首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The interaction between para-crystalline cellulose and the cross-linking glycan xyloglucan (XG) plays a central role for the strength and extensibility of plant cell walls. The coating of XGs on cellulose surfaces is believed to be one of the most probable interaction patterns. In this work, the effects of explicit water and side chain variation on the adsorption of XGs on cellulose are investigated by means of atomistic molecular dynamics simulations. The adsorption properties are studied in detail for three XGs on cellulose Iβ 1–10 surface in aqueous environment, namely GXXXGXXXG, GXXLGXXXG, and GXXFGXXXG, which differ in the length and composition of one side chain. Our work shows that when water molecules are included in the theoretical model, the total interaction energies between the adsorbed XGs and cellulose are considerably smaller than in vacuo. Furthermore, in water environment the van der Waals interactions prevail over the electrostatic interactions in the adsorption. Variation in one side chain does not have significant influence on the interaction energy and the binding affinity, but does affect the equilibrium structural properties of the adsorbed XGs to facilitate the interaction between both the backbone and the side chain residues with the cellulose surface. Together, this analysis provides new insights into the nature of the XG–cellulose interaction, which helps to further refine current molecular models of the composite plant cell wall.  相似文献   

2.
Xyloglucans (XG) with different mobilities were identified in the primary cell walls of mung beans (Vigna radiata L.) by solid-state 13C-NMR spectroscopy. To improve the signal:noise ratios compared with unlabelled controls, Glc labelled at either C-1 or C-4 with 13C-isotope was incorporated into the cell-wall polysaccharides of mung bean hypocotyls. Using cell walls from seedlings labelled with d-[1-13C]glucose and, by exploiting the differences in rotating-frame and spin-spin proton relaxation, a small signal was detected which was assigned to Xyl of XGs with rigid glucan backbones. After labelling seedlings with d-[4-13C]glucose and using a novel combination of spin-echo spectroscopy with proton spin relaxation-editing, signals were detected that had 13C-spin relaxations and chemical shifts which were assigned to partly-rigid XGs surrounded by mobile non-cellulosic polysaccharides. Although quantification of these two mobility types of XG was difficult, the results indicated that the partly-rigid XGs were predominant in the cell walls. The results lend support to the postulated new cell-wall models in which only a small proportion of the total surface area of the cellulose microfibrils has XG adsorbed on to it. In these new models, the partly-rigid XGs form cross-links between adjacent cellulose microfibrils and/or between cellulose microfibrils and other non-cellulosic polysaccharides, such as pectic polysaccharides.  相似文献   

3.
Bacterial cellulose (BC) is a biopolymer with applications in numerous industries such as food and pharmaceutical sectors. In this study, various hydrocolloids including modified starches (oxidized starch—1404 and hydroxypropyl starch—1440), locust bean gum, xanthan gum (XG), guar gum, and carboxymethyl cellulose were added to the Hestrin-Schramm medium to improve the production performance and microstructure of BC by Gluconacetobacter entanii isolated from coconut water. After 14-day fermentation, medium supplemented with 0.1% carboxymethyl cellulose and 0.1% XG resulted in the highest BC yield with dry BC content of 9.82 and 6.06 g/L, respectively. In addition, scanning electron microscopy showed that all modified films have the characteristic three-dimensional network of cellulose nanofibers with dense structure and low porosity as well as larger fiber size compared to control. X-ray diffraction indicated that BC fortified with carboxymethyl cellulose exhibited lower crystallinity while Fourier infrared spectroscopy showed characteristic peaks of both control and modified BC films.  相似文献   

4.
Sorption of Penicillium cellulase onto cotton linters samples differing in physical structure and onto KLASON - lignin from spruce has been investigated by determining cellobiase, CMCL- and ‘linters-activity’ as well as protein content of a cellulase culture filtrate before and after contact with the sorbent at different temperature for different time intervals. CMCL- and cellobiase-activity were found to be reduced much less by the sorption process onto the cellulose samples than ‘linters-activity’ and protein content. Sorption increased in the order: untreated linters < mercerized linters < wet fibrillated (‘colloidal milled’) linters. With the KLASON -lignin also a considerable sorption of the cellulase system was observed. Results are discussed with respect to preferential sorption of enzyme components.  相似文献   

