共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper aims to demonstrate that integrating biological process and photocatalytic oxidation in a system operated in recycling mode can be a promising technology to treat pharmaceutical wastewater characterized by simultaneous presence of biodegradable and refractory/inhibitory compounds. A lab-scale system integrating a membrane bioreactor (MBR) and a TiO2 slurry photoreactor was fed on simulated wastewater containing 10 mg/L of the refractory drug Carbamazepine (CBZ). Majority of chemical oxygen demand (COD) was removed by the MBR, while the photocatalytic oxidation was capable to degrade CBZ. CBZ degradation kinetics and its impacts on the biological process were studied. The adoption of a recycling ratio of 4:1 resulted in removal of up to 95% of CBZ. Effluent COD reduction, sludge yield increase and respirometric tests suggested that the oxidation products were mostly biodegradable and not inhibiting the microbial activity. These results evidenced the advantages of the proposed approach for treating pharmaceutical wastewater and similar industrial effluents. 相似文献
2.
Yen-Chi Thai Anna Szekrenyi Yuyin Qi Gary W. Black Simon J. Charnock Wolf-Dieter Fessner 《Bioorganic & medicinal chemistry》2018,26(7):1320-1326
Enantiomerically pure 1-(6-methoxynaphth-2-yl) and 1-(6-(dimethylamino)naphth-2-yl) carbinols are fluorogenic substrates for aldo/keto reductase (KRED) enzymes, which allow the highly sensitive and reliable determination of activity and kinetic constants of known and unknown enzymes, as well as an immediate enantioselectivity typing. Because of its simplicity in microtiter plate format, the assay qualifies for the discovery of novel KREDs of yet unknown specificity among this vast enzyme superfamily. The suitability of this approach for enzyme typing is illustrated by an exemplary screening of a large collection of short-chain dehydrogenase/reductase (SDR) enzymes arrayed from a metagenomic approach. We believe that this assay format should match well the pharmaceutical industry’s demand for acetophenone-type substrates and the continuing interest in new enzymes with broad substrate promiscuity for the synthesis of chiral, non-racemic carbinols. 相似文献
3.
Concepción Abad 《生物化学与生物物理学报:生物膜》2009,1788(10):2132-2141
The amyloid precursor protein (APP), that plays a critical role in the development of senile plaques in Alzheimer disease (AD), and the gp41 envelope protein of the human immunodeficiency virus (HIV), the causative agent of the acquired immunodeficiency syndrome (AIDS), are single-spanning type-1 transmembrane (TM) glycoproteins with the ability to form homo-oligomers. In this review we describe similarities, both in structural terms and sequence determinants of their TM and juxtamembrane regions. The TM domains are essential not only for anchoring the proteins in membranes but also have functional roles. Both TM segments contain GxxxG motifs that drive TM associations within the lipid bilayer. They also each possess similar sequence motifs, positioned at the membrane interface preceding their TM domains. These domains are known as cholesterol recognition/interaction amino acid consensus (CRAC) motif in gp41 and CRAC-like motif in APP. Moreover, in the cytoplasmic domain of both proteins other α-helical membranotropic regions with functional implications have been identified. Recent drug developments targeting both diseases are reviewed and the potential use of TM interaction modulators as therapeutic targets is discussed. 相似文献
4.
Precursor forms of the glycoprotein tissue inhibitor of metalloproteinases (TIMP) synthesized by human fibroblasts in culture have been identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of specific immunoprecipitates. Translation of mRNA extracted from fibroblasts in the cell-free rabbit reticulocyte lysate system yielded a single immunoprecipitable precursor of tissue inhibitor of metalloproteinases, Mr 22 000. Intact fibroblasts cultured in the presence of tunicamycin synthesized an Mr 20 000 form of tissue inhibitor of metalloproteinases, detectable intracellularly and extracellularly. This is in contrast to the predominantly intracellular Mr 24 000.form synthetized during monensin treatment of cells and the normal secreted form of tissue inhibitor of metalloproteinases, Mr 29 000. Isoelectric focusing of the various immunoprecipitable precursor forms showed a progressive increase in positive charge and microheterogeneity of the protein during cellular processing. The data suggest that the inhibitor protein core, of basic pI, is glycosylated initially by the addition of mostly neutral sugars and subsequently by acidic sugars, prior to secretion. 相似文献
5.
