首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Approximately 10% of amylolytic enzymes are able to bind and degrade raw starch. Usually a distinct domain, the starch-binding domain (SBD), is responsible for this property. These domains have been classified into families of carbohydrate-binding modules (CBM). At present, there are six SBD families: CBM20, CBM21, CBM25, CBM26, CBM34, and CBM41. This work is concentrated on CBM20 and CBM21. The CBM20 module was believed to be located almost exclusively at the C-terminal end of various amylases. The CBM21 module was known as the N-terminally positioned SBD of Rhizopus glucoamylase. Nowadays many nonamylolytic proteins have been recognized as possessing sequence segments that exhibit similarities with the experimentally observed CBM20 and CBM21. These facts have stimulated interest in carrying out a rigorous bioinformatics analysis of the two CBM families. The present analysis showed that the original idea of the CBM20 module being at the C-terminus and the CBM21 module at the N-terminus of a protein should be modified. Although the CBM20 functionally important tryptophans were found to be substituted in several cases, these aromatics and the regions around them belong to the best conserved parts of the CBM20 module. They were therefore used as templates for revealing the corresponding regions in the CBM21 family. Secondary structure prediction together with fold recognition indicated that the CBM21 module structure should be similar to that of CBM20. The evolutionary tree based on a common alignment of sequences of both modules showed that the CBM21 SBDs from alpha-amylases and glucoamylases are the closest relatives to the CBM20 counterparts, with the CBM20 modules from the glycoside hydrolase family GH13 amylopullulanases being possible candidates for the intermediate between the two CBM families.  相似文献   

2.
To examine the possibility of module interaction in the thermal unfolding of different modular architectures, four truncated proteins were constructed from Clostridium stercorarium Xyn10B: a family 10 catalytic module (CM10), a polypeptide compound of one family 22 carbohydrate-binding module (CBM22-2) and the catalytic module (CBM22-CM10), two family 22 CBMs and the catalytic module (2CBM22-CM10), and only two family 22 CBMs (2CBM22). Thermal unfolding of four proteins were observed by differential scanning calorimetry. CM10 was unfolded reversibly and denatured as one component. The unfolding of protein CBM22-CM10 comprising CBM22-2 connected with CM10 was irreversible, and can be assumed to be one-component denaturation. Protein 2CBM22, with two CBM22s in tandem, unfolded as two independent modules. However, 2CBM22-CM10, with two CBM22s, unfolded as two and not the expected three separate components. These findings constitute the first reported case in which differences in thermal unfolding units and mechanisms were derived from differences in the modular architectures of proteins.  相似文献   

3.
To examine the possibility of module interaction in the thermal unfolding of different modular architectures, four truncated proteins were constructed from Clostridium stercorarium Xyn10B: a family 10 catalytic module (CM10), a polypeptide compound of one family 22 carbohydrate-binding module (CBM22-2) and the catalytic module (CBM22-CM10), two family 22 CBMs and the catalytic module (2CBM22-CM10), and only two family 22 CBMs (2CBM22). Thermal unfolding of four proteins were observed by differential scanning calorimetry. CM10 was unfolded reversibly and denatured as one component. The unfolding of protein CBM22-CM10 comprising CBM22-2 connected with CM10 was irreversible, and can be assumed to be one-component denaturation. Protein 2CBM22, with two CBM22s in tandem, unfolded as two independent modules. However, 2CBM22-CM10, with two CBM22s, unfolded as two and not the expected three separate components. These findings constitute the first reported case in which differences in thermal unfolding units and mechanisms were derived from differences in the modular architectures of proteins.  相似文献   

4.
Kim MK  Kim SD  Lee HY  Lee SY  Shim JW  Yun J  Kim JM  Min do S  Yoo YH  Bae YS 《FEBS letters》2008,582(23-24):3379-3384
The collagen-binding motif (CBM) peptide, a cleavage product of osteopontin (OPN), stimulated intracellular calcium increase in human neutrophils. CBM peptide-stimulated calcium was inhibited by pertussis toxin (PTX), suggesting the influence of PTX-sensitive G-proteins. In addition CBM peptide stimulated the chemotactic migration of human neutrophils and human monocytes. CBM peptide-induced neutrophil chemotaxis was completely inhibited by PTX, once again indicating the influence of Gi proteins. CBM peptide was also found to induce mitogen activated protein kinase activation. CBM peptide-induced neutrophil chemotaxis was mediated by p38 kinase as well as an extracellular signal-regulated protein kinase. Taken together, the results suggest that a cleavage product of OPN, CBM peptide, initiates immune responses by inducing neutrophil trafficking via certain PTX-sensitive cell surface receptors.  相似文献   