5.
The xyloglucan-cellulose assembly at the atomic scale   总被引:3,自引:0,他引:3  
Hanus J  Mazeau K 《Biopolymers》2006,82(1):59-73
The assembly of cell wall components, cellulose and xyloglucan (XG), was investigated at the atomistic scale using molecular dynamics simulations. A molecular model of a cellulose crystal corresponding to the allomorph Ibeta and exhibiting a flexible complex external morphology was employed to mimic the cellulose microfibril. The xyloglucan molecules considered were the three typical basic repeat units, differing only in the size of one of the lateral chain. All the investigated XG fragments adsorb nonspecifically onto cellulose fiber; multiple arrangements are equally probable, and every cellulose surface was capable of binding the short XG molecules. The following structural effects emerged: XG molecules that do not have any long side chains tended to adapt themselves nicely to the topology of the microfibril, forming a flat, outstretched conformation with all the sugar residues interacting with the surface. In contrast, the XG molecules, which have long side chains, were not able to adopt a flat conformation that would enable the interaction of all the XG residues with the surface. In addition to revealing the fundamental atomistic details of the XG adsorption on cellulose, the present calculations give a comprehensive understanding of the way the XG molecules can unsorb from cellulose to create a network that forms the cell wall. Our revisited view of the adsorption features of XG on cellulose microfibrils is consistent with experimental data, and a model of the network is proposed.  相似文献   

6.
细菌纤维素发酵培养基的优化及超微观结构分析   总被引:1,自引:0,他引:1  
为了提高细菌纤维素的产量, 本研究对一株氧化葡糖杆菌菌株J2液体发酵生产细菌纤维素的培养基进行了优化, 并对其代谢的细菌纤维的超微观结构进行了观察。运用Plackett-Burman试验设计法对8个相关影响因素的效应进行了评价, 筛选出了有显著效应的3个因素: 酵母膏、ZnSO4、无水乙醇, 其他5个因素的影响未达到显著水平(P>0.05)。然后采用Box-Behnken的中心组合试验设计和响应面分析方法(RSM)确定了上述三个因素的最佳浓度, 并且以棉纤维为对照, 运用扫描电镜观察了细菌纤维素的超微观结构, 结果表明: 菌株J2利用优化后的发酵培养基生产细菌纤维素的产量为11.52 g/100 mL, 是优化前的1.35倍, 电镜照片显示细菌纤维素微纤维丝直径<0.1 mm, 比棉纤维细很多, NaOH处理可以除去纤维网络结构中的菌体。  相似文献   

7.
为了提高细菌纤维素的产量, 本研究对一株氧化葡糖杆菌菌株J2液体发酵生产细菌纤维素的培养基进行了优化, 并对其代谢的细菌纤维的超微观结构进行了观察。运用Plackett-Burman试验设计法对8个相关影响因素的效应进行了评价, 筛选出了有显著效应的3个因素: 酵母膏、ZnSO4、无水乙醇, 其他5个因素的影响未达到显著水平(P>0.05)。然后采用Box-Behnken的中心组合试验设计和响应面分析方法(RSM)确定了上述三个因素的最佳浓度, 并且以棉纤维为对照, 运用扫描电镜观察了细菌纤维素的超微观结构, 结果表明: 菌株J2利用优化后的发酵培养基生产细菌纤维素的产量为11.52 g/100 mL, 是优化前的1.35倍, 电镜照片显示细菌纤维素微纤维丝直径<0.1 mm, 比棉纤维细很多, NaOH处理可以除去纤维网络结构中的菌体。  相似文献   

8.
Cross-links between cellulose microfibrils and xyloglucan (XG) molecules play a major role in defining the structural properties of plant cell walls and the regulation of growth and development of dicotyledonous plants. How these cross-links are established and how they are regulated has yet to be determined. In a previous study, preliminary data were presented which suggested that the different sidechains of XG may play a role in controlling cellulose microfibril-XG interactions. In this study, this question is addressed directly by analyzing to what extent the different sidechains of pea cell wall XG and nasturtium seed storage XG affect their binding to cellulose microfibrils. Of particular importance to this study are the chemical data indicating that pea XG possesses a trisaccharide sidechain, which is not found in nasturtium XG. To this end, conformational dynamic simulations have been used to predict whether oligosaccharides representative of pea and nasturtium XG can adopt a hypothesized cellulose-binding conformation and which of these XGs exhibits a preferential ability to bind cellulose. Extensive analysis of the conformational forms populated during 300 K and high-temperature Monte Carlo simulations established that a planar, sterically accessible, glucan backbone is essential for optimal cellulose-binding. For the trisaccharide sidechain-containing oligosaccharide as found in pea XG, sidechain orientation appeared to regulate the gradual acquisition of this hypothesized cellulose binding conformation. Thus, conformational forms were identified that included the twisted backbone (non-planar) putative solution form of XG, forms in which the trisaccharide sidechain orientation enables increased backbone planarity and steric accessibility, and finally a planar, sterically accessible, backbone. By applying these conformational requirements for cellulose binding, it has been determined that pea XG possesses a two- to threefold occurrence of the cellulose binding conformation than nasturtium XG. Based on this finding, it was predicted that pea XG would bind to cellulose at a higher rate than nasturtium XG. In vitro binding assays showed that pea XG-avicel binding does indeed occur at a twofold higher rate than nasturtium XG-avicel binding. The enhanced ability of pea cell wall XG over nasturtium seed storage XG to associate with cellulose is consistent with a structural role of the former during epicotyl growth where efficient association with cellulose is a requirement. In contrast, the relatively low ability of nasturtium XG to bind cellulose is consistent with the need to enhance the accessibility of this polymer to glycanases during germination. These findings suggest potential roles for XG sidechain substitution, enabling XG to function in a variety of different biological contexts.  相似文献   

