首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is widely accepted that species diversity is contingent upon the spatial scale used to analyze patterns and processes. Recent studies using coarse sampling grains over large extents have contributed much to our understanding of factors driving global diversity patterns. This advance is largely unmatched on the level of local to landscape scales despite being critical for our understanding of functional relationships across spatial scales. In our study on West African bat assemblages we employed a spatially explicit and nested design covering local to regional scales. Specifically, we analyzed diversity patterns in two contrasting, largely undisturbed landscapes, comprising a rainforest area and a forest‐savanna mosaic in Ivory Coast, West Africa. We employed additive partitioning, rarefaction, and species richness estimation to show that bat diversity increased significantly with habitat heterogeneity on the landscape scale through the effects of beta diversity. Within the extent of our study areas, habitat type rather than geographic distance explained assemblage composition across spatial scales. Null models showed structure of functional groups to be partly filtered on local scales through the effects of vegetation density while on the landscape scale both assemblages represented random draws from regional species pools. We present a mixture model that combines the effects of habitat heterogeneity and complexity on species richness along a biome transect, predicting a unimodal rather than a monotonic relationship with environmental variables related to water. The bat assemblages of our study by far exceed previous figures of species richness in Africa, and refute the notion of low species richness of Afrotropical bat assemblages, which appears to be based largely on sampling biases. Biome transitions should receive increased attention in conservation strategies aiming at the maintenance of ecological and evolutionary processes.  相似文献   

2.
Although many studies have investigated the influence of environmental patterns on local stream invertebrate diversity, there has been little consistency in reported relationships between diversity and particular environmental variables. Here we test the hypothesis that local stream invertebrate diversity is determined by a combination of factors occurring at multiple spatial scales. We developed predictive models relating invertebrate diversity (species richness and equitability) to environmental variables collected at various spatial scales (bedform, reach and catchment, respectively) using data from 97 sampling sites dispersed throughout the Taieri River drainage in New Zealand. Models based on an individual scale of perception (bedform, reach or catchment) were not able to match predictions to observations (r < 0.26, P > 0.01, between observed and predicted equitability and species richness). In contrast, models incorporating all three scales simultaneously were highly significant (P < 0.01; r = 0.55 and 0.64, between observed and predicted equitability and species richness, respectively). The most influential variables for both richness and equitability were median particle size at the bedform scale, adjacent land use at the reach scale, and relief ratio at the catchment scale. Our findings suggest that patterns observed in local assemblages are not determined solely by local mechanisms acting within assemblages, but also result from processes operating at larger spatial scales. The integration of different spatial scales may be the key to increasing model predictability and our understanding of the factors that determine local biodiversity.  相似文献   

3.
Aim   We analysed the variation of species richness in the European freshwater fauna across latitude. In particular, we compared latitudinal patterns in species richness and β-diversity among species adapted to different habitat types.
Location   Europe.
Methods   We compiled data on occurrence for 14,020 animal species across 25 pre-defined biogeographical regions of European freshwaters from the Limnofauna Europaea . Furthermore, we extracted information on the habitat preferences of species. We assigned species to three habitat types: species adapted to groundwater, lotic (running water) and lentic (standing water) habitats. We analysed latitudinal patterns of species richness, the proportion of lentic species and β-diversity.
Results   Only lentic species showed a significant species–area relationship. We found a monotonic decline of species richness with latitude for groundwater and lotic habitats, but a hump-shaped relationship for lentic habitats. The proportion of lentic species increased from southern to northern latitudes. β-Diversity declined from groundwater to lentic habitats and from southern to northern latitudes.
Main conclusions   The differences in the latitudinal variation of species richness among species adapted to different habitat types are in part due to differences in the propensity for dispersal. Since lentic habitats are less persistent than lotic or groundwater habitats, lentic species evolved more efficient strategies for dispersal. The dispersal propensity of lentic species facilitated the recolonization of central Europe after the last glaciation. Overall, we stress the importance of considering the history of regions and lineages as well as the ecological traits of species for understanding patterns of biodiversity.  相似文献   

