rhodopsin   总被引:1,自引:0,他引:1  
C Pande  H Deng  P Rath  R H Callender  J Schwemer 《Biochemistry》1987,26(23):7426-7430
We present the first visual pigment resonance Raman spectra from the UV-sensitive eyes of an insect, Ascalaphus macaronius (owlfly). This pigment contains 11-cis-retinal as the chromophore. Raman data have been obtained for the acid metarhodopsin at 10 degrees C in both H2O and D2O. The C = N stretching mode at 1660 cm-1 in H2O shifts to 1631 cm-1 upon deuteriation of the sample, clearly showing a protonated Schiff base linkage between the chromophore and the protein. The structure-sensitive fingerprint region shows similarities to the all-trans-protonated Schiff base of model retinal chromophores, as well as to the octopus acid metarhodopsin and bovine metarhodopsin I. Although spectra measured at -100 degrees C with 406.7-nm excitation, to enhance scattering from rhodopsin (lambda max 345 nm), contain a significant contribution from a small amount of contaminants [cytochrome(s) and/or accessory pigment] in the sample, the C = N stretch at 1664 cm-1 suggests a protonated Schiff base linkage between the chromophore and the protein in rhodopsin as well. For comparison, this mode also appears at approximately 1660 cm-1 in both the vertebrate (bovine) and the invertebrate (octopus) rhodopsins. These data are particularly interesting since the absorption maximum of 345 nm for rhodopsin might be expected to originate from an unprotonated Schiff base linkage. That the Schiff base linkage in the owlfly rhodopsin, like in bovine and in octopus, is protonated suggests that a charged chromophore is essential to visual transduction.  相似文献   

20.
The visual pigment rhodopsin is characterized by an 11-cis retinal chromophore bound to Lys-296 via a protonated Schiff base. Following light absorption the C(11)=C(12) double bond isomerizes to trans configuration and triggers protein conformational alterations. These alterations lead to the formation of an active intermediate (Meta II), which binds and activates the visual G protein, transducin. We have examined by UV-visible and Fourier transform IR spectroscopy the photochemistry of a rhodopsin analogue with an 11-cis-locked chromophore, where cis to trans isomerization around the C(11)=C(12) double bond is prevented by a 6-member ring structure (Rh(6.10)). Despite this lock, the pigment was found capable of forming an active photoproduct with a characteristic protein conformation similar to that of native Meta II. This intermediate is further characterized by a protonated Schiff base and protonated Glu-113, as well as by its ability to bind a transducin-derived peptide previously shown to interact efficiently with native Meta II. The yield of this active photointermediate is pH-dependent and decreases with increasing pH. This study shows that with the C(11)=C(12) double bond being locked, isomerization around the C(9)=C(10) or the C(13)=C(14) double bonds may well lead to an activation of the receptor. Additionally, prolonged illumination at pH 7.5 produces a new photoproduct absorbing at 385 nm, which, however, does not exhibit the characteristic active protein conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号