首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yeast invertase was immobilized on polyethyleneimine-coated cotton thread by adsorption followed by crosslinking with glutaraldehyde. The thread-bound invertase was used as an easily retrievable system for the hydrolysis of 80% w/v commercial sucrose syrups. The immobilized enzyme was stable for over 90 days to a temperature of 50 degrees C, only when stored in 80% sucrose solution. Above this temperature, inactivation of enzyme was observed. The cotton threads were used in a batch reactor for hydrolysis of sucrose in about 30 batches carried out over a period of 50 days without loss in activity. The threads could also be used in a packed bed reactor (1.51) for 97% hydrolysis of 80% sucrose syrups at 50 degrees C at a rate of about 360 kg per month for a period of 3 months.  相似文献   

2.
The purified exo-inulinase enzyme of Aspergillus niger N402 (AngInuE; heterologously expressed in Escherichia coli) displayed a sucrose:inulin (S/I) hydrolysis ratio of 2.3, characteristic for a typical exo-inulinase. The enzyme also had significant transfructosylating activity with increasing sucrose concentrations, producing various oligosaccharides. The AngInuE protein molecular mass was 57 kDa, close to the calculated value for the mature protein. AngInuE thus was active as a monomeric, non-glycosylated protein. Contradictory data on hydrolysis/transfructosylation activity ratios have been published for the (almost) identical (but monomeric or dimeric and glycosylated) exo-inulinases of other aspergilli. Our data clearly show that the AngInuE enzyme, produced in and purified from E. coli, is a broad specificity exo-inulinase that also has significant transfructosylating activity with sucrose. Analysis of site-directed mutants of AngInuE showed that the glycoside hydrolase family 32 conserved domain G is important for catalytic efficiency, with a clear role in hydrolysis of both sucrose and fructans.  相似文献   

3.
Dextransucrase was shown to catalyze the hydrolysis of sucrose. The hydrolytic activity was found to be directly correlatable with dextransucrase activity on poly-(acrylamide) disc-gel electrophoresis. In studies on the hydrolysis of sucrose and formation of dextran as a function of time and substrate concentration, the two activities were found to be competitive with each other. Competition was also observed between hydrolysis and the transfer of d-glucosyl groups to added acceptors. The results suggest that the three activities, namely, polymerization, d-glucosyl transfer, and hydrolysis, compete for a form of the enzyme that is common to all three reactions. It is proposed that this form may be a d-glucosylated derivative of the enzyme.  相似文献   

4.
The purified exo-inulinase enzyme of Aspergillus niger N402 (AngInuE; heterologously expressed in Escherichia coli) displayed a sucrose:inulin (S/I) hydrolysis ratio of 2.3, characteristic for a typical exo-inulinase. The enzyme also had significant transfructosylating activity with increasing sucrose concentrations, producing various oligosaccharides. The AngInuE protein molecular mass was 57 kDa, close to the calculated value for the mature protein. AngInuE thus was active as a monomeric, non-glycosylated protein. Contradictory data on hydrolysis/transfructosylation activity ratios have been published for the (almost) identical (but monomeric or dimeric and glycosylated) exo-inulinases of other aspergilli. Our data clearly show that the AngInuE enzyme, produced in and purified from E. coli, is a broad specificity exo-inulinase that also has significant transfructosylating activity with sucrose. Analysis of site-directed mutants of AngInuE showed that the glycoside hydrolase family 32 conserved domain G is important for catalytic efficiency, with a clear role in hydrolysis of both sucrose and fructans.  相似文献   