5.
Polysaccharide-degrading enzymes are generally modular proteins that contain non-catalytic carbohydrate-binding modules (CBMs), which potentiate the activity of the catalytic module. CBMs have been grouped into sequence-based families, and three-dimensional structural data are available for half of these families. Clostridium thermocellum xylanase 11A is a modular enzyme that contains a CBM from family 6 (CBM6), for which no structural data are available. We have determined the crystal structure of this module to a resolution of 2.1 A. The protein is a beta-sandwich that contains two potential ligand-binding clefts designated cleft A and B. The CBM interacts primarily with xylan, and NMR spectroscopy coupled with site-directed mutagenesis identified cleft A, containing Trp-92, Tyr-34, and Asn-120, as the ligand-binding site. The overall fold of CBM6 is similar to proteins in CBM families 4 and 22, although surprisingly the ligand-binding site in CBM4 and CBM22 is equivalent to cleft B in CBM6. These structural data define a superfamily of CBMs, comprising CBM4, CBM6, and CBM22, and demonstrate that, although CBMs have evolved from a relatively small number of ancestors, the structural elements involved in ligand recognition have been assembled at different locations on the ancestral scaffold.  相似文献   

6.
Carbohydrate-binding module (CBM) family 13 includes the "R-type" or "ricin superfamily" beta-trefoil lectins. The C-terminal CBM, CBM13, of xylanase 10A from Streptomyces lividans is a family 13 CBM that is not only structurally similar to the "R-type" lectins but also somewhat functionally similar. The primary function of CBM13 is to bind the polysaccharide xylan, but it retains the ability of the R-type lectins to bind small sugars such as lactose and galactose. The association of CBM13 with xylan appears to involve cooperative and additive participation of three binding pockets in each of the three trefoil domains of CBM13, suggesting a novel mechanism of CBM-xylan interaction. Thus, the interaction of CBM13 with sugars displays considerable plasticity for which we provide a structural rationale. The high-resolution crystal structure of CBM13 was determined by multiple anomalous dispersion from a complex of CBM13 with a brominated ligand. Crystal structures of CBM13 in complex with lactose and xylopentaose revealed two distinct mechanisms of ligand binding. CBM13 has retained its specificity for lactose via Ricin-like binding in all of the three classic trefoil binding pockets. However, CBM13 has the ability to bind either the nonreducing galactosyl moiety or the reducing glucosyl moiety of lactose. The mode of xylopentaose binding suggests adaptive mutations in the trefoil sugar binding scaffold to accommodate internal binding on helical polymers of xylose.  相似文献   

7.
A synthetic peptide denoted as collagen-binding motif (CBM) was identified from osteopontin (OPN), a multisubunit extracellular matrix (ECM) protein, by enzymatic digestion with chymotrypsin. The aim of this study was to examine the feasibility of identified CBM peptide as an active component of gel type scaffold material in osteogenesis. The binding of CBM peptide to collagen was specific and presented high affinity. Cell adhesion and growth on CBM peptide-immobilized gel were significantly increased as compared with those on gel with control peptide or without peptide. The CBM peptide-immobilized gel increased osteoblastic differentiation, followed by marked bone formation in the rabbit calvarial defect sites at 4 weeks. Taken together, the injectable gel with synthetic CBM peptide has a potential to induce osteogenesis in vitro and in vivo, suggesting its clinical application in bone regeneration procedure.  相似文献   