9.
The cellulose-binding domain (CBD) is the second important and the most wide-spread element of cellulase structure involved in cellulose transformation with a great structural diversity and a range of adsorption behavior toward different types of cellulosic materials. The effect of the CBD from Clostridium cellulovorans on the supramolecular structure of three different sources of cellulose (cotton cellulose, spruce dissolving pulp, and cellulose linters) was studied. Fourier-transform infrared spectroscopy (FTIR) was used to record amides I and II absorption bands of cotton cellulose treated with CBD. Structural changes as weakening and splitting of the hydrogen bonds within the cellulose chains after CBD adsorption were observed. The decrease of relative crystallinity index of the treated celluloses was confirmed by FTIR spectroscopy and X-ray diffraction (XRD). X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to confirm the binding of the CBD on the cellulose surface and the changing of the cellulose morphology.  相似文献   

10.
Bio-composite scaffolds were prepared by freeze-drying using poly(3-hydroxubutyrate-co-4-hydroxubutyrate) (P(3HB-co-4HB)) and bacterial cellulose (BC) as raw materials and trifluoroacetic acid (TFA) as co-solvent. The characteristics of the composite scaffold were investigated by field emission scanning electron microscopy (FESEM), Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), water contact angle measurement and tensile testing. Preliminary biodegradation test was performed for P(3HB-co-4HB) and P(3HB-co-4HB)/BC composite scaffold in buffer solution and enzyme solution. The biocompatibility of the composite scaffold was preliminarily evaluated by cell adhesion studies using Chinese Hamster Lung (CHL) fibroblast cells. The cells incubated with composite scaffold for 48 h were capable of forming cell adhesion and proliferation, which showed better biocompatibility than pure P(3HB-co-4HB) scaffold. Thus, the prepared P(3HB-co-4HB)/BC composite scaffold was bioactive and may be suitable for cell adhesion/attachment suggesting that these scaffolds can be used for wound dressing or tissue-engineering scaffolds.  相似文献   

11.
Model cellulose surfaces have attracted increasing attention for studying interactions with cell wall matrix polymers and as substrates for enzymatic degradation studies. Quartz crystal microbalance with dissipation monitoring (QCM-D) solvent exchange studies showed that the water content of regenerated cellulose (RC) films was proportional to the film thickness (d) and was consistent with about five water molecules per anhydroglucose unit. Sulfated nanocrystalline cellulose (SNC) and desulfated nanocrystalline cellulose (DNC) films had comparable water contents and contained about five times more water than RC films. A cellulase mixture served as a probe for studies of substrate accessibility and degradation. Cellulase adsorption onto RC films was independent of d, whereas degradation times increased with d. However, adsorption onto SNC and DNC films increased with d, whereas cellulase degradation times for DNC films were independent of studied d. Enhanced access to guest molecules for SNC and DNC films revealed they are more porous than RC films.  相似文献   

12.
肝癌细胞-胞外基质粘附性与粘附识别序列的相关性   总被引:1,自引:0,他引:1  
以微管吸吮技术研究了人肝癌细胞在IV型胶原/层粘连蛋白(LN)/纤维连结蛋白(FN)裱衬表面的粘附性。进一步,用四种人工合成肽精-甘-天冬-丝(RGDS)、甘-精-甘-天冬-苏-脯GRGDTP)、酪-异亮-甘-丝-精(YIGSR0和半胱-天冬-脯-甘-酪-异亮-甘-丝-精(CDPGYIGSR)研究了肝癌细胞粘附性对两种粘附识别序列RGD和YIGSR的依赖性。为了归纳和整理实验结果,根据竞争性抑制的  相似文献   

13.
Cell adhesion on biomaterial surfaces and the vitality of anchorage dependent cells is affected by several parameters of an adsorbate layer which is intentionally or spontaneously formed. Surface pre-treatments and several conditioning steps prior and during to the cell/biomaterial contact affect the composition, orientation, quantity and viscoelasticity of the interfacing layer between cells and biomaterial. This work was performed to elucidate the response of cells on two modified biomaterial surfaces based on protein or carbohydrate adsorbates: (a) Masked UV irradiations opened a simple route to obtain chemically patterned substrates controlling serum protein adsorption and cell adhesion. It is possible to achieve structures of subcellular size and to produce immobilized gradients. In order to examine the protein matrix deposited on these substrates we applied a quartz microbalance technique (QCM-D) capable to extract viscoelastic data in addition to the mass uptake during plasma protein deposition. It was found that the quantity and viscosity of surface bound albumin is lowered when the surface is modified (patterned) by UV exposure. Hence, the UV modification promotes the competitive adsorption of cell adhesion proteins from the media or upon secretion by the cells and yields to the observed cell patterns. (b) Another tissue engineering technique, using immobilized, modified and/or cross linked hyaluronic acid (HA), an important extra cellular matrix component in vivo, is also examined by QCM-D. Our data demonstrate that HA can be modified by an activation with a carbodiimide, followed by the application of an alpha,omega-bisamino polyethyleneglycol. The QCM-D data can be interpreted as a stiffening of the HA layer combined with the release of hydration water. Further, the hydration state and the viscoelastic behaviour of surface bound ultrathin HA hydrogels was examined. Quantification of viscoelastic parameters of thin films of ECM by QCM-D is valuable for the interpretation of durotaxis, describing effects of mechanical substrate parameters on the adhesion and motility of cells.  相似文献   

14.
《Process Biochemistry》2010,45(10):1713-1719
Cibacron Blue F3GA (CB) was covalently attached onto the bacterial cellulose (BC) nanofibers for human serum albumin (HSA) depletion from human serum. The BC nanofibers were produced by Acetobacter xylinum in the Hestrin–Schramm medium in a static condition for 14 days. The CB content of the BC nanofibers was 178 μmol/g. The specific surface area of the BC nanofibers was determined to be 914 m2/g. HSA adsorption experiments were performed by stirred-batch adsorption. The non-specific adsorption of HSA on the BC nanofibers was very low (1.4 mg/g polymer). CB attachment onto the BC nanofibers significantly increased the HSA adsorption (1800 mg/g). The maximum HSA adsorption was observed at pH 5.0. The HSA adsorption capacity decreased drastically with an increase of the aqueous phase concentration of sodium chloride. The elution studies were performed by adding 1 M NaCl to the HSA solutions in which adsorption equilibria had been reached. The elution results demonstrated that the binding of HSA to the adsorbent was reversible. The depletion efficiencies for HSA were above 96.5% for all studied concentrations. Proteins in the serum and eluted portion were analyzed by SDS-PAGE for testing the efficiency of HSA depletion from human serum. Eluted proteins include mainly HSA.  相似文献   

15.
Neutral cellulose nanocrystals dispersed in water were shown in a previous work to stabilize oil/water interfaces and produce Pickering emulsions with outstanding stability, whereas sulfated nanocrystals obtained from cotton did not show interfacial properties. To develop a better understanding of the stabilization mechanism, amphiphilic properties of the nanocrystals were modulated by tuning the surface charge density to investigate emulsifying capability on two sources of cellulose: cotton linters (CCN) and bacterial cellulose (BCN). This charge adjustment made it possible to determine the conditions where a low surface charge density, below 0.03 e/nm(2), remains compatible with emulsification, as well as when assisted by charge screening regardless of the source. This study discusses this ability to stabilize oil-in-water emulsions for cellulose nanocrystals varying in crystalline allomorph, morphology, and hydrolysis processes related to the amphiphilic character of nonhydrophobized cellulose nanocrystal.  相似文献   

16.
The cell-wall polysaccharides of Arabidopsis thaliana leaves have been isolated, purified, and characterized. The primary cell walls of all higher plants that have been studied contain cellulose, the three pectic polysaccharides homogalacturonan, rhamnogalacturonan I and rhamnogalacturonan II, the two hemicelluloses xyloglucan and glucuronoarabinoxylan, and structural glycoproteins. The cell walls of Arabidopsis leaves contain each of these components and no others that we could detect, and these cell walls are remarkable in that they are particularly rich in phosphate buffer-soluble polysaccharides (34% of the wall). The pectic polysaccharides of the purified cell walls consist of rhamnogalacturonan I (11%), rhamnogalacturonon II (8%), and homogalacturonan (23%). Xyloglucan (XG) accounts for 20% of the wall, and the oligosaccharide fragments generated from XG by endoglucanase consist of the typical subunits of other higher plant XGs. Glucuronoarabinoxylan (4%), cellulose (14%) and protein (14%) account for the remainder of the wall. Except for the phosphate buffer-soluble pectic polysaccharides, the polysaccharides of Arabidopsis leaf cell walls occur in proportions similar to those of other plants. The structure of the Arabidopsis cell-wall polysaccharides are typical of those of many other plants.  相似文献   