5.
The kinetic mechanism of dextransucrase was studied using the Streptococcus mutans enzyme purified by affinity chromatography to a specific activity of 36.9 mumol/min/mg of enzyme. In addition to dextran synthesis, the enzyme catalyzed sucrose hydrolysis and isotope exchange between fructose and sucrose. The rates of sucrose hydrolysis and dextran synthesis were partitioned as a function of dextran concentration such that exclusive sucrose hydrolysis was observed in the absence of dextran and exclusive dextran synthesis at high dextran concentrations. An analogous situation was observed with fructose-dependent partitioning of sucrose hydrolysis and fructose exchange. Steady state dextran synthesis and fructose isotope exchange kinetics were simplified by assay at dextran or fructose concentrations high enough to eliminate significant contributions from sucrose hydrolysis. This limited dextran synthesis assays to dextran concentrations above apparent saturation. The limitation was diminished by establishing conditions in which the enzyme does not distinguish between dextran as a substrate and product which allowed initial discrimination among mechanisms on the basis of the presence or absence of dextran substrate inhibition. No inhibition was observed, which excluded ping-pong and all but three common sequential mechanisms. Patterns of initial velocity fructose production inhibition and fructose isotope exchange at equilibrium were consistent with dextran synthesis proceeding by a rapid equilibrium random mechanism. A nonsequential segment was apparent in the exchange reaction between fructose and sucrose assayed in the absence of dextran. However, the absence of detectable glucosyl exchange between dextrans and the lack of steady state dextran substrate inhibition indicate that glucosyl transfer to dextran must occur almost exclusively through the sequential route. A review of the kinetic constants from steady state dextran synthesis, fructose product inhibition, and fructose isotope exchange showed a consistency in constants derived from each reaction and revealed that dextran binding increases the affinity of sucrose and fructose for dextransucrase.  相似文献   

6.
Chemical group-transfer reactions by hydrolytic enzymes have considerable importance in biocatalytic synthesis and are exploited broadly in commercial-scale chemical production. Mechanistically, these reactions have in common the involvement of a covalent enzyme intermediate which is formed upon enzyme reaction with the donor substrate and is subsequently intercepted by a suitable acceptor. Here, we studied the glycosylation of glycerol from sucrose by sucrose phosphorylase (SucP) to clarify a peculiar, yet generally important characteristic of this reaction: partitioning between glycosylation of glycerol and hydrolysis depends on the type and the concentration of the donor substrate used (here: sucrose, α-d -glucose 1-phosphate (G1P)). We develop a kinetic framework to analyze the effect and provide evidence that, when G1P is used as donor substrate, hydrolysis occurs not only from the β-glucosyl-enzyme intermediate (E-Glc), but additionally from a noncovalent complex of E-Glc and substrate which unlike E-Glc is unreactive to glycerol. Depending on the relative rates of hydrolysis of free and substrate-bound E-Glc, inhibition (Leuconostoc mesenteroides SucP) or apparent activation (Bifidobacterium adolescentis SucP) is observed at high donor substrate concentration. At a G1P concentration that excludes the substrate-bound E-Glc, the transfer/hydrolysis ratio changes to a value consistent with reaction exclusively through E-Glc, independent of the donor substrate used. Collectively, these results give explanation for a kinetic behavior of SucP not previously accounted for, provide essential basis for design and optimization of the synthetic reaction, and establish a theoretical framework for the analysis of kinetically analogous group-transfer reactions by hydrolytic enzymes.  相似文献   

7.
Sugar-cane invertase (β-d-fructofuranoside fructohydrolase, EC 3.2.1.26) immobilized on bentonite clay in 0.05 m acetate buffer, pH 4.5, has been shown to be capable of hydrolysing sucrose. The bentonite-invertase (BI) complex gave 55.5% retention of enzyme activity on the surface. A further 17 and 22% increase in retention of enzyme activity was obtained using the covalent linking agents, cyanuric chloride and thionyl chloride, giving bentonite-cyanuric chloride-invertase (BCCI) and bentonite-thionyl chloride-invertase (BTCI) complexes. Concentrations of acetate buffer >0.2 M disrupt the bentonite-invertase complexes. The immobilized invertase complexes showed high temperature optima (60–65°C) and high thermal stability compared to the free enzyme. The pH profiles of the free and immobilized enzyme were the same. The rate of hydrolysis of sucrose was increased using immobilized enzymes, which required a higher substrate concentration than the free enzyme. The insoluble enzyme conjugate-carrier complexes when used for sucrose hydrolysis in a batch process showed 53.1 (BI), 57.4 (BCCI) and 59.6% (BTCI) conversions, respectively, in 12 h, compared to 42.3% conversion in 24 h with the free enzyme. The immobilized invertase complexes can be used for sucrose inversion for about five cycles. The application of this immobilization procedure may help in the removal of invertase from cane juice to reduce sugar losses in industry.  相似文献   

8.
Tissue culture media or aqueous sucrose solutions containing activated charcoal buffered to pH 5.5 and autoclaved did not undergo appreciable sucrose hydrolysis as reported. Rather, the extent of sucrose hydrolysis in media containing activated charcoal was found to be directly proportional to the hydrogen ion concentration (pH). This finding is consistent with the known mechanism of acid-catalyzed hydrolysis of acetals such as sucrose. Several types of charcoal were identified that acidified culture media to the extent that considerable acid-catalyzed sucrose hydrolysis occurred under autoclave conditions, making it appear as though activated charcoal was responsible for catalyzing sucrose hydrolysis. A simple mathematical expression was empirically derived that can be used to predict the extent of sucrose hydrolysis based on the post-autoclave pH of the media. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
The presence of an enzyme in rat liver which hydroluzes sucrose is demonstrated in this report. The hydrolysis of sucrose was studied in vivo after injecting [14C]sucrose into rats, and a method was developed for the extraction and analysis of the radioactive sugars stored within subcellular particles. The results show that, besides sucrose, glucose and fructose are also found in the lysosomal fraction of the liver homogenate. In vitro studies reveal the presence of a sucrase, although the activity of the enzyme is very low. Intracellular distribution studies indicate that sucrase is present in the lysosomes as well as in the microsomes, the microsomal enzyme having a pH optimum different from that of the lysosomal enzyme.  相似文献   

10.
The fungus Mucor indicus is found in this study able to consume glucose and fructose, but not sucrose in fermentation of sugarcane and sugar beet molasses. This might be an advantage in industries which want to selectively remove glucose and fructose for crystallisation of sucrose present in the molasses. On the other hand, the fungus assimilated sucrose after hydrolysis by the enzyme invertase. The fungus efficiently grew on glucose and fructose and produced ethanol in synthetic media or from molasses. The cultivations were carried out aerobically and anaerobically, and manipulated toward filamentous or yeast-like morphology. Ethanol was the major metabolite in all the experiments. The ethanol yield in anaerobic cultivations was between 0.35 and 0.48 g/g sugars consumed, depending on the carbon source and the growth morphology, while a yield of as low as 0.16 g/g was obtained during aerobic cultivation. The yeast-like form of the fungus showed faster ethanol production with an average productivity of 0.90 g/l h from glucose, fructose and inverted sucrose, than the filamentous form with an average productivity of 0.33 g/l h. The biomass of the fungus was also analyzed with respect to alkali-insoluble material (AIM), chitin, and chitosan. The biomass of the fungus contained per g maximum 0.217 g AIM and 0.042 g chitosan in yeast-like cultivation under aerobic conditions.  相似文献   

11.
The possibility of using thermostable inulinases from Aspergillus ficuum in place of invertase for sucrose hydrolysis was explored. The commercial inulinases preparation was immobilized onto porous glass beads by covalent coupling using activation by a silane reagent and glutaraldehyde before adding the enzyme. The immobilization steps were optimized resulting in a support with 5,440 IU/g of support (sucrose hydrolysis) that is 77% of the activity of the free enzyme. Enzymatic properties of the immobilized inulinases were similar to those of the free enzymes with optimum pH near pH 5.0. However, temperature where the activity was maximal was shifted of 10 degrees C due to better thermal stability after immobilization with similar activation energies. The curve of the effect of sucrose concentration on activity was bi-phasic. The first part, for sucrose concentrations lower than 0.3 M, followed Michaelis-Menten kinetics with apparent K(M) and Vm only slightly affected by immobilization. Substrate inhibition was observed at values from 0.3 to 2 M sucrose. Complete sucrose hydrolysis was obtained for batch reactors with 0.3 and 1 M sucrose solutions. In continuous packed-bed reactor 100% (for 0.3 M sucrose), 90% (1 M sucrose) or 80% sucrose conversion were observed at space velocities of 0.06-0.25 h(-1). The operational half-life of the immobilized inulinases at 50 degrees C with 2 M sucrose was 350 days.  相似文献   

12.
Levansucrase catalyzes the synthesis of fructose polymers through the transfer of fructosyl units from sucrose to a growing fructan chain. Levanase activity of Bacillus subtilis levansucrase has been described since the very first publications dealing with the mechanism of levan synthesis. However, there is a lack of qualitative and quantitative evidence regarding the importance of the intrinsic levan hydrolysis of B. subtilis levansucrase and its role in the levan synthesis process. Particularly, little attention has been paid to the long-term hydrolysis products, including its participation in the final levan molecules distribution. Here, we explored the hydrolytic and transferase activity of the B. subtilis levansucrase (SacB) when levans produced by the same enzyme are used as substrate. We found that levan is hydrolyzed through a first order exo-type mechanism, which is limited to a conversion extent of around 30% when all polymer molecules reach a structure no longer suitable to SacB hydrolysis. To characterize the reaction, Isothermal Titration Calorimetry (ITC) was employed and the evolution of the hydrolysis products profile followed by HPLC, GPC and HPAEC-PAD. The ITC measurements revealed a second step, taking place at the end of the reaction, most probably resulting from disproportionation of accumulated fructo-oligosaccharides. As levanase, levansucrase may use levan as substrate and, through a fructosyl-enzyme complex, behave as a hydrolytic enzyme or as a transferase, as demonstrated when glucose and fructose are added as acceptors. These reactions result in a wide variety of oligosaccharides that are also suitable acceptors for fructo-oligosaccharide synthesis. Moreover, we demonstrate that SacB in the presence of levan and glucose, through blastose and sucrose synthesis, results in the same fructooligosaccharides profile as that observed in sucrose reactions. We conclude that SacB has an intrinsic levanase activity that contributes to the final levan profile in reactions with sucrose as substrate.  相似文献   

13.
Inulosucrases catalyze transfer of a fructose moiety from sucrose to a water molecule (hydrolysis) or to an acceptor molecule (transferase), yielding inulin. Bacterial inulin production is rare and a biochemical analysis of inulosucrase enzymes has not been reported. Here we report biochemical characteristics of a purified recombinant inulosucrase enzyme from Lactobacillus reuteri. It displayed Michaelis-Menten type of kinetics with substrate inhibition for the hydrolysis reaction. Kinetics of the transferase reaction is best described by the Hill equation, not reported before for these enzymes. A C-terminal deletion of 100 amino acids did not appear to affect enzyme activity or product formation. This truncated form of the enzyme was used for biochemical characterization.  相似文献   

14.
An investigation was conducted to isolate, and characterise the extracellular sucrases of Zymomonas mobilis UQM 2716. Levansucrase (EC 2.4.1.10) was the only extracellular sucrase produced by this organism. This enzyme was responsible for sucrose hydrolysis, levan formation, and oligosaccharide production. It had a molecular mass of 98 kDa, a Michaelis constant (K m) of 64 mm, and a pH optimum of 5.5. It was inhibited by glucose, but not by fructose, ethanol, sorbitol, NaCl, TRIS or ethylenediaminetetraacetic acid (EDTA). The formation of levan was the principal reaction catalysed by this enzyme at low temperatures. However, levan formation was thermolabile, being irreversibly lost when levansucrase was heated to 35°C. S This did not effect sucrose hydrolysis or oligosaccharide formation, which were optimal at 45°C. Sucrose concentration greatly influenced the type of acceptor molecule used in the transfructosylation reactions catalysed by levansucrase. At low sucrose concentration, the predominant reaction catalysed was the hydrolysis of sucrose to free glucose and fructose. At high sucrose concentrations, oligosaccharide production was the major reaction catalysed.  相似文献   

15.
Bovine intestine alkaline phosphatase (BIALP) is widely used as a signaling enzyme in sensitive assays such as enzyme immunoassay. In this study, we evaluated the effects of sugars on the kinetic stability of BIALP in the hydrolysis of p-nitrophenylphosphate (pNPP). The temperatures reducing initial activity by 50% in a 30-min incubation, T(50), of BIALP with 1.0 M disaccharide (sucrose and trehalose) or 2.0 M monosaccharide (glucose and fructose) were 55.0-55.5 °C, 4.7-5.2 °C higher than without sugar (50.3±0.1 °C). The T(50) of BIALP increased to 58.4±0.3 °C when the trehalose concentration was from 1.0 to 1.5 M, but did not change when the glucose concentration was from 2.0 to 3.0 M. Thermodynamic analysis revealed that the stabilization of BIALP by sugars was driven by the increase in the enthalpy change of activation for thermal inactivation of BIALP. No sugars affected the k(cat) of BIALP in the hydrolysis of pNPP. These results suggest that not only trehalose, which is considered the most effective stabilizer of enzymes, but also sucrose, glucose, and fructose can be used as stabilizers of BIALP.  相似文献   

16.
Localization of inulinase and invertase in Kluyveromyces species   总被引:5,自引:0,他引:5  
In vivo hydrolysis of inulin and sucrose was examined in selected yeasts of the genus Kluyveromyces. Cells, grown in sucrose-limited chemostat cultures, were subjected to treatments for the removal of inulinase, the enzyme responsible for the hydrolysis of both inulin and sucrose. The effects of these treatments were studied by measurement of inulin-dependent and sucrose-dependent oxygen consumption by cell suspensions. In Kluyveromyces marxianus var. marxianus, inulinase was partially secreted into the culture fluid. Removal of culture fluid inulinase by washing had no effect on sucrose-dependent oxygen consumption by this yeast. However, this treatment drastically reduced inulin-dependent oxygen consumption. Treatment of washed cells with sulfhydryls removed part of the cell wall-retained inulinase and reduced inulin-dependent oxygen consumption by another 80%. Sucrose-dependent oxygen consumption was less affected, decreasing by 40%. Cell suspensions of K. marxianus var. drosophilarum, K. marxianus var. vanudenii, and Saccharomyces kluyveri rapidly utilized sucrose but not inulin. This is in accordance with the classification of these yeasts as inulin negative. Supernatants of cultures grown at pH 5.5 did not catalyze the hydrolysis of inulin and sucrose. This suggested that these yeasts contained a strictly cell-bound invertase, an enzyme not capable of inulin hydrolysis. However, upon washing, cells became able to utilize inulin. The inulin-dependent oxygen consumption further increased after treatment of the cells with sulfhydryls. These treatments did not affect the sucrose-dependent oxygen consumption of the cells. Apparently, these treatments removed a permeability barrier for inulin that does not exist for sucrose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Abstract