4.
Quantifying spatial patterns of species richness and determining the processes that give rise to these patterns are core problems In blodlveralty theory. The aim of the present paper was to more accurately detect patterns of vascular species richness at different scales along altitudinal gradients in order to further our understanding of biodlverslty patterns and to facilitate studies on relationships between biodiversity and environmental factors. Species richness patterns of total vascular plants species, including trees, shrubs, and herbs, were measured along an altitudinal gradient on one transect on a shady slope in the Dongling Mountains, near Beijing,China. Direct gradient analysis, regression analysis, and geostatistics were applied to describe the spatial patterns of species richness. We found that total vascular species richness did not exhibit a linear pattern of change with altitude, although species groups with different ecological features showed strong elevational patterns different from total species richness. In addition to total vascular plants, analysis of trees, shrubs, and herbs demonstrated remarkable hierarchical structures of species richness with altitude (i.e. patchy structures at small scales and gradients at large scales). Species richness for trees and shrubs had similar spatial characteristics at different scales, but differed from herbs. These results indicated that species groups with similar ecological features exhibit similar biodlveraity patterns with altitude, and studies of biodiversity based on species groups with similar ecological properties or life forms would advance our understanding of variations in species diversity. Furthermore, the gradients or trends appeared to be due mainly to local variations in species richness means with altitude. We also found that the range of spatial scale dependencies of species richness for total vascular plants, trees, shrubs, and herbs was relatively large. Thus, to detect the relationships betweenspecies richness with environmental factors along altitudinal gradients, it was necessary to quantify the scale dependencies of environmental factors in the sampling design or when establishing non-linear models.  相似文献   

5.
Microbial biogeography is gaining increasing attention due to recent molecular methodological advance. However, the diversity patterns and their environmental determinants across taxonomic scales are still poorly studied. By sampling along an extensive elevational gradient in subarctic ponds of Finland and Norway, we examined the diversity patterns of aquatic bacteria and fungi from whole community to individual taxa across taxonomic coverage and taxonomic resolutions. We further quantified cross‐phylum congruence in multiple biodiversity metrics and evaluated the relative importance of climate, catchment and local pond variables as the hierarchical drivers of biodiversity across taxonomic scales. Bacterial community showed significantly decreasing elevational patterns in species richness and evenness, and U‐shaped patterns in local contribution to beta diversity (LCBD). Conversely, no significant species richness and evenness patterns were found for fungal community. Elevational patterns in species richness and LCBD, but not in evenness, were congruent across bacterial phyla. When narrowing down the taxonomic scope towards higher resolutions, bacterial diversity showed weaker and more complex elevational patterns. Taxonomic downscaling also indicated a notable change in the relative importance of biodiversity determinants with stronger local environmental filtering, but decreased importance of climatic variables. This suggested that niche conservatism of temperature preference was phylogenetically deeper than that of water chemistry variables. Our results provide novel perspectives for microbial biogeography and highlight the importance of taxonomic scale dependency and hierarchical drivers when modelling biodiversity and species distribution responses to future climatic scenarios.  相似文献   

6.
Species richness in ground water is still largely underestimated, and this situation stems from two different impediments: the Linnaean (i.e. the taxonomic) and the Wallacean (i.e. the biogeographical) shortfalls. Within this fragmented frame of knowledge of subterranean biodiversity, this review was aimed at (i) assessing species richness in ground water at different spatial scales, and its contribution to overall freshwater species richness at the continental scale; (ii) analysing the contribution of historical and ecological determinants in shaping spatial patterns of stygobiotic species richness across multiple spatial scales; (iii) analysing the role of β-diversity in shaping patterns of species richness at each scale analysed. From data of the present study, a nested hierarchy of environmental factors appeared to determine stygobiotic species richness. At the broad European scale, historical factors were the major determinants in explaining species richness patterns in ground water. In particular, Quaternary glaciations have strongly affected stygobiotic species richness, leading to a marked latitudinal gradient across Europe, whereas little effects were observed in surface fresh water. Most surface-dwelling fauna is of recent origin, and colonized this realm by means of post-glacial dispersal. Historical factors seemed to have also operated at the smaller stygoregional and regional scales, where different karstic and porous aquifers showed different values of species richness. Species richness at the small, local scale was more difficult to be explained, because the analyses revealed that point-diversity in ground water was rather low, and at increasing values of regional species richness, reached a plateau. This observation supports the coarse-grained role of truncated food webs and oligotrophy, potentially reflected in competition for food resources among co-occurring species, in shaping groundwater species diversity at the local scale. Alpha-diversity resulted decoupled from γ-diversity, suggesting that β-diversity accounted for the highest values of total species richness at the spatial scales analysed.  相似文献   

7.
Predators significantly affect ecosystem functions, but our understanding of to what extent findings can be transferred from experiments and low‐diversity systems to highly diverse, natural ecosystems is limited. With a particular threat of biodiversity loss at higher trophic levels, however, knowledge of spatial and temporal patterns in predator assemblages and their interrelations with lower trophic levels is essential for assessing effects of trophic interactions and advancing biodiversity conservation in these ecosystems. We analyzed spatial and temporal variability of spider assemblages in tree species‐rich subtropical forests in China, across 27 study plots varying in woody plant diversity and stand age. Despite effects of woody plant richness on spider assemblage structure, neither habitat specificity nor temporal variability of spider richness and abundance were influenced. Rather, variability increased with forest age, probably related to successional changes in spider assemblages. Our results indicate that woody plant richness and theory predicting increasing predator diversity with increasing plant diversity do not necessarily play a major role for spatial and temporal dynamics of predator assemblages in such plant species‐rich forests. Diversity effects on biotic or abiotic habitat conditions might be less pronounced across our gradient from medium to high plant diversity than in previously studied less diverse systems, and bottom‐up effects might level out at high plant diversity. Instead, our study highlights the importance of overall (diversity‐independent) environmental heterogeneity in shaping spider assemblages and, as indicated by a high species turnover between plots, as a crucial factor for biodiversity conservation at a regional scale in these subtropical forests.  相似文献   

8.
Partitioning the turnover and nestedness components of beta diversity   总被引:2,自引:0,他引:2  
Aim  Beta diversity (variation of the species composition of assemblages) may reflect two different phenomena, spatial species turnover and nestedness of assemblages, which result from two antithetic processes, namely species replacement and species loss, respectively. The aim of this paper is to provide a unified framework for the assessment of beta diversity, disentangling the contribution of spatial turnover and nestedness to beta-diversity patterns.
Innovation  I derive an additive partitioning of beta diversity that provides the two separate components of spatial turnover and nestedness underlying the total amount of beta diversity. I propose two families of measures of beta diversity for pairwise and multiple-site situations. Each family comprises one measure accounting for all aspects of beta diversity, which is additively decomposed into two measures accounting for the pure spatial turnover and nestedness components, respectively. Finally, I provide a case study using European longhorn beetles to exemplify the relevance of disentangling spatial turnover and nestedness patterns.
Main conclusion  Assigning the different beta-diversity patterns to their respective biological phenomena is essential for analysing the causality of the processes underlying biodiversity. Thus, the differentiation of the spatial turnover and nestedness components of beta diversity is crucial for our understanding of central biogeographic, ecological and conservation issues.  相似文献   

9.
The arthropod species richness of pastures in three Azorean islands was used to examine the relationship between local and regional species richness over two years. Two groups of arthropods, spiders and sucking insects, representing two functionally different but common groups of pasture invertebrates were investigated. The local-regional species richness relationship was assessed over relatively fine scales: quadrats (= local scale) and within pastures (= regional scale). Mean plot species richness was used as a measure of local species richness (= alpha diversity) and regional species richness was estimated at the pasture level (= gamma diversity) with the 'first-order-Jackknife' estimator. Three related issues were addressed: (i). the role of estimated regional species richness and variables operating at the local scale (vegetation structure and diversity) in determining local species richness; (ii). quantification of the relative contributions of alpha and beta diversity to regional diversity using additive partitioning; and (iii). the occurrence of consistent patterns in different years by analysing independently between-year data. Species assemblages of spiders were saturated at the local scale (similar local species richness and increasing beta-diversity in richer regions) and were more dependent on vegetational structure than regional species richness. Sucking insect herbivores, by contrast, exhibited a linear relationship between local and regional species richness, consistent with the proportional sampling model. The patterns were consistent between years. These results imply that for spiders local processes are important, with assemblages in a particular patch being constrained by habitat structure. In contrast, for sucking insects, local processes may be insignificant in structuring communities.  相似文献   