Geun Hee Shin Chulyoung Kim Hyun Jung Kim Chul Soo Shin 《Journal of Molecular Catalysis .B, Enzymatic》2003,26(3-6):201
A stereoselective protease produced by Bacillus amyloliquefaciens KCCM 12091 was isolated. The enzyme catalyzed the synthesis of N-CBZ--Asp-PheOMe from N-CBZ--Asp and -PheOMe, but not N-CBZ--Asp--PheOMe from N-CBZ--Asp and -PheOMe. More than 50% of added -PheOMe was consumed when eutectic mixtures of N-CBZ--Asp, racemic - and -PheOMe were used for synthesis of an aspartame precursor of N-CBZ--Asp--PheOMe. -PheOMe was not involved in the reaction and did not affect synthesis of N-CBZ--Asp--PheOMe. 相似文献
6.
Chen Y Chalouni C Tan C Clark R Venook R Ohri R Raab H Firestein R Mallet W Polakis P 《The Journal of biological chemistry》2012,287(29):24082-24091
Melanocytes uniquely express specialized genes required for pigment formation, some of which are maintained following their transformation to melanoma. Here we exploit this property to selectively target melanoma with an antibody drug conjugate (ADC) specific to PMEL17, the product of the SILV pigment-forming gene. We describe new PMEL17 antibodies that detect the endogenous protein. These antibodies help define the secretory fate of PMEL17 and demonstrate its utility as an ADC target. Although newly synthesized PMEL17 is ultimately routed to the melanosome, we find substantial amounts accessible to our antibodies at the cell surface that undergo internalization and routing to a LAMP1-enriched, lysosome-related organelle. Accordingly, an ADC reactive with PMEL17 exhibits target-dependent tumor cell killing in vitro and in vivo. 相似文献
7.
Fang L Kraus B Lehmann J Heilmann J Zhang Y Decker M 《Bioorganic & medicinal chemistry letters》2008,18(9):2905-2909
Five tacrine–ferulic acid hybrids (6a–e) were designed and synthesized as multi-potent anti-Alzheimer drug candidates. All target compounds have better acetylcholinesterase inhibitory activity and comparable butyrylcholinesterase inhibitory activity in relation to tacrine. Interestingly, 6d showed a reversible and non-competitive inhibitory action for acetylcholinesterase indicating interaction with the peripheral anionic site, whereas a reversible but competitive inhibitory action for butyrylcholinesterase. The antioxidant study revealed that four target compounds have, compared to Trolox, high ability to absorb reactive oxygen species. 相似文献
8.
Jiwei Chen Dan Li Wenlu Li Jingxian Yin Yueying Zhang Zigao Yuan Chunmei Gao Feng Liu Yuyang Jiang 《Bioorganic & medicinal chemistry》2018,26(14):3958-3966
Multitarget inhibitors design has generated great interest in cancer treatment. Based on the synergistic effects of topoisomerase and histone deacetylase inhibitors, we designed and synthesized a new series of acridine hydroxamic acid derivatives as potential novel dual Topo and HDAC inhibitors. MTT assays indicated that all the hybrid compounds displayed good antiproliferative activities with IC50 values in low micromolar range, among which compound 8c displayed potent activity against U937 (IC50?=?0.90?μM). In addition, compound 8c also displayed the best HDAC inhibitory activity, which was several times more potent than HDAC inhibitor SAHA. Subsequent studies indicated that all the compounds displayed Topo II inhibition activity at 50?μM. Moreover, compound 8c could interact with DNA and induce U937 apoptosis. This study provides a suite of compounds for further exploration of dual Topo and HDAC inhibitors, and compound 8c can be a new dual Topo and HDAC inhibitory anticancer agent. 相似文献
9.