8.
To elucidate the function of the two cytokine-binding modules (CBM) of the leukemia inhibitory factor receptor (LIFR), receptor chimeras of LIFR and the interleukin-6 receptor (IL-6R) were constructed. Either the NH(2)-terminal (chimera RILLIFdeltaI) or the COOH-terminal LIFR CBM (chimera RILLIFdeltaII) were replaced by the structurally related CBM of the IL-6R which does not bind LIF. Chimera RILLIFdeltaI is functionally inactive, whereas RILLIFdeltaII binds LIF and mediates signalling as efficiently as the wild-type LIFR. Deletion mutants of the LIFR revealed that both the NH(2)-terminal CBM and the Ig-like domain of the LIFR are involved in LIF binding, presumably via the LIF site III epitope. The main function of the COOH-terminal CBM of the LIFR is to position the NH(2)-terminal CBM and the Ig-like domain, so that these can bind to LIF. In analogy to a recently published model of the IL-6R complex, a model of the active LIFR complex is suggested which positions the COOH-terminal CBM at LIF site I and the NH(2)-terminal CBM and the Ig-like domain at site III. An additional contact is postulated between the Ig-like domain of gp130 and the NH(2)-terminal CBM of the LIFR.  相似文献   

9.
CpGH89 is a large multimodular enzyme produced by the human and animal pathogen Clostridium perfringens. The catalytic activity of this exo-α-D-N-acetylglucosaminidase is directed towards a rare carbohydrate motif, N-acetyl-β-D-glucosamine-α-1,4-D-galactose, which is displayed on the class III mucins deep within the gastric mucosa. In addition to the family 89 glycoside hydrolase catalytic module this enzyme has six modules that share sequence similarity to the family 32 carbohydrate-binding modules (CBM32s), suggesting the enzyme has considerable capacity to adhere to carbohydrates. Here we suggest that two of the modules, CBM32-1 and CBM32-6, are not functional as carbohydrate-binding modules (CBMs) and demonstrate that three of the CBMs, CBM32-3, CBM32-4, and CBM32-5, are indeed capable of binding carbohydrates. CBM32-3 and CBM32-4 have a novel binding specificity for N-acetyl-β-D-glucosamine-α-1,4-D-galactose, which thus complements the specificity of the catalytic module. The X-ray crystal structure of CBM32-4 in complex with this disaccharide reveals a mode of recognition that is based primarily on accommodation of the unique bent shape of this sugar. In contrast, as revealed by a series of X-ray crystal structures and quantitative binding studies, CBM32-5 displays the structural and functional features of galactose binding that is commonly associated with CBM family 32. The functional CBM32s that CpGH89 contains suggest the possibility for multivalent binding events and the partitioning of this enzyme to highly specific regions within the gastrointestinal tract.  相似文献   

10.
Starch-binding domains (SBDs) comprise distinct protein modules that bind starch, glycogen or related carbohydrates and have been classified into different families of carbohydrate-binding modules (CBMs). The present review focuses on SBDs of CBM20 and CBM48 found in amylolytic enzymes from several glycoside hydrolase (GH) families GH13, GH14, GH15, GH31, GH57 and GH77, as well as in a number of regulatory enzymes, e.g., phosphoglucan, water dikinase-3, genethonin-1, laforin, starch-excess protein-4, the β-subunit of AMP-activated protein kinase and its homologues from sucrose non-fermenting-1 protein kinase SNF1 complex, and an adaptor-regulator related to the SNF1/AMPK family, AKINβγ. CBM20s and CBM48s of amylolytic enzymes occur predominantly in the microbial world, whereas the non-amylolytic proteins containing these modules are mostly of plant and animal origin. Comparison of amino acid sequences and tertiary structures of CBM20 and CBM48 reveals the close relatedness of these SBDs and, in some cases, glycogen-binding domains (GBDs). The families CBM20 and CBM48 share both an ancestral form and the mode of starch/glycogen binding at one or two binding sites. Phylogenetic analyses demonstrate that they exhibit independent behaviour, i.e. each family forms its own part in an evolutionary tree, with enzyme specificity (protein function) being well represented within each family. The distinction between CBM20 and CBM48 families is not sharp since there are representatives in both CBM families that possess an intermediate character. These are, for example, CBM20s from hypothetical GH57 amylopullulanase (probably lacking the starch-binding site 2) and CBM48s from the GH13 pullulanase subfamily (probably lacking the starch/glycogen-binding site 1). The knowledge gained concerning the occurrence of these SBDs and GBDs through the range of taxonomy will support future experimental research.  相似文献   

11.
Starch binding domains (SBDs) are able to bind to and facilitate the degradation of raw starch and starchy substrates. In general, in the CAZy database they have been classified among the carbohydrate-binding module (CBM) families. The two families CBM25 and CBM26 together with families CBM20, 21, 34, 41, 45, 48, 53, 58, 68 and 69 belong to twelve SBD CAZy families. They represent a group of closely related modules exhibiting some sequence similarity, although each of the two families possesses its own features. Both CBM25 and CBM26 adopt a typical SBD fold of distorted β-barrel as recognized in the modules present in the maltohexaose-producing amylase from Bacillus halodurans. With regard to catalytic domains, most members are α-amylases and maltooligosaccharide-producing amylases from the α-amylase glycoside hydrolase (GH) family GH13, but also some β-amylases (GH14) and hypothetical proteins (e.g. from the family GH31) are known. The main goal of this review was to compare the available amino acid sequences of SBDs from both families CBM25 and CBM26 and to reveal, if possible, SBD(s) with the character “intermediary” between the CBM25 and CBM26. Emphasis was also given on a structural comparison of the identified intermediary SBD with the CBM25 and CBM26 representatives and a detailed evolutionary division of both CBM families that can be utilized for defining the future subfamilies.  相似文献   

12.
Clostridium thermocellum CelJ is a modular enzyme containing a family 30 carbohydrate-binding module (CBM) and a family 9 catalytic module at its N-terminal moiety. To investigate the functions of the CBM and the catalytic module, truncated derivatives of CelJ were constructed and characterized. Isothermal titration calorimetric studies showed that the association constants (K(a)) of the CBM polypeptide (CBM30) for the binding of cellopentaose and cellohexaose were 1.2 x 10(4) and 6.4 x 10(4) M(-1), respectively, and that the binding of CBM30 to these ligands is enthalpically driven. Qualitative analyses showed that CBM30 had strong affinity for cellulose and beta-1,3-1,4-mixed glucan such as barley beta-glucan and lichenan. Analyses of the hydrolytic action of the enzyme comprising the CBM and the catalytic module showed that the enzyme is a processive endoglucanse with strong activity towards carboxymethylcellulose, barley beta-glucan and lichenan. By contrast, the catalytic module polypeptide devoid of the CBM showed negligible activity toward these substrates. These observations suggest that the CBM is extremely important not only because it mediates the binding of the enzyme to the substrates but also because it participates in the catalytic function of the enzyme or contributes to maintaining the correct tertiary structure of the family 9 catalytic module for expressing enzyme activity.  相似文献   

13.
The family II cellulose-binding modules (CBM) from Thermobifida fusca Cel5A and Cel48A were cloned in the Escherichia coli/Streptomyces shuttle vector pD730, and the plasmids were transformed into Streptomyces lividans TKM31. CBM(Cel5A), and CBM(Cel48A), CBM(Cel6B) were expressed and purified from S. lividans. The molecular masses were determined by mass spectrometry, and the values were 10595 +/- 2, 10915 +/- 2, and 11291 +/- 2 Da for CBM(Cel5A), CBM(Cel6B), and CBM(Cel48A), respectively. Three different binding models (Langmuir, Interstice Penetration, and Interstice Saturation) were tested to describe the binding isotherms of these CBMs on bacterial microcrystalline cellulose (BMCC). The experimental binding isotherms of T. fusca family II CBMs on BMCC are best modeled by the Interstice Saturation model, which includes binding to the constrained interstice surface of BMCC as well as traditional Langmuir binding on the freely accessible surface. The Interstice Saturation model consists of three different steps (Langmuir binding, interstice binding, and interstice saturation). Full reversibility only occurred in the Langmuir region. The irreversibility in the interstice binding and saturation regions probably was caused by interstice entrapment. Temperature shift experiments in different binding regions support the interstice entrapment assumption. There was no systematic difference in binding between the two types of exocellulase CBMs--one that hydrolyzes cellulose from the nonreducing (CBM(Cel6B)) end and one that hydrolyzes cellulose from the reducing end (CBM(Cel48A)).  相似文献   

