首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 370 毫秒
1.
Hepatitis C (HCV) is a viral disease affecting millions of people worldwide, and persistent HCV infection can lead to progressive liver disease with the development of liver cirrhosis and hepatocellular carcinoma. During treatment for hepatitis C, the occurrence of viral resistance is common. To reduce the occurrence of resistance, new viral treatments should target both viral and cellular factors. Many interactions occur between viral and host proteins during the HCV replication cycle and might be used for the development of new therapies against hepatitis C. Heat shock protein 90 (Hsp90) plays a role in the folding of cellular and viral proteins and also interacts with HCV proteins. In the present study, we knocked down the expression of the Hsp90 gene and inhibited viral replication using siRNA molecules. Reducing the expression of Hsp90 successfully decreased HCV replication. All siRNA molecules specific to the viral genome showed the efficient inhibition of viral replication, particularly siRNA targeted to the 5′UTR region. The combination of siRNAs targeting the viral genome and Hsp90 mRNA also successfully reduced HCV replication and reduced the occurrence of viral resistance. Moreover, these results suggest that an approach based on the combination of cellular and viral siRNAs can be used as an effective alternative for hepatitis C viral suppression.  相似文献   

2.
Heat shock protein 90 (Hsp90), which chaperones multiple client proteins, has been shown to be implicated in HCV replication. Pharmacological inhibitors of Hsp90 display an anti-HCV activity. However, little is known about the mechanisms of regulation of HCV replication by Hsp90. Here, we show that Hsp90 inhibition by 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG) destabilizes phosphoinositide-dependent kinase-1 (PDK1), an upstream kinase of the protein kinase C-related kinase 2 (PRK2) responsible for phosphorylation of HCV RNA polymerase, through the proteosome pathway. Destabilization of PDK1 led to inhibition of phosphorylation of the viral RNA polymerase through a decrease in the abundance of active form PRK2 level. Consequently, Hsp90 inhibition resulted in suppression of HCV replication both in human hepatoma Huh7 cells harboring an HCV subgenomic replicon and in HCV-infected cells. 17-DMAG treatment did not interfere with HCV internal ribosome entry site-mediated translation and the cell cycle in Huh7 cells. Co-treatment of 17-DMAG with interferon-α or HA1077, an inhibitor of PRK2, enhanced the anti-HCV activity of 17-DMAG. Taken together, these findings suggest that Hsp90 plays a critical role in the regulation of HCV RNA polymerase phosphorylation via the PDK1-PRK2 signaling pathway.  相似文献   

3.
Hepatitis C virus RNA replication is regulated by FKBP8 and Hsp90   总被引:10,自引:0,他引:10       下载免费PDF全文
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is a component of viral replicase and is well known to modulate the functions of several host proteins. Here, we show that NS5A specifically interacts with FKBP8, a member of the FK506-binding protein family, but not with other homologous immunophilins. Three sets of tetratricopeptide repeats in FKBP8 are responsible for interactions with NS5A. The siRNA-mediated knockdown of FKBP8 in a human hepatoma cell line harboring an HCV RNA replicon suppressed HCV RNA replication, and this reduction was reversed by the expression of an siRNA-resistant FKBP8 mutant. Furthermore, immunoprecipitation analyses revealed that FKBP8 forms a complex with Hsp90 and NS5A. Treatment of HCV replicon cells with geldanamycin, an inhibitor of Hsp90, suppressed RNA replication in a dose-dependent manner. These results suggest that the complex consisting of NS5A, FKBP8, and Hsp90 plays an important role in HCV RNA replication.  相似文献   

4.
Host tropism of hepatitis C virus (HCV) is limited to human and chimpanzee. HCV infection has never been fully understood because there are few conventional models for HCV infection. Human induced pluripotent stem cell-derived hepatocyte-like (iPS-Hep) cells have been expected to use for drug discovery to predict therapeutic activities and side effects of compounds during the drug discovery process. However, the suitability of iPS-Hep cells as an experimental model for HCV research is not known. Here, we investigated the entry and genomic replication of HCV in iPS-Hep cells by using HCV pseudotype virus (HCVpv) and HCV subgenomic replicons, respectively. We showed that iPS-Hep cells, but not iPS cells, were susceptible to infection with HCVpv. The iPS-Hep cells expressed HCV receptors, including CD81, scavenger receptor class B type I (SR-BI), claudin-1, and occludin; in contrast, the iPS cells showed no expression of SR-BI or claudin-1. HCV RNA genome replication occurred in the iPS-Hep cells. Anti-CD81 antibody, an inhibitor of HCV entry, and interferon, an inhibitor of HCV genomic replication, dose-dependently attenuated HCVpv entry and HCV subgenomic replication in iPS-Hep cells, respectively. These findings suggest that iPS-Hep cells are an appropriate model for HCV infection.  相似文献   

5.
6.
Small interfering RNAs (siRNAs) efficiently inhibit gene expression by RNA interference. Here, we report efficient inhibition, by both synthetic and vector-derived siRNAs, of hepatitis C virus (HCV) replication, as well as viral protein synthesis, using an HCV replicon system. The siRNAs were designed to target the 5′ untranslated region (5′ UTR) of the HCV genome, which has an internal ribosomal entry site for the translation of the entire viral polyprotein. Moreover, the 5′ UTR is the most conserved region in the HCV genome, making it an ideal target for siRNAs. Importantly, we have identified an effective site in the 5′ UTR at which ~80% suppression of HCV replication was achieved with concentrations of siRNA as low as 2.5 nM. Furthermore, DNA-based vectors expressing siRNA against HCV were also effective, which might allow the efficient delivery of RNAi into hepatocytes in vivo using viral vectors. Our results support the feasibility of using siRNA-based gene therapy to inhibit HCV replication, which may prove to be valuable in the treatment of hepatitis C.  相似文献   

7.
Hepatitis C virus (HCV) infection is a worldwide health problem and is one of the main causes of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC). However, only limited therapeutic options and no vaccines are currently available against HCV infection. Recent studies of microRNAs (miRNAs), which are able to regulate HCV replication and its related liver diseases by directly interacting with the HCV genome or indirectly controlling virus-associated host pathways, have broadened our understanding of the HCV life cycle. HCV utilizes host cellular miRNAs and modulates expression of miRNAs in infected hepatocytes for its infection and propagation. Moreover, such miRNAs directly or indirectly alter HCV replication efficiency and induce liver diseases including liver fibrosis, cirrhosis, or HCC. Representatively, miR-122 directly modulates the HCV life cycle by increasing HCV translation and genomic RNA stability. Recently, a phase IIa clinical trial with miravirsen, an LNA form of antimiR-122 oligonucleotides, showed significant reduction in serum HCV levels in patients chronically infected with HCV with no detectible evidence of resistance. In addition to miR-122, other miRNAs involved in the regulation of HCV propagation could be targeted in strategies to modulate HCV replication and pathogenesis. In this review, we summarize the features of miRNAs critical for HCV replication and HCV-mediated liver abnormalities and briefly discuss their potential application as therapeutic reagents for the treatment of HCV infection and its related diseases.  相似文献   

8.
So far how hepatitis C virus (HCV) replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS) protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp) infection and downregulated cell surface level of CD81, a critical HCV entry (co)receptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81.  相似文献   

9.
In this work, we have shown that hepatitis C virus (HCV) and hepatitis B virus (HBV) can coexist in the same hepatocyte using double fluorescent in situ hybridization in liver biopsy samples from patients with chronic HCV infection with occult HBV infection. Digital image analysis of hybridization signals showed that the HBV DNA levels in coinfected hepatocytes were lower than those in cells infected only with HBV. This finding supports the hypothesis of inhibition of HBV replication by HCV. Furthermore, HCV RNA levels were lower in coinfected cells than in cells infected only with HCV, suggesting that HBV may also inhibit HCV replication.  相似文献   

10.
More effective therapies are urgently needed against hepatitis C virus (HCV), a major cause of viral hepatitis. We used in vitro protein expression and microfluidic affinity analysis to study RNA binding by the HCV transmembrane protein NS4B, which plays an essential role in HCV RNA replication. We show that HCV NS4B binds RNA and that this binding is specific for the 3' terminus of the negative strand of the viral genome with a dissociation constant (Kd) of approximately 3.4 nM. A high-throughput microfluidic screen of a compound library identified 18 compounds that substantially inhibited binding of RNA by NS4B. One of these compounds, clemizole hydrochloride, was found to inhibit HCV RNA replication in cell culture that was mediated by its suppression of NS4B's RNA binding, with little toxicity for the host cell. These results yield new insight into the HCV life cycle and provide a candidate compound for pharmaceutical development.  相似文献   

11.
RNA interference represents an exciting new technology that could have therapeutic applications for the treatment of viral infections. Hepatitis C virus (HCV) is a major cause of chronic liver disease and affects over 270 million individuals worldwide. The HCV genome is a single-stranded RNA that functions as both an mRNA and a replication template, making it an attractive target for therapeutic approaches using short interfering RNA (siRNA). We have shown previously that double-stranded siRNA molecules designed to target the HCV genome block gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells. However, we now show that this block is not complete. After several treatments with a highly effective siRNA, we have shown growth of replicon RNAs that are resistant to subsequent treatment with the same siRNA. However, these replicon RNAs were not resistant to siRNA targeting another part of the genome. Sequence analysis of the siRNA-resistant replicons showed the generation of point mutations within the siRNA target sequence. In addition, the use of a combination of two siRNAs together severely limited escape mutant evolution. This suggests that RNA interference activity could be used as a treatment to reduce the devastating effects of HCV replication on the liver and the use of multiple siRNAs could prevent the emergence of resistant viruses.  相似文献   