17.
不同培养方式对细菌纤维素产量和结构性质的影响   总被引:9,自引:0,他引:9  
考察了自行筛选的Acetobacter xylinum NUST4.2在静置培养和发酵罐培养获得的细菌纤维素(BC)的产量、基本结构和性能的差异。结果表明:静置培养时产纤维素7.5g/L,产率为0.052g/L/h,在机械搅拌发酵罐中培养3d产量达3.13g/L,产率达0.043g/L/h;SEM分析显示静置培养和发酵罐培养得到的纤维素均具有网状结构,但静置获得的纤维素丝带相互缠绕且层状重叠,更加致密,丝带更细;FT-IR分析知搅拌不改变纤维素的化学结构,但能减弱分子间氢键,和XRD结合分析可知静置培养的纤维素具有更高结晶指数,更高Iα含量和更大晶粒尺寸,但不改变晶型,仍为纤维素I型,说明搅拌会干扰纤维素初始纤丝的结晶,有利于形成更小的晶粒和较Iα稳定的Iβ。与棉纤维素相比,静置培养获得的纤维素的热稳定性更好,而发酵罐培养获得的纤维素则阻燃性更好。  相似文献   

18.
Summary To develop a coculture for a single step conversion of cellulose to fuels and chemicals, the cellulose degradation by three newly isolated mesophilic anaerobes was compared with that of Clostridium thermocellum. Degradation of cellulose obtained from cotton linters, and delignified ball-milled pulp and steam-exploded aspen wood by mesophilic anaerobes was comparable to that by Cl. thermocellum. However mesophilic anaerobes produced larger amounts of sugars. In media containing 50 g/l of cellulose suspensions, the sugars produced by mesophilic anaerobes were 10.5 to 14.5 g/l, about 50% of the cellulose used.  相似文献   

19.
This work was devoted to probe, at the entire population level, interactions between mucins and Lactococcus lactis, using QCM-D. Real-time monitoring of adsorption on polystyrene of PGM (Pig Gastric Mucin) and subsequent adhesion of L. lactis was performed for IBB477 and MG1820 strains. Measuring simultaneously shifts in resonance frequency and dissipation on the polystyrene-coated crystal demonstrated a two-phase process for PGM adsorption. XPS analysis confirmed the presence of adsorbed mucin. The Voigt-based model was used to describe the QCM-D outputs. The predicted thickness of the PGM layer was consistent with the AFM experimental value. Adhesion of L. lactis to bare or PGM-coated polystyrene was then monitored, in combination with DAPI cell counting. Positive frequency shifts were caused by adhering bacteria. The presence of adsorbed PGM strongly reduced bacterial adhesion. However, adhesion of IBB477 to the PGM coating was greatly increased in comparison with that of MG1820. Muco-adhesion may be a highly variable and valuable phenotypic trait among L. lactis strains.  相似文献   

20.
Bacterial cellulose possesses excellent biocompatibility and mechanical strength that show great potentials for biomaterial applications. In this study, the surface modifications of bacterial cellulose (BC) membranes were facilitated using either simple coating or chemical grafting methods. The surface coating method is to simply immobilize BC membranes with poly(ethylene glycol) (PEG) solutions of concentration from 1 to 10%, followed by post-treatment with argon (Ar) plasma. The chemical method involved grafting mPEG (monofunctional methyl ether PEG) on BCs. The outcomes of surface modifications were characterized by surface chemical compositions (electron spectroscopy for chemical analysis (ESCA), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetry analysis (TGA), and surface morphology (atomic force microscopy (AFM) and scanning electron microscopy (SEM)). The effects of resistance to biofouling were verified by quantifying the adsorption of proteins and mammalian cells. The results showed that the PEG coating on BCs improved the resistance to cell adhesion by more than 30%. On the other hand, the specific chemical grafting resulted in a particularly high resistance to biofouling that the density of adherent cells reduced by more than 70% when compared to that on pristine BC. We have demonstrated that the two proposed methods were effective for the preparation of bioinert BC membranes with great potentials for applications in biomaterials and tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号