首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and Aims

The slippery waxy zone in the upper part of pitchers has long been considered the key trapping structure of the Nepenthes carnivorous plants; however, the presence of wax is reported to be variable within and between species of this species-rich genus. This study raises the question of the adaptive significance of the waxy zone and investigates the basis for an ontogenetic cause of its variability and correlation with pitcher shape.

Methods

In Brunei (Borneo) the expression of the waxy zone throughout plant ontogeny was studied in two taxa of the Nepenthes rafflesiana complex, typica and elongata, which differ in pitcher shape and size. We also tested the adaptive significance of this zone by comparing the trapping efficiency and the number of prey captured of wax-bearing and wax-lacking plants.

Key Results

In elongata, the waxy zone is always well expanded and the elongated pitchers change little in form during plant development. Wax efficiently traps experimental ants but the number of captured prey in pitchers is low. In contrast, in typica, the waxy zone is reduced in successively produced pitchers until it is lost at the end of the plant''s juvenile stage. The form of pitchers thus changes continuously throughout plant ontogeny, from elongated to ovoid. In typica, the number of captured prey is greater, but the role of wax in trapping is minor compared with that of the digestive liquid, and waxy plants do not show a higher insect retention and prey abundance as compared with non-waxy plants.

Conclusions

The waxy zone is not always a key trapping structure in Nepenthes and can be lost when supplanted by more efficient features. This study points out how pitcher structure is submitted to selection, and that evolutionary changes in developmental mechanisms could play a role in the morphological diversity of Nepenthes.Key words: Carnivorous plant, developmental evolution, digestive liquid, epicuticular wax, insect trapping, heteroblasty, heterochrony, leaf form, morphological diversity, Nepenthes rafflesiana, ontogenetic change, pitcher plant  相似文献   

2.

Background and Aims

Nepenthes pitchers are sophisticated traps that employ a variety of mechanisms to attract, capture and retain prey. The underlying morphological structures and physiological processes are subject to change over the lifetime of a pitcher. Here an investigation was carried out on how pitcher properties and capture efficiency change over the first 2 weeks after pitcher opening.

Methods

Prey capture, trapping efficiency, extrafloral nectar secretion, pitcher odour, as well as pH and viscoelasticity of the digestive fluid in N. rafflesiana pitchers were monitored in the natural habitat from pitcher opening up to an age of 2 weeks.

Key Results

Pitchers not only increased their attractiveness over this period by becoming more fragrant and secreting more nectar, but also gained mechanical trapping efficiency via an enhanced wettability of the upper pitcher rim (peristome). Consistently, natural prey capture was initially low and increased 3–6 d after opening. It was, however, highly variable within and among pitchers. At the same time, the pH and viscoelasticity of the digestive fluid decreased, suggesting that the latter is not essential for effective prey capture.

Conclusions

Prey capture and attraction by Nepenthes are dynamic processes strongly influenced by the changing properties of the pitcher. The results confirm insect aquaplaning on the peristome as the main capture mechanism in N. rafflesiana.Key words: Carnivorous plants, pitcher development, prey attraction, prey capture, insect aquaplaning, extrafloral nectar, Nepenthes rafflesiana  相似文献   

3.

Background and Aims

Carnivorous plants of the genus Nepenthes possess modified leaves that form pitfall traps in order to capture prey, mainly arthropods, to make additional nutrients available for the plant. These pitchers contain a digestive fluid due to the presence of hydrolytic enzymes. In this study, the composition of the digestive fluid was further analysed with regard to mineral nutrients and low molecular-weight compounds. A potential contribution of microbes to the composition of pitcher fluid was investigated.

Methods

Fluids from closed pitchers were harvested and analysed for mineral nutrients using analytical techniques based on ion-chromatography and inductively coupled plasma–optical emission spectroscopy. Secondary metabolites were identified by a combination of LC-MS and NMR. The presence of bacteria in the pitcher fluid was investigated by PCR of 16S-rRNA genes. Growth analyses of bacteria and yeast were performed in vitro with harvested pitcher fluid and in vivo within pitchers with injected microbes.