12.
We previously employed systems biology approaches to identify the mitochondrial fatty acid oxidation enzyme dodecenoyl coenzyme A delta isomerase (DCI) as a bottleneck protein controlling host metabolic reprogramming during hepatitis C virus (HCV) infection. Here we present the results of studies confirming the importance of DCI to HCV pathogenesis. Computational models incorporating proteomic data from HCV patient liver biopsy specimens recapitulated our original predictions regarding DCI and link HCV-associated alterations in cellular metabolism and liver disease progression. HCV growth and RNA replication in hepatoma cell lines stably expressing DCI-targeting short hairpin RNA (shRNA) were abrogated, indicating that DCI is required for productive infection. Pharmacologic inhibition of fatty acid oxidation also blocked HCV replication. Production of infectious HCV was restored by overexpression of an shRNA-resistant DCI allele. These findings demonstrate the utility of systems biology approaches to gain novel insight into the biology of HCV infection and identify novel, translationally relevant therapeutic targets.  相似文献   

13.
Hepatitis C Virus (HCV) affects 3% of the world’s population and causes serious liver ailments including chronic hepatitis, cirrhosis, and hepatocellular carcinoma. HCV is an enveloped RNA virus belonging to the family Flaviviridae. Current treatment is not fully effective and causes adverse side effects. There is no HCV vaccine available. Thus, continued effort is required for developing a vaccine and better therapy. An HCV cell culture system is critical for studying various stages of HCV growth including viral entry, genome replication, packaging, and egress. In the current procedure presented, we used a wild-type intragenotype 2a chimeric virus, FNX-HCV, and a recombinant FNX-Rluc virus carrying a Renilla luciferase reporter gene to study the virus replication. A human hepatoma cell line (Huh-7 based) was used for transfection of in vitro transcribed HCV genomic RNAs. Cell-free culture supernatants, protein lysates and total RNA were harvested at various time points post-transfection to assess HCV growth. HCV genome replication status was evaluated by quantitative RT-PCR and visualizing the presence of HCV double-stranded RNA. The HCV protein expression was verified by Western blot and immunofluorescence assays using antibodies specific for HCV NS3 and NS5A proteins. HCV RNA transfected cells released infectious particles into culture supernatant and the viral titer was measured. Luciferase assays were utilized to assess the replication level and infectivity of reporter HCV. In conclusion, we present various virological assays for characterizing different stages of the HCV replication cycle.  相似文献   

14.
Chronic infection by hepatitis C virus (HCV) is the leading cause of severe hepatitis that often develops into liver cirrhosis and hepatocellular carcinoma. The molecular mechanisms underlying HCV replication and pathogenesis are poorly understood. Similarly, the role(s) of host factors in the replication of HCV remains largely undefined. Based on our knowledge of other RNA viruses, it is likely that a number of cellular factors may be involved in facilitating HCV replication. It has been demonstrated that elements within the 3'-nontranslated region (3'-NTR) of the (+) strand HCV genome are essential for initiation of (-) strand synthesis. The RNA signals within the highly conserved 3'-NTR may be the site for recruiting cellular factors that mediate virus replication/pathogenesis. However, the identities of putative cellular factors interacting with these RNA signals remain unknown. In this report, we demonstrate that an RNA affinity capture system developed in our laboratory used in conjunction with LC/MS/MS allowed us to positively identify more than 70 cellular proteins that interact with the 3'-NTR (+) of HCV. Binding of these cellular proteins was not competed out by a 10-fold excess of nonspecific competitor RNA. With few exceptions, all of the identified cellular proteins are RNA-binding proteins whose reported cellular functions provide unique insights into host cell-virus interactions and possible mechanisms influencing HCV replication and HCV-associated pathogenesis. Small interfering RNA-mediated silencing of selected 3'-NTR-binding proteins in an HCV replicon cell line reduced replicon RNA to undetectable levels, suggesting important roles for these cellular factors in HCV replication.  相似文献   

15.
16.
GB virus B (GBV-B) is the closest relative of hepatitis C virus (HCV) and is an attractive surrogate model for HCV antiviral studies. GBV-B induces an acute, resolving hepatitis in tamarins. Utilizing primary cultures of tamarin hepatocytes, we have previously developed a tissue culture system that exhibits high levels of GBV-B replication. In this report, we have extended the utility of this system for testing antiviral compounds. Treatment with human interferon provided only a marginal antiviral effect, while poly(I-C) yielded >3 and 4 log units of reduction of cell-associated and secreted viral RNA, respectively. Interestingly, treatment of GBV-B-infected hepatocytes with ribavirin resulted in an approximately 4-log decrease in viral RNA levels. Guanosine blocked the antiviral effect of ribavirin, suggesting that inhibition of IMP dehydrogenase (IMPDH) and reduction of intracellular GTP levels were essential for the antiviral effect. However, mycophenolic acid, another IMPDH inhibitor, had no antiviral effect. Virions harvested from ribavirin-treated cultures exhibited a dramatically reduced specific infectivity. These data suggest that incorporation of ribavirin triphosphate induces error-prone replication with concomitant reduction in infectivity and that reduction of GTP pools may be required for incorporation of ribavirin triphosphate. In contrast to the in vitro studies, no significant reduction in viremia was observed in vivo following treatment of tamarins with ribavirin during acute infection with GBV-B. These findings are consistent with the observation that ribavirin monotherapy for HCV infection decreases liver disease without a significant reduction in viremia. Our data suggest that nucleoside analogues that induce error-prone replication could be an attractive approach for the treatment of HCV infection if administered at sufficient levels to result in efficient incorporation by the viral polymerase.  相似文献   

17.
The molecular chaperone heat shock protein 90 (Hsp90) is involved in multiple cellular processes including protein maturation, complex assembly and disassembly, and intracellular transport. We have recently shown that a disruption of Hsp90 activity in cultured Drosophila melanogaster cells suppresses Flock House virus (FHV) replication and the accumulation of protein A, the FHV RNA-dependent RNA polymerase. In the present study, we investigated whether the defect in FHV RNA polymerase accumulation induced by Hsp90 suppression was secondary to an effect on protein A synthesis, degradation, or intracellular membrane association. Treatment with the Hsp90-specific inhibitor geldanamycin selectively reduced FHV RNA polymerase synthesis by 80% in Drosophila S2 cells stably transfected with an inducible protein A expression plasmid. The suppressive effect of geldanamycin on protein A synthesis was not attenuated by proteasome inhibition, nor was it sensitive to changes in either the mRNA untranslated regions or protein A intracellular membrane localization. Furthermore, geldanamycin did not promote premature protein A degradation, nor did it alter the extremely rapid kinetics of protein A membrane association. These results identify a novel role for Hsp90 in facilitating viral RNA polymerase synthesis in Drosophila cells and suggest that FHV subverts normal cellular pathways to assemble functional replication complexes.  相似文献   

18.
Interference of hepatitis A virus replication by small interfering RNAs   总被引:5,自引:0,他引:5  
The rate of acute liver failure due to hepatitis A virus (HAV) has not decreased, and therapy of severe infections is still of major interest. Using a DNA-based HAV replicon cell culture system, we demonstrate that small interfering RNAs (siRNAs) targeted against viral sequences or a reporter gene contained in the viral genome specifically inhibit HAV RNA replication in HuhT7 cells. Combinations of siRNAs were more effective suppressors of HAV RNA replication. Also, siRNAs targeted against HAV 2C and 3D inhibited the expression of the respective protein. Expressions of endogenous beta-actin and double-stranded-specific RNA-activated serin/threonine kinase (PKR) were unaltered, demonstrating that the siRNA inhibitory effect was not connected to interferon inhibition, but rather was specifically targeted against HAV RNA. These results suggest that RNA interference might ultimately be useful in treatment of severe HAV infection with or without chronic liver diseases.  相似文献   

19.
The assembly of viral RNA replication complexes on intracellular membranes represents a critical step in the life cycle of positive-strand RNA viruses. We investigated the role of the cellular chaperone heat shock protein 90 (Hsp90) in viral RNA replication complex assembly and function using Flock House virus (FHV), an alphanodavirus whose RNA-dependent RNA polymerase, protein A, is essential for viral RNA replication complex assembly on mitochondrial outer membranes. The Hsp90 chaperone complex transports cellular mitochondrial proteins to the outer mitochondrial membrane import receptors, and thus we hypothesized that Hsp90 may also facilitate FHV RNA replication complex assembly or function. Treatment of FHV-infected Drosophila S2 cells with the Hsp90-specific inhibitor geldanamycin or radicicol potently suppressed the production of infectious virions and the accumulation of protein A and genomic, subgenomic, and template viral RNA. In contrast, geldanamycin did not inhibit the activity of preformed FHV RNA replication complexes. Hsp90 inhibitors also suppressed viral RNA and protein A accumulation in S2 cells expressing an FHV RNA replicon. Furthermore, Hsp90 inhibition with either geldanamycin or RNAi-mediated chaperone downregulation suppressed protein A accumulation in the absence of viral RNA replication. These results identify Hsp90 as a host factor involved in FHV RNA replication and suggest that FHV uses established cellular chaperone pathways to assemble its RNA replication complexes on intracellular membranes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号