The purpose of this study was to produce spray-dried Pluronic-colloidal silicon dioxide (Aerosil) composite particles as a
liquid crystal precursor that would form a liquid crystalline phase upon hydration. A Pluronic-colloidal silicon dioxide dispersion
in isopropyl alcohol was spray-dried to obtain composite particles using different concentrations of Aerosil. Polarizing microscopy,
gelation, gel melting, and rheological studies were employed to characterize the composite particles. The composite particles
obtained were irregular, with concave depression. Gelation was found to decrease with the addition of Aerosil, while gel melting
was found to increase with the concentration of Aerosil. Rheological studies showed an increase in elasticity as well as viscosity
with an increase in the concentration of Aerosil. Composite particles showed improved gelation and rheological properties.
These composite particles and the process by which they were obtained may be useful for designing various drug delivery systems. 相似文献
10.
Okada A Tominaga M Horiuchi M Tomooka Y 《Biochemical and biophysical research communications》2007,352(1):158-163
Class 3 semaphorin acts as a guidance clue for both cell migration and nerve fiber projection. The signal of class 3 semaphorin travels via a receptor complex consisting of neuropilins and Plexin-A subfamily. Although it has been reported that class 3 semaphorin acts as a repellent for oligodendrocyte precursor cells (OPCs), which migrate actively during brain development, the expression of Plexin-A subfamily has not been reported in OPCs yet. Therefore, it is currently unclear how semaphorin signals can travel in OPCs. In the present study, the expression of Plexin-A4 (PlexA4) was first demonstrated in a newly established OPC line and OPCs in developing brain. In the OPC line, repulsion for process extension was caused by both Sema3A and Sema6A, and the effect of the semaphorins was diminished in cells expressing PlexA4 lacking the cytoplasmic domain. These results strongly suggest that PlexA4 expressed in OPCs acts as a mediator of semaphorin signals. 相似文献
11.
Summary The sensory cells of the vomero-nasal organ in reptiles and mammals do not develop cilia. In several species they contain centrioles together with cilium-structure precursor bodies measuring 400–700 Å in diameter. These structures resemble axonemal precursor bodies which are known to occur in developing ciliated cells. They are enclosed in a fibrogranular matrix. The precursor bodies are resistant to pepsin digestion in Araldite sections. In Tupaia precursor bodies may join periodically in a row. In the vomero-nasal receptor cells the precursor bodies can be considered stabilized with a corresponding reduction of cilia. The periodically arranged precursor bodies could represent a special storage form. 相似文献
12.
N-acetyl-seryl-aspartyl-lysyl-proline inhibits DNA synthesis in human mesangial cells via up-regulation of cell cycle modulators 总被引:1,自引:0,他引:1
Kanasaki K Haneda M Sugimoto T Shibuya K Isono M Isshiki K Araki S Uzu T Kashiwagi A Koya D 《Biochemical and biophysical research communications》2006,342(3):758-765
N-Acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) was originally reported as a natural inhibitor of the proliferation of stem cells. To elucidate whether Ac-SDKP inhibits the proliferation of human mesangial cells, we examined the effect of Ac-SDKP on fetal calf serum (FCS)- or platelet-derived growth factor (PDGF)-BB-induced DNA synthesis and a cell proliferation. Ac-SDKP inhibited PDGF-BB- or FCS-induced DNA synthesis without cellular toxicity. The protein expression of p53 and p27kip1 was significantly increased by Ac-SDKP. Ac-SDKP also up-regulated the PDGF-BB-stimulated expression of p21cip1 and suppressed PDGF-BB-induced cyclin D1 expression. In p53 knock-out human mesangial cells made with small interference RNA, the protein expression of p21cip1 and p27kip1 was also decreased and the inhibitory effect of Ac-SDKP on mesangial proliferation was completely abolished. Ac-SDKP increased the stability of p53 protein as demonstrated by pulse-chase experiment. These results suggest that p53 is the key mediator of Ac-SDKP-induced inhibition of DNA synthesis through the up-regulation of cell cycle modulators, highlighting a potential effect of Ac-SDKP on various progressive renal diseases. 相似文献
13.