Key Results

The pitcher fluid from closed pitchers was found to be primarily an approx. 25-mm KCl solution, which is free of bacteria and unsuitable for microbial growth probably due to the lack of essential mineral nutrients such as phosphate and inorganic nitrogen. The fluid also contained antimicrobial naphthoquinones, plumbagin and 7-methyl-juglone, and defensive proteins such as the thaumatin-like protein. Challenging with bacteria or yeast caused bactericide as well as fungistatic properties in the fluid. Our results reveal that Nepenthes pitcher fluids represent a dynamic system that is able to react to the presence of microbes.

Conclusions

The secreted liquid of closed and freshly opened Nepenthes pitchers is exclusively plant-derived. It is unsuitable to serve as an environment for microbial growth. Thus, Nepenthes plants can avoid and control, at least to some extent, the microbial colonization of their pitfall traps and, thereby, reduce the need to vie with microbes for the prey-derived nutrients.  相似文献   

4.

Background and Aims Nepenthes

(Nepenthaceae, approx. 120 species) are carnivorous pitcher plants with a centre of diversity comprising the Philippines, Borneo, Sumatra and Sulawesi. Nepenthes pitchers use three main mechanisms for capturing prey: epicuticular waxes inside the pitcher; a wettable peristome (a collar-shaped structure around the opening); and viscoelastic fluid. Previous studies have provided evidence suggesting that the first mechanism may be more suited to seasonal climates, whereas the latter two might be more suited to perhumid environments. In this study, this idea was tested using climate envelope modelling.

Methods

A total of 94 species, comprising 1978 populations, were grouped by prey capture mechanism (large peristome, small peristome, waxy, waxless, viscoelastic, non-viscoelastic, ‘wet’ syndrome and ‘dry’ syndrome). Nineteen bioclimatic variables were used to model habitat suitability at approx. 1 km resolution for each group, using Maxent, a presence-only species distribution modelling program.

Key Results

Prey capture groups putatively associated with perhumid conditions (large peristome, waxless, viscoelastic and ‘wet’ syndrome) had more restricted areas of probable habitat suitability than those associated putatively with less humid conditions (small peristome, waxy, non-viscoelastic and‘dry’ syndrome). Overall, the viscoelastic group showed the most restricted area of modelled suitable habitat.

Conclusions

The current study is the first to demonstrate that the prey capture mechanism in a carnivorous plant is constrained by climate. Nepenthes species employing peristome-based and viscoelastic fluid-based capture are largely restricted to perhumid regions; in contrast, the wax-based mechanism allows successful capture in both perhumid and more seasonal areas. Possible reasons for the maintenance of peristome-based and viscoelastic fluid-based capture mechanisms in Nepenthes are discussed in relation to the costs and benefits associated with a given prey capture strategy.  相似文献   

5.
Nepenthes pitcher plants deploy tube-shaped pitchers to catch invertebrate prey; those of Nepenthes aristolochioides possess an unusual translucent dome. The hypothesis was tested that N. aristolochioides pitchers operate as light traps, by quantifying prey capture under three shade treatments. Flies are red-blind, with visual sensitivity maxima in the UV, blue, and green wavebands. Red celluloid filters were used to reduce the transmission of these wavebands into the interior of the pitchers. Those that were shaded at the rear showed a 3-fold reduction in Drosophila caught, relative to either unshaded control pitchers, or pitchers that were shaded at the front. Thus, light transmitted through the translucent dome is a fundamental component of N. aristolochioides' trapping mechanism.  相似文献   

6.

Background and Aims

Cost–benefit models predict that carnivory can increase the rate of photosynthesis (AN) by leaves of carnivorous plants as a result of increased nitrogen absorption from prey. However, the cost of carnivory includes decreased AN and increased respiration rates (RD) of trapping organs. The principal aim of the present study was to assess the costs and benefits of carnivory in the pitcher plant Nepenthes talangensis, leaves of which are composed of a lamina and a pitcher trap, in response to feeding with beetle larvae.

Methods

Pitchers of Nepenthes grown at 200 µmol m−2 s−1 photosynthetically active radiation (PAR) were fed with insect larvae for 2 months, and the effects on the photosynthetic processes were then assessed by simultaneous measurements of gas exchange and chlorophyll fluorescence of laminae and pitchers, which were correlated with nitrogen, carbon and total chlorophyll concentrations.

Key Results

AN and maximum (Fv/Fm) and effective quantum yield of photosystem II (ΦPSII) were greater in the fed than unfed laminae but not in the fed compared with unfed pitchers. Respiration rate was not significantly affected in fed compared with unfed plants. The unfed plants had greater non-photochemical quenching (NPQ) of chlorophyll fluorescence. Higher NPQ in unfed lamina did not compensate for their lower ΦPSII, resulting in lower photochemical quenching (QP) and thus higher excitation pressure on PSII. Biomass and nitrogen and chlorophyll concentration also increased as a result of feeding. The cost of carnivory was shown by lower AN and ΦPSII in pitchers than in laminae, but RD depended on whether it was expressed on a dry weight or a surface area basis. Correlation between nitrogen and AN in the pitchers was not found. Cost–benefit analysis showed a large beneficial effect on photosynthesis from feeding as light intensity increased from 200 to 1000 µmol m−2 s−1 PAR after which it did not increase further. All fed plants began to flower.

Conclusion

Feeding pitchers with insect larvae increases AN of leaf laminae, due to higher nutrient acquisition, with strong correlation with nitrogen concentration, but AN of pitchers does not increase, despite increased nitrogen concentration in their tissue. Increased AN improves growth and reproduction and is likely to increase the competitive advantage of carnivorous over non-carnivorous plants in nutrient-poor habitats.Key words: carnivorous plants, chlorophyll fluorescence, Nepenthes talangensis, nitrogen, pitcher plant, photosynthetic rate, photosystem II, respiration rate  相似文献   

7.
Carnivorous plants use different morphological features to attract, trap and digest prey, mainly insects. Plants from the genus Nepenthes possess specialized leaves called pitchers that function as pitfall-traps. These pitchers are filled with a digestive fluid that is generated by the plants themselves. In order to digest caught prey in their pitchers, Nepenthes plants produce various hydrolytic enzymes including aspartic proteases, nepenthesins (Nep). Knowledge about the generation and induction of these proteases is limited. Here, by employing a FRET (fluorescent resonance energy transfer)-based technique that uses a synthetic fluorescent substrate an easy and rapid detection of protease activities in the digestive fluids of various Nepenthes species was feasible. Biochemical studies and the heterologously expressed Nep II from Nepenthes mirabilis proved that the proteolytic activity relied on aspartic proteases, however an acid-mediated auto-activation mechanism was necessary. Employing the FRET-based approach, the induction and dynamics of nepenthesin in the digestive pitcher fluid of various Nepenthes plants could be studied directly with insect (Drosophila melanogaster) prey or plant material. Moreover, we observed that proteolytic activity was induced by the phytohormone jasmonic acid but not by salicylic acid suggesting that jasmonate-dependent signaling pathways are involved in plant carnivory.  相似文献   

8.
1. Nepenthes pitcher plants produce fluid‐containing animal traps that are colonised by a variety of specialised arthropods, especially dipterans. However, container‐breeding vector mosquitoes, such as Aedes albopictus Skuse have rarely been recorded from pitchers. Increasing overlap in the geographical ranges of Nepenthes and Ae. albopictus in urban parts of Southeast Asia owing to urbanisation highlights a growing need to investigate the potential role of pitchers as larval habitats for vector mosquitoes. 2. The ability of Ae. albopictus larvae to survive in three common lowland Nepenthes in Peninsular Malaysia that are most likely to co‐occur with Ae. albopictus [viz., Nepenthes ampullaria Jack, Nepenthes gracilis Korth., and Nepenthes mirabilis (Lour.) Druce] was investigated. 3. The larval survival rates of Ae. albopictus in pitcher fluids of the three Nepenthes species were determined, then the effects of low pH, larvicidal agents (such as microbes, predators, and chemical compounds) through manipulative experiments were investigated. 4. It was found that pitchers represent a hostile environment to Ae. albopictus, but that the principal cause of larval mortality varies among Nepenthes species (i.e. low fluid pH in N. gracilis, predation by Toxorhynchites acaudatus Leicester larvae in N. ampullaria, and microbial activity in N. mirabilis). It was concluded that Nepenthes pitchers are generally not suitable larval habitats for Ae. albopictus. However, the pitcher environment of N. ampullaria is worthy of further study, as pitchers that lack predators are nevertheless rarely colonised by Ae. albopictus, indicating that other aspects of the host pitcher environment inhibit oviposition or larval survivorship.  相似文献   