10.
Knapp S  Kühn I  Schweiger O  Klotz S 《Ecology letters》2008,11(10):1054-1064
Cities are hotspots of plant species richness, harboring more species than their rural surroundings, at least over large enough scales. However, species richness does not necessarily cover all aspects of biodiversity such as phylogenetic relationships. Ignoring these relationships, our understanding of how species assemblages develop and change in a changing environment remains incomplete. Given the high vascular plant species richness of urbanized areas in Germany, we asked whether these also have a higher phylogenetic diversity than rural areas, and whether phylogenetic diversity patterns differ systematically between species groups characterized by specific functional traits. Calculating the average phylogenetic distinctness of the total German flora and accounting for spatial autocorrelation, we show that phylogenetic diversity of urban areas does not reflect their high species richness. Hence, high urban species richness is mainly due to more closely related species that are functionally similar and able to deal with urbanization. This diminished phylogenetic information might decrease the flora's capacity to respond to environmental changes.  相似文献   

11.
The relationship between anthropogenic impact and the maintenance of biodiversity is a fundamental question in ecology. The emphasis on the organizational level of biodiversity responsible for ecosystem processes is shifting from a species-centred focus to include genotypic diversity. The relationship between biodiversity measures at these two scales remains largely unknown. By stratifying anthropogenic effects between scales of biodiversity of bacterial communities, we show a statistically significant difference in diversity based on taxonomic scale. Communities with intermediate species richness show high genotypic diversity while speciose and species-poor communities do not. We propose that in species-poor communities, generally comprising stable yet harsh conditions, physiological tolerance and competitive trade-offs limit both the number of species that occur and the loss of genotypes due to decreases in already constrained fitness. In species-rich communities, natural environmental conditions result in well-defined community structure and resource partitioning. Disturbance of these communities disrupts niche space, resulting in lower genotypic diversity despite the maintenance of species diversity. Our work provides a model to inform future research about relationships between species and genotypic biodiversity based on determining the biodiversity consequences of changing environmental context.  相似文献   

12.
Primary production correlates with diversity in various ways. These patterns may result from the interaction of various mechanisms related to the environmental context and the spatial and temporal scale of analysis. However, empirical evidence on diversity‐productivity patterns typically considers single temporal and spatial scales, and does not include the effect of environmental variables. In a metacommunity of macrophytes in ephemeral ponds, we analysed the diversity‐productivity relationship patterns in the field, the importance of the environmental variables of pond size and heterogeneity on such relationship, and the variation of these patterns at local (community level) and landscape scales (metacommunity level) across 52 ponds on twelve occasions, over five years (2005–2009). Combining all sampling dates, there were 377 ponds and 1954 sample‐unit observations. Vegetation biomass was used as a proxy for productivity, and biodiversity was represented by species richness, evenness, and their interaction. Environmental variables comprised pond area, depth and internal heterogeneity. Productivity and species richness were not directly related at the metacommunity level, and were positively related at the community level. Taking environmental variables into account revealed positive species richness‐productivity relationships at the metacommunity level and positive quadratic relationships at the community level. Productivity showed both positive and negative linear and nonlinear relationships with the size and heterogeneity of ponds. We found a weak relationship between productivity and evenness. The identity of variables associated with productivity changed between spatial scales and through time. The pattern of relationships between productivity and diversity depends on spatial scale and environmental context, and changes idiosyncratically through time within the same ecosystem. Thus, the diversity‐productivity relationship is not only a property of the study system, but also a consequence of environmental variations and the temporal and spatial scale of analysis.  相似文献   

13.
Abstract In studies of biodiversity, considerations of scale—the spatial or temporal domain to which data provide inference—are important because of the non-arithmetic manner in which species richness increases with area (and total abundance) and because fine-scale mechanisms (for example, recruitment, growth, and mortality of species) can interact with broad scale patterns (for example, habitat patch configuration) to influence dynamics in space and time. The key to understanding these dynamics is to consider patterns of environmental heterogeneity, including patterns produced by natural and anthropogenic disturbance. We studied how spatial variation in three aspects of biodiversity of terrestrial gastropods (species richness, species diversity, and nestedness) on the 16-ha Luquillo Forest Dynamics Plot (LFDP) in a tropical forest of Puerto Rico was affected by disturbance caused by Hurricanes Hugo and Georges, as well as by patterns of historic land use. Hurricane-induced changes in spatial organization of species richness differed from those for species diversity. The gamma components of species richness changed after the hurricanes and were significantly different between Hurricanes Hugo and Georges. Alpha and two beta components of species richness, one related to turnover among sites within areas of similar land use and one related to variation among areas of different land use, varied randomly over time after both hurricanes. In contrast, gamma components of species diversity decreased in indistinguishable manners after both hurricanes, whereas the rates of change in the alpha component of species diversity differed between hurricanes. Beta components of diversity related to turnover among sites declined after both hurricanes in a consistent fashion. Those related to turnover among areas with different historic land uses varied stochastically. The immediate effect of hurricanes was to reduce nestedness of gastropod assemblages. Thereafter, nestedness increased during post-hurricane secondary succession, and did so in the same way, regardless of patterns of historic land use. The rates of change in degree of nestedness during secondary succession were different after each hurricane as a result of differences in the severity and extent of the hurricane-induced damage. Our analyses quantified temporal changes in the spatial organization of biodiversity of gastropod assemblages during forest recovery from hurricane-induced damage in areas that had experienced different patterns of historic human land use, and documented the dependence of biodiversity on spatial scale. We hypothesize that cross-scale interactions, likely those between the local demographics of species at the fine scale and the landscape configuration of patches at the broad scale, play a dominant role in affecting critical transfer processes, such as dispersal, and its interrelationship with aspects of biodiversity. Cross-scale interactions have significant implications for the conservation of biodiversity, as the greatest threats to biodiversity arise from habitat modification and fragmentation associated with disturbance arising from human activities.  相似文献   

14.
Assessing the richness of invertebrate taxa to aid conservation and management requires a better understanding of the potential sources of error. Patterns of richness for heathland spiders at the species and family levels were compared across three sampling methods, four spatial scales, and monthly intervals (for 16 months). A total of 33 families and 130 species was collected: pitfall traps collected 94% of species, sweep net, 25%, and visual search, 41%. The sampling methods produced variable results. Pitfall trap and sweep net techniques identified significant, yet contrasting spatial differences in the number of families and species at one spatial scale. Pitfall trap data reflected strong temporal variation that influenced spatial patterns in richness (across one spatial scale for families and two for species). The use of broader temporal scales introduced a potential failure to detect significant differences in the richness of ground active spiders, and this risk varied spatially. The sweep net is not recommended for this habitat, although a method that targets the foliage is required for a more complete faunal assessment. Visual searches detected no significant patterns in richness, yet given its potential and increasing use for rapid biodiversity surveys, ways to improve sampling efficiency are suggested.  相似文献   

15.
Species accumulation curves (SACs) chart the increase in recovery of new species as a function of some measure of sampling effort. Studies of parasite diversity can benefit from the application of SACs, both as empirical tools to guide sampling efforts and predict richness, and because their properties are informative about community patterns and the structure of parasite diversity. SACs can be used to infer interactivity in parasite infracommunities, to partition species richness into contributions from different spatial scales and different levels of the host hierarchy (individuals, populations and communities) or to identify modes of community assembly (niche versus dispersal). A historical tendency to treat individual hosts as statistically equivalent replicates (quadrats) seemingly satisfies the sample-based subgroup of SACs but care is required in this because of the inequality of hosts as sampling units. Knowledge of the true distribution of parasite richness over multiple host-derived and spatial scales is far from complete but SACs can improve the understanding of diversity patterns in parasite assemblages.  相似文献   

16.
Urbanization is one of the most extreme and rapidly growing anthropogenic pressures on the natural world. It is linked to significant impacts on biodiversity and disruptions to ecological processes in remnant vegetation. We investigated the richness and abundance of wasps in a highly fragmented urban landscape in Sydney, Australia, comparing assemblages in small urban remnants to edges and interiors of continuous areas of vegetation. We detected no difference in wasp abundance or species richness between remnant types indicating that communities are highly resilient to the effects of urbanization at this scale. However, Chao 2 estimates of predicted species richness indicate that edge sites would support a greater richness and abundance of species compared to small and interior sites. Although families were represented evenly across the sites, interior and edge sites supported more species within families. Wasp composition was significantly affected by the temporal variation and trap location (arboreal or ground), particularly at the family level demonstrating high species turnover and discrimination in vertical space. These sampling effects and temporal inconsistencies highlight the hazards of relying on one-off snapshot surveys and uncorrected datasets for assessments of diversity and responses to urban landscapes. The strong resilience of wasp communities to urbanization when assessed at coarse scales indicates that responses at finer spatial and taxonomic scales are critical to understanding the maintenance of ecosystem function in highly modified landscapes.  相似文献   

17.
Copepods are common components of the groundwater fauna, and greatly increase the diversity of groundwater communities. With more than 900 species/subspecies known from continental groundwaters, stygobiont copepods inhabit all kinds of aquifers (karstic, fissured, porous), as well as surface/subsurface ecotones (land/water and water/water). The polyhedral and varied structure of the stygohabitats is reflected in the surprising mixture of functional morphologies and habitat exploitations experienced by groundwater copepods. Morphological adaptations and specializations are discussed, as well as the chronology of their appearance in the evolutionary history of several taxa. Diversity patterns of copepod assemblages in groundwater are examined under both structural and functional profiles, as well as across a range of scales. Structure and function operate in an interactive, sometimes hierarchical ways, as well as scales. On the ecological scale, local heterogeneity and patchiness in geomorphic and hydrologic characteristics, as well as biotic interactions, are to be considered causal factors affecting the diversity patterns over a range of spatial and temporal scales. On the evolutionary scale, it is widely accepted that stygobiont copepods evolved from ancestors living in marine, freshwater and semiterrestrial environments. They gained access to the groundwater through major highways represented by the interstitial and the crevicular/karstic corridors. `Phylogenetic diversity' in groundwater copepod taxocoenoses is viewed as a heterogeneous assemblage of species belonging to different phylogenetic lineages, which entered groundwater at different times and by different ways.  相似文献   

18.
19.
Despite the widely recognised importance of reserve networks, their effectiveness in encompassing and maintaining biodiversity is still debated. Species diversity is one of the most affordable measures of biodiversity, but it is difficult to survey such data over large scales. This research aimed to perform a sample-based assessment of species richness of groups of plants with different conservation value (alien species, protected species, and all species) within a reserve network, testing the use of partitioning as a tool for assessing diversity at different spatial scales, from the plot to the entire network. Plant diversity patterns differed for the groups of species for most of the investigated spatial scales. Despite these patterns assumed divergent tendencies when different species groups were considered, most of the species richness within the network was given by larger scale β-diversity for both alien and protected species, as well for all species. Diversity partitioning proved an effective tool to quantify the role of spatial scales in structuring the total species richness of the network, and is helpful in planning reserve networks.  相似文献   

20.
Aim Insect biodiversity is often positively associated with habitat heterogeneity. However, this relationship depends on spatial scale, with most studies focused on differences between habitats at large scales with a variety of forest tree species. We examined fine‐scale heterogeneity in ground‐dwelling beetle assemblages under co‐occurring trees in the same subgenus: Eucalyptus melliodora A. Cunn. ex Schauer and E. blakelyi Maiden (Myrtaceae). Location Critically endangered grassy woodland near Canberra, south‐eastern Australia. Methods We used pitfall traps and Tullgren funnels to sample ground‐dwelling beetles from the litter environment under 47 trees, and examined differences in diversity and composition at spatial scales ranging from 100 to 1000 m. Results Beetle assemblages under the two tree species had distinctive differences in diversity and composition. We found that E. melliodora supported a higher richness and abundance of beetles, but had higher compositional similarity among samples. In contrast, E. blakelyi had a lower abundance and species richness of beetles, but more variability in species composition among samples. Main conclusions Our study shows that heterogeneity in litter habitat under co‐occurring and closely related eucalypt species can influence beetle assemblages at spatial scales of just hundreds of metres. The differential contribution to fine‐scale alpha and beta diversity by each eucalypt can be exploited for conservation purposes by ensuring an appropriate mix of the two species in the temperate woodlands where they co‐occur. This would help not only to maximize biodiversity at landscape scales, but also to maintain heterogeneity in species richness, trophic function and biomass at fine spatial scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号