The potency of a series of sulfonamide tubulin inhibitors against the growth of Trypanosoma brucei (T. brucei), as well as human cancer and primary fibroblast cells were evaluated with the aim of determining whether compounds that selectively inhibit parasite proliferation could be identified. Several compounds showed excellent selectivity against T. brucei growth, and have the potential to be used for the treatment of Human African trypanosomiasis. A T. brucei tubulin protein homology model was built based on the crystal structure of the bovine tubulin. The colchicine-binding domain, which is also the binding site of the tested sulfonamide tubulin inhibitors, showed clear differences between the tubulin structures and presumably explained the selectivity of the compounds. 相似文献
14.
Amyloid beta-peptide (Abeta) is implicated as the major causative agent in Alzheimer's disease (AD). Abeta is produced by the processing of the amyloid precursor protein (APP) by BACE1 (beta-secretase) and gamma-secretase. Many inhibitors have been developed for the secretases. However, the inhibitors will interfere with the processing of not only APP but also of other secretase substrates. In this study, we describe the development of inhibitors that prevent production of Abeta by specific binding to the beta-cleavage site of APP. We used the hydropathic complementarity (HC) approach for the design of short peptide inhibitors. Some of the HC peptides were bound to the substrate peptide (Sub W) corresponding to the beta-cleavage site of APP and blocked its cleavage by recombinant human BACE1 (rhBACE1) in vitro. In addition, HC peptides specifically inhibited the cleavage of Sub W, and not affecting other BACE1 substrates. Chemical modification allowed an HC peptide (CIQIHF) to inhibit the processing of APP as well as the production of Abeta in the treated cells. Such novel APP-specific inhibitors will provide opportunity for the development of drugs that can be used for the prevention and treatment of AD with minimal side effects. 相似文献
15.
Sorbi C Bergamin M Bosi S Dinon F Aroulmoji V Khan R Murano E Norbedo S 《Carbohydrate research》2009,344(1):91-2058
Selective halogenation of hyaluronan and partial halogen substitution by methotrexate led to 6-chloro-6-deoxy-6-O-methotrexylhyaluronan, a potential antitumor drug. The remaining halogen could be further substituted by a second organic carboxylate, leading to mixed esters. 6-O-Acetyl-6-O-methotrexylhyaluronan and 6-O-butyryl-6-O-methotrexylhyaluronan were thus synthesized and characterized by NMR spectroscopy. 相似文献
16.
Yinhu Wang Rumana Mowla Liwei Guo Abiodun D. Ogunniyi Taufiq Rahman Miguel A. De Barros Lopes Shutao Ma Henrietta Venter 《Bioorganic & medicinal chemistry letters》2017,27(4):733-739
Drug efflux pumps confer multidrug resistance to dangerous pathogens which makes these pumps important drug targets. We have synthesised a novel series of compounds based on a 2-naphthamide pharmacore aimed at inhibiting the efflux pumps from Gram-negative bacteria. The archeatypical transporter AcrB from Escherichia coli was used as model efflux pump as AcrB is widely conserved throughout Gram-negative organisms. The compounds were tested for their antibacterial action, ability to potentiate the action of antibiotics and for their ability to inhibit Nile Red efflux by AcrB. None of the compounds were antimicrobial against E. coli wild type cells. Most of the compounds were able to inhibit Nile Red efflux indicating that they are substrates of the AcrB efflux pump. Three compounds were able to synergise with antibiotics and reverse resistance in the resistant phenotype. Compound A3, 4-(isopentyloxy)-2-naphthamide, reduced the MICs of erythromycin and chloramphenicol to the MIC levels of the drug sensitive strain that lacks an efflux pump. A3 had no effect on the MIC of the non-substrate rifampicin indicating that this compound acts specifically through the AcrB efflux pump. A3 also does not act through non-specific mechanisms such as outer membrane or inner membrane permeabilisation and is not cytotoxic against mammalian cell lines. Therefore, we have designed and synthesised a novel chemical compound with great potential to further optimisation as inhibitor of drug efflux pumps. 相似文献
17.
G. Sannia P. Abrescia M. Colombo P. Giardina G. Marino 《Biochemical and biophysical research communications》1982,105(2):444-449
Precursor forms of the isozymes of aspartate aminotransferase from pig heart were synthesized in vitro and purified by binding to specific antibodies. Analysis by sodium dodecylsulfate polyacrylamide gel electrophoresis showed that the precursor of the cytosolic enzyme has a similar molecular weight to that of the mature protein whereas the precursor of the mitochondrial isozyme has a molecular weight greater than that of the corresponding mature protein (ΔMW ? 2500). Preliminary sequence studies seem to suggest that the precursor of the mitochondrial isozyme has an extra N-terminal peptide sequence while that of the cytosolic protein has only an extra N-terminal methionine residue. 相似文献
18.
Anran Zhao Yaxin Li Cody M. Orahoske Brittny Schnur Abboud Sabbagh Wenjing Zhang Bibo Li Bin Su 《Bioorganic & medicinal chemistry》2019,27(8):1517-1528
Previously synthesized tubulin inhibitors showed promising in vitro selectivity and activity against Human African Trypanosomiasis. Current aim is to improve the ligand efficiency and reduce overall hydrophobicity of the compounds, by lead optimization. Via combinatorial chemistry, 60 new analogs were synthesized. For biological assay Trypanosoma brucei brucei Lister 427 cell line were used as the parasite model and for the host model human embryonic kidney cell line HEK-293 and mouse macrophage cell line RAW 264.7 were used to test efficacy. Of the newly synthesized compounds 5, 39, 40, and 57 exhibited IC50s below 5?µM inhibiting the growth of trypanosome cells and not harming the mammalian cells at equipotent concentration. Comparably, the newly synthesized compounds have a reduced amount of aromatic moieties resulting in a decrease in molecular weight. Due to importance of tubulin polymerization during protozoan life cycle its activity was assessed by western blot analyses. Our results indicated that compound 5 had a profound effect on tubulin function. A detailed structure activity relationship (SAR) was summarized that will be used to guide future lead optimization. 相似文献
19.
Stimulation of Aspergillus niger in submerged culture using a commonly known precursor, mevalonic acid (MVA), was investigated in terms of growth and gibberellic acid production. Increasing concentrations of MVA up to 60 M enhanced product and growth yields. Above this amount, gibberellic acid yields and growth were gradually decreased. 相似文献
20.
Ethyl (R)-2-hydroxy-4-phenylbutanoate [(R)-HPBE] is a versatile and important chiral intermediate for the synthesis of angiotensin-converting enzyme (ACE) inhibitors. Recombinant E. coli strain coexpressing a novel NADPH-dependent carbonyl reductase gene iolS and glucose dehydrogenase gene gdh from Bacillus subtilis showed excellent catalytic activity in (R)-HPBE production by asymmetric reduction. IolS exhibited high stereoselectivity (>98.5% ee) toward α-ketoesters substrates, whereas fluctuant ee values (53.2–99.5%) for β-ketoesters with different halogen substitution groups. Strategies including aqueous/organic biphasic system and substrate fed-batch were adopted to improve the biocatalytic process. In a 1-L aqueous/octanol biphasic reaction system, (R)-HPBE was produced in 99.5% ee with an exceptional catalyst yield (gproduct/gcatalyst) of 31.7 via bioreduction of ethyl 2-oxo-4-phenylbutyrate (OPBE) at 330 g/L. 相似文献