Sucrose phosphorylase is a bacterial transglucosidase that catalyzes conversion of sucrose and phosphate into α-D-glucose-1-phosphate and D-fructose. The enzyme utilizes a glycoside hydrolase-like double displacement mechanism that involves a catalytically competent β-glucosyl enzyme intermediate. In addition to reaction with phosphate, glucosylated sucrose phosphorylase can undergo hydrolysis to yield α-D-glucose or it can decompose via glucosyl transfer to a hydroxy group in suitable acceptor molecules, giving new α-D-glucosidic products. The glucosyl acceptor specificity of sucrose phosphorylase is reviewed, focusing on applications of the enzyme in glucoside synthesis. Polyhydroxylated compounds such as sugars and sugar alcohols are often glucosylated efficiently. Aryl alcohols and different carboxylic acids also serve as acceptors for enzymatic transglucosylation. The natural osmolyte 2-O-(α-D-glucopyranosyl)-sn-glycerol (GG) was prepared by regioselective glucosylation of glycerol from sucrose using the phosphorylase from Leuconostoc mesenteroides. An industrial process for production of GG as active ingredient of cosmetic formulations has been recently developed. General advantages of sucrose phosphorylase as a transglucosylation catalyst lie in the use of sucrose as a high-energy glucosyl donor and the usually weak hydrolase activity of the enzyme towards substrate and product.  相似文献   

18.
G Mooser  K R Iwaoka 《Biochemistry》1989,28(2):443-449
A covalent glucosyl-enzyme was isolated from a quenched reaction of Streptococcus sobrinus sucrose 6-alpha-D-glucosyltransferase and radiolabeled sucrose. No complex was observed with heat-inactivated enzyme or when sucrose was replaced with radiolabeled maltose or glucose. The complex was stable at pH 2 in 1% sodium dodecyl sulfate, 6.0 M urea, and 4.0 M guanidine hydrochloride, but became increasingly labile with increased pH (32-min half-life at pH 7.0). D-Glucose was the exclusive radiolabeled compound identified when all radioactivity was released under mild alkaline conditions. Glucosyl-enzyme hydrolysis rates were linearly dependent on hydroxide ion concentration, giving a second-order rate constant of 2.15 x 10(5) M-1 min-1. When compared to the base lability of known glycosyl amino acid derivatives, the pH dependency of the glucosyl-enzyme most closely paralleled a glucosyl linkage to a carboxyl group. A novel application of a carbohydrate high-performance liquid chromatography column in aqueous solution was used to identify the anomeric form of D-glucose released on (i) alkaline hydrolysis of denatured glucosyl-enzyme and (ii) native enzyme hydrolysis of sucrose. The beta-anomer was identified in the former case and the alpha-anomer in the latter. The results with the denatured glucosyl-enzyme are consistent with a beta-glucosyl ester linkage to an aspartic or glutamic acid that hydrolyzes at the ester carbon with retention of anomeric configuration; for native glucosyltransferase catalysis, the data are consistent with a beta-glucosyl covalent intermediate as well, where deglucosylation occurs by attack at the acetal carbon with anomeric inversion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The enzymatic hydrolysis in vitro of the esters of methanol, ethylene glycol, glycerol, erythritol, pentaerythritol, adonitol, sorbitol, and sucrose in which all alcohol groups were esterified with oleic acid was studied. Various preparations of rat pancreatic juice, including pure lipase, were used as the sources of enzymes. Lipase (EC 3.1.1.3) did not hydrolyze compounds that contained more than three ester groups. Compounds containing four and five ester groups were hydrolyzed by certain preparations of pancreatic juice; this activity is attributed to the enzyme, nonspecific lipase. This enzyme also hydrolyzed esters of primary alcohols. The compounds containing six (sorbitol) and eight (sucrose) ester groups were not hydrolyzed.  相似文献   

20.
Invertase and α-galactosidase have been immobilized in hollow fiber cartridges with no detectable enzyme leakage and used for the hydrolysis of sucrose and raffinose, respectively. For both hollow fiber immobilizes enzymes nearly complete substrate conversion is possible. Enzyme stabilities in polysulfone hollow fibers which have been preconditioned with bovine albumin approach the stabilities of the free enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号