首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The chromosomal distribution of murine genes expressed during differentiation of skeletal muscle cells was determined by Southern blot analysis of DNA from mouse-Chinese hamster hybrid cell lines containing incomplete subsets of mouse chromosomes. All detectable myosin heavy chain genes are located on chromosome 11. The gene for the myosin light chain 2 is located on chromosome 7. The skeletal muscle alpha-actin gene and several other actin genes, or pseudogenes, are located on chromosome 3. Additional actin DNA sequences are distributed on other mouse chromosomes.  相似文献   

2.
3.
Summary The polypeptide hormones gastrin and cholecystokinin are structurally related, having the identical pentapeptide GWMDF located at their C-terminus. The precursors to these two hormones also show amino acid homology, suggesting that they may have a common ancestral origin. Recombinant DNA clones corresponding to gene fragments encoding human gastrin and cholecystokinin were used to determine their respective chromosomal localization by analyzing human-rodent cell lines. We have assigned the cholecystokinin gene to human chromosome 3q12-3pter and the gastrin gene to chromosome 17q.  相似文献   

4.
The human desmin and vimentin genes are located on different chromosomes   总被引:4,自引:0,他引:4  
We have used somatic cell hybrids of Chinese hamster X man and mouse X man to localize the genes (des and vim) encoding the intermediate filaments desmin and vimentin in the human genome. Southern blots of DNA prepared from each cell line were screened with hamster cDNA probes specific for des and vim genes, respectively. The single-copy human des gene is located on chromosome 2, and the single-copy human vim gene is assigned to chromosome 10. Partial restriction maps of the two human genomic loci are presented. A possible correlation of the des locus with several reported hereditary myopathies is discussed.  相似文献   

5.
The chromosomal assignments of the two genes encoding the murine p53 cellular tumor antigen were determined by using a panel of mouse-Chinese hamster somatic cell hybrid clones and a mouse p53-specific cDNA clone. One gene, probably the functional member of the family, was found to be on chromosome 11. The other gene, which is probably a processed pseudogene, was assigned to chromosome 14. The potential relevance of these findings to documented cases of chromosome 11 trisomy are also discussed.  相似文献   

6.
7.
Several types of evidence indicate that the gene coding for the skeletal muscle actin is expressed in the rat heart: 1) A recombinant plasmid containing an insert with a nucleotide sequence identical to that of the homologous region of skeletal muscle actin gene was isolated from a cDNA library prepared on rat cardiac mRNA template. 2) Using specific probes it was found that the hearts of newborn rats contain a significant amount of skeletal muscle actin mRNA. The quantity of this mRNA in the heart decreases during development. 3) The skeletal muscle actin gene is DNAase I sensitive in nuclei from rat heart tissue. A plasmid containing a cDNA insert homologous to a part of the cardiac actin mRNA was isolated and sequenced. It was found that in spite of the great similarity between the amino acid sequence of the skeletal muscle and cardiac actins, the nucleotide sequences of the two mRNAs are considerably divergent. There is only limited sequence homology between the 3' untranslated regions of the two mRNAs. However, there is an extensive sequence homology between the 3' untranslated regions of the rat and human cardiac mRNAs, suggesting a functional role for this region of the gene or mRNA.  相似文献   

8.
We compare a recombinant cDNA plasmid (pAF81) complementary to a fetal skeletal muscle actin mRNA with a plasmid (pAM91) complementary to the actin mRNA expressed in adult skeletal muscle. The two mRNAs are significantly diverged in silent nucleotide positions; they are coexpressed in fetal skeletal muscle, and in differentiating muscle cell cultures their accumulation begins coordinately. The sequence of pAF81 shows that the amino acid sequence of mouse fetal skeletal muscle actin is almost identical to that of adult bovine cardiac actin. Hybridization of pAF81 to RNA from different mouse tissues shows that fetal skeletal muscle actin mRNA is very homologous or identical to fetal and adult cardiac actin mRNA. Only one gene homologous to pAF81 is detected on blots of restricted mouse DNA. We conclude that this gene must be expressed both in fetal skeletal muscle and in fetal heart. Whereas mRNA transcribed from this gene is the major actin mRNA species in adult heart, it is present in low amounts, if at all, in adult skeletal muscle.  相似文献   

9.
10.
11.
12.
Genomic clones coding for the brain calcium-binding protein, calbindin 29 kDa, were isolated from a human library. A fragment containing exon 2 was used as a probe to investigate the presence of the gene in human x rodent somatic cell hybrids. The gene was unambiguously assigned to chromosome 16. The closely-related calbindin 27 kDa gene was previously assigned to chromosome 8. These two genes, deriving from a common ancestor, thus appear to have been separated during vertebrate evolution.  相似文献   

13.
CD37, CD53, and R2 leukocyte surface antigens are members of a novel family of structurally related proteins. They all have four transmembrane-spanning domains with a single major extracellular loop. The CD37 is expressed on B cells and on a sub-population of T cells. The CD53 is known as a panleukocyte marker. The R2 protein is an activation antigen of T cells. The CD37, CD53, and R2 genes were assigned with the help of human/rodent somatic cell hybrids and human-specific probes to human chromosomes 19, 1, and 11, respectively. For the regional assignment, various deletion hybrids were used to map CD37 to 19p13-q13.4, CD53 to 1p12-p31, and R2 to 11p12.  相似文献   

14.
Previous studies have shown that depletion of cardiac actin by targeted disruption is associated with increased expression of alternative actins in the mouse heart. Here we have studied the effects of transgenic overexpression of cardiac actin using the -myosin heavy chain promoter. Lines carrying 7 or 8 copies of the transgene showed a 2-fold increase in cardiac actin mRNA and also displayed decreased expression of skeletal and vascular actin in their hearts. In contrast, a line with more than 250 copies of the transgene did not show a similar decrease in the expression of skeletal and vascular actin despite a 3-fold increase in cardiac actin mRNA. While the low copy number transgenic mice displayed hearts that were similar to non-transgenic controls, the high copy number transgenic line showed larger hearts with distinct atrial enlargement and cardiomyocyte hypertrophy. Further, while the low copy number transgenic mouse hearts were mildly hypocontractile when compared with non-transgenic mouse hearts, the high copy number transgenic mouse hearts were significantly so. We conclude that in the presence of a small number of copies of the cardiac actin transgene, homeostatic mechanisms involved in maintaining actin levels are active and negatively regulate skeletal and vascular actin levels in the heart in response to increased expression of cardiac actin. However, these putative mechanisms are either inoperative in the high copy number transgenic line or are countered by the enhanced expression of skeletal and vascular actin during cardiomyocyte hypertrophy.  相似文献   

15.
16.
J P Rubio  J K Thompson    A F Cowman 《The EMBO journal》1996,15(15):4069-4077
PfEMP1, a Plasmodium falciparum-encoded protein on the surface of infected erythrocytes is a ligand that mediates binding to receptors on endothelial cells. The PfEMP1 protein, which is encoded by the large var gene family, shows antigenic variation and changes in binding phenotype associated with alterations in antigenicity. We have constructed a yeast artificial chromosome contig of chromosome 12 from P. falciparum and show that var genes are arranged in four clusters; two lie amongst repetitive subtelomeric sequences and two occur in the more conserved central region. Analysis of parasite chromosomes by pulsed field gel electrophoresis (PFGE) demonstrates that most contain var genes and two-dimensional PFGE has shown that var genes are located at chromosome ends interspersed amongst repetitive sequences present in the subtelomeric complex. Analysis of a var gene located in the subtelomeric region of chromosome 12 has shown that it has close homologues at the opposite end of the chromosome and in the subtelomeric region of two other chromosomes. This suggests that recombination between heterologous chromosomes has occurred in the subtelomeric regions of these chromosomes. The subtelomeric location of var genes dispersed amongst repetitive sequences has important implications for generation of antigenic variants and novel cytoadherent specificities of this protein.  相似文献   

17.
18.
Summary Genes coding for the 40 kilodaltons (kDa), 17-kDa, 14-kDa and 11-kDa subunits of the ubiquinol-cytochrome c reductase in yeast are present in single copies in the haploid genome. We have mapped each gene to a unique genomic environment and demonstrate that integration of cloned segments into nuclear DNA by homologous crossing-over with the endogenous gene results in the replacement of the corresponding chromosomal restriction fragment by fragments of predicted sizes. Chromosomal mapping, carried out by the procedure of Falco and Botstein 1983, indicates that the gene for the 17-kDa subunit lies on chromosome VI and that for the 11-kDa subunit on chromosome XII.  相似文献   

19.
Basic and acidic fibroblast growth factor (FGF) are related both structurally and functionally. A bovine basic FGF cDNA and a human acidic FGF genomic fragment were used as hybridization probes in Southern blot analysis of DNAs isolated from a panel of 30 mouse-human cell hybrids. The gene encoding basic FGF was assigned to human chromosome 4, and the gene for acidic FGF to human chromosome 5. The two growth factors which are presumed to have a common evolutionary ancestor are therefore not linked. A HindIII restriction fragment length polymorphism was detected for human basic FGF.  相似文献   

20.
We use a highly specific and sensitive antibody to further characterize the distribution of dystrophin in skeletal, cardiac, and smooth muscle. No evidence for localization other than at the cell surface is apparent in skeletal muscle and no 427-kD dystrophin labeling was detected in sciatic nerve. An elevated concentration of dystrophin appears at the myotendinous junction and the neuromuscular junction, labeling in the latter being more intense specifically in the troughs of the synaptic folds. In cardiac muscle the distribution of dystrophin is limited to the surface plasma membrane but is notably absent from the membrane that overlays adherens junctions of the intercalated disks. In smooth muscle, the plasma membrane labeling is considerably less abundant than in cardiac or skeletal muscle and is found in areas of membrane underlain by membranous vesicles. As in cardiac muscle, smooth muscle dystrophin seems to be excluded from membrane above densities that mark adherens junctions. Dystrophin appears as a doublet on Western blots of skeletal and cardiac muscle, and as a single band of lower abundance in smooth muscle that corresponds most closely in molecular weight to the upper band of the striated muscle doublet. The lower band of the doublet in striated muscle appears to lack a portion of the carboxyl terminus and may represent a dystrophin isoform. Isoform differences and the presence of dystrophin on different specialized membrane surfaces imply multiple functional roles for the dystrophin protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号