14.
The -amino group of the carbohydrate-binding module (CBM) from Phanerochaete chrysosporium cellulase Cel7D was covalently labelled with fluorescein isothiocyanate. The fluorescein-labelled CBM was characterised regarding substrate binding, showing specificity only to cellulose and not to mannan and xylan. Conjugation of fluorescein isothiocyanate to CBM did not affect its binding to cellulose. The labelled CBM was successfully used as a probe for detecting cellulose in lignocellulose material such as never dried spruce and birch wood as well as pulp fibres.  相似文献   

15.
Glycoside hydrolase (GH) family 13 comprises about 30 different specificities. Four of them have been proposed to form the GH13 pullulanase subfamily: pullulanase, isoamylase, maltooligosyl trehalohydrolase and branching enzyme forming the seven CAZy GH13 subfamilies: GH13 8-GH13 14. Recently, a new family of carbohydrate-binding modules (CBMs), the family CBM48 has been established containing the putative starch-binding domains from the pullulanase subfamily, the β-subunit of AMP-activated protein kinase and some other GH13 enzymes with pullulanase and/or α-amylase-pullulanase specificity. Since all of these enzymes are multidomain proteins and the structure for at least one representative of each enzyme specificity has already been determined, the main goal of the present study was to elucidate domain evolution within this GH13 pullulanase subfamily (84 real enzymes) focusing on the CBM48 module. With regard to CBM48 positioning in the amino acid sequence, the N-terminal end of a protein appears to be a predominant position. This is especially true for isoamylases and maltooligosyl trehalohydrolases. Secondary structure-based alignment of CBM modules from CBM48, CBM20 and CBM21 revealed that several residues known as consensus for CBM20 and CBM21 could also be identified in CBM48, but only branching enzymes possess the aromatic residues that correspond with the two tryptophans forming the evolutionary conserved starch-binding site 1 in CBM20. The evolutionary trees constructed for the individual domains, complete alignment, and the conserved sequence regions of the α-amylase family were found to be comparable to each other (except for the C-domain tree) with two basic parts: (i) branching enzymes and maltooligosyl trehalohydrolases; and (ii) pullulanases and isoamylases. Taxonomy was respected only within clusters with pure specificity, i.e. the evolution of CBM48 reflects the evolution of specificities rather than evolution of species. This is a feature different from the one observed for the starch-binding domain of the family CBM20 where the starch-binding domain evolution reflects the evolution of species.  相似文献   

16.
The cellulosomal family 9 cellulase genes engH, engK, engL, engM, and engY of Clostridium cellulovorans have been cloned and sequenced. We compared the enzyme activity of family 9 cellulosomal cellulases from C. cellulovorans and their derivatives. EngH has the highest activity toward soluble cellulose derivatives such as carboxymethylcellulose (CMC) as well as insoluble cellulose such as acid-swollen cellulose (ASC). EngK has high activity toward insoluble cellulose such as ASC and Avicel. The results of thin-layer chromatography showed that the cleavage products of family 9 cellulases were varied. These results indicated that family 9 endoglucanases possess different modes of attacking substrates and produce varied products. To investigate the functions of the carbohydrate-binding module (CBM) and the catalytic module, truncated derivatives of EngK, EngH, and EngY were constructed and characterized. EngHΔCBM and EngYΔCBM devoid of the CBM lost activity toward all substrates including CMC. EngKΔCBM and EngMΔCBM did not lose activity toward CMC but lost activity toward Avicel. These observations suggest that the CBM is extremely important not only because it mediates the binding of the enzyme to the substrates but also because it participates in the catalytic function of the enzyme or contributes to maintaining the correct tertiary structure of the family 9 catalytic module for expressing enzyme activity.  相似文献   

17.
Most cellulases contain carbohydrate-binding modules (CBMs) that largely contribute to their activity for insoluble substrates. Clostridium thermocellum Cel5E is an endoglucanase having xylanolytic activity. The Cel5E originally has a family 11 CBM preferentially binding to β-1,4- and β-1,3-1,4-mixed linkage glucans. In this study, we replaced the CBM with a different type of CBM, either a family 3 microcrystalline cellulose-directed CBM from Clostridium josui scaffoldin, or a family 6 xylan-directed CBM from Clostridium stercorarium xylanase 11A. Chimeric endoglucanases showed enhanced activity that was affected by CBM binding specificity. These chimeric enzymes could efficiently degrade milled lignocellulosic materials, such as corn hulls, because of heterologous components in the plant cell wall, indicating that diverse CBMs play roles in degradation of lignocellulosic materials.  相似文献   

18.
Cel9B from Paenibacillus barcinonensis is a modular endoglucanase with a novel molecular architecture among family 9 enzymes that comprises a catalytic domain (GH9), a family 3c cellulose-binding domain (CBM3c), a fibronectin III-like domain repeat (Fn31,2), and a C-terminal family 3b cellulose-binding domain (CBM3b). A series of truncated derivatives of endoglucanase Cel9B have been constructed and characterized. Deletion of CBM3c produced a notable reduction in hydrolytic activity, while it did not affect the cellulose-binding properties as CBM3c did not show the ability to bind to cellulose. On the contrary, CBM3b exhibited binding to cellulose. The truncated forms devoid of CBM3b lost cellulose-binding ability and showed a reduced activity on crystalline cellulose, although activity on amorphous celluloses was not affected. Endoglucanase Cel9B produced only a small ratio of insoluble products from filter paper, while most of the reducing ends produced by the enzyme were released as soluble sugars (91%), indicating that it is a processive enzyme. Processivity of Cel9B resides in traits contained in the tandem of domains GH9–CBM3c, although the slightly reduced processivity of truncated form GH9–CBM3c suggests a minor contribution of domains Fn31,2 or CBM3b, not contained in it, on processivity of endoglucanase Cel9B.  相似文献   

19.
Oomycetes are microorganisms that are distantly related to true fungi and many members of this phylum are major plant pathogens. Oomycetes express proteins that are able to interact with plant cell wall polysaccharides, such as cellulose. This interaction is thought to be mediated by carbohydrate-binding modules that are classified into CBM family 1 in the CAZy database. In this study, the two CBMs (1–1 and 1–2) that form part of the cell wall glycoprotein, CBEL, from Phytophthora parasitica have been submitted to detailed characterization, first to better quantify their interaction with cellulose and second to determine whether these CBMs can be useful for biotechnological applications, such as biomass hydrolysis. A variety of biophysical techniques were used to study the interaction of the CBMs with various substrates and the data obtained indicate that CBEL’s CBM1-1 exhibits much greater cellulose binding ability than CBM1-2. Engineering of the family 11 xylanase from Talaromyces versatilis (TvXynB), an enzyme that naturally bears a fungal family 1 CBM, has produced two variants. The first one lacks its native CBM, whereas the second contains the CBEL CBM1-1. The study of these enzymes has revealed that wild type TvXynB binds to cellulose, via its CBM1, and that the substitution of its CBM by oomycetal CBM1-1 does not affect its activity on wheat straw. However, intriguingly the addition of CBEL during the hydrolysis of wheat straw actually potentiates the action of TvXynB variant lacking a CBM1. This suggests that the potentiating effect of CBM1-1 might not require the formation of a covalent linkage to TvXynB.  相似文献   

20.
木聚糖酶碳水化合物结合结构域研究进展   总被引:3,自引:0,他引:3  
木聚糖酶含有催化活性结构域,有时还含有非催化活性结构域,促进酶与底物结合,特别是与不溶性底物的结合及降解,称为碳水化合物结合结构域(CBM),它们在木聚糖降解过程中有重要作用。以下从CBM来源,所属家族类型、对不溶性底物结合特性、与底物结合的特定氨基酸、与催化结构域间的连接肽、特别是对影响木聚糖酶稳定性的5个方面进行了综述,说明CBM对木聚糖酶性质有很大影响。自然界中碳水化合物结构复杂、难以降解,所以认识CBM相关性质对研究其与木聚糖酶的协同作用、提高木聚糖酶活性有重要意义,并根据CBM属性用于改造木聚糖酶相关性质进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号