9.
The pitcher-shaped leaves of Nepenthes carnivorous plants have been considered as pitfall traps that essentially rely on slippery surfaces to capture insects. But a recent study of Nepenthes rafflesiana has shown that the viscoelasticity of the digestive fluid inside the pitchers plays a key role. Here, we investigated whether Nepenthes species exhibit diverse trapping strategies. We measured the amount of slippery wax on the pitcher walls of 23 taxa and the viscoelasticity of their digestive liquid and compared their retention efficiency on ants and flies. The amount of wax was shown to vary greatly between species. Most mountain species exhibited viscoelastic digestive fluids while water-like fluids were predominant in lowland species. Both characteristics contributed to insect trapping but wax was more efficient at trapping ants while viscoelasticity was key in trapping insects and was even more efficient than wax on flies. Trap waxiness and fluid viscoelasticity were inversely related, suggesting the possibility of an investment trade-off for the plants. Therefore Nepenthes pitcher plants do not solely employ slippery devices to trap insects but often employ a viscoelastic strategy. The entomofauna specific to the plant's habitat may exert selective pressures, favouring one trapping strategy at the expense of the other.  相似文献   

10.
Nepenthes pitcher plants produce modified jug-shaped leaves to attract, trap and digest insect prey. We used 16S rDNA cloning and sequencing to compare bacterial communities in pitcher fluids of each of three species, namely Nepenthes ampullaria, Nepenthes gracilis and Nepenthes mirabilis, growing in the wild. In contrast to previous greenhouse-based studies, we found that both opened and unopened pitchers harbored bacterial DNA. Pitchers of N. mirabilis had higher bacterial diversity as compared to other Nepenthes species. The composition of the bacterial communities could be different between pitcher types for N. mirabilis (ANOSIM: R = 0.340, p < 0.05). Other Nepenthes species had similar bacterial composition between pitcher types. SIMPER showed that more than 50 % of the bacterial taxa identified from the open pitchers of N. mirabilis were not found in other groups. Our study suggests that bacteria in N. mirabilis are divided into native and nonnative groups.  相似文献   

11.

Background and Aims

This study examined level of causal relationships amongst functional traits in leaves and conjoint pitcher cups of the carnivorous Nepenthes species.

Methods

Physico-chemical properties, especially lignin content, construction costs, and longevity of the assimilatory organs (leaf and pitcher) of a guild of lowland Nepenthes species inhabiting heath and/or peat swamp forests of Brunei, northern Borneo were determined.

Key Results

Longevity of these assimilatory organs was linked significantly to construction cost, lignin content and structural trait of tissue density, but these effects are non-additive. Nitrogen and phosphorus contents (indicators of Rubisco and other photosynthetic proteins), were poor predictors of organ longevity and construction cost, suggesting that a substantial allocation of biomass of the assimilatory organs in Nepenethes is to structural material optimized for prey capture, rigidity and escape from biotic and abiotic stresses rather than to light interception. Leaf payback time – a measure of net carbon revenue – was estimated to be 48–60 d. This is in line with the onset of substantial mortality by 2–3 months of tagged leaves in many of the Nepenthes species examined. However, this is a high ratio (i.e. a longer minimum payback time) compared with what is known for terrestrial, non-carnivorous plants in general (5–30 d).

Conclusions

It is concluded that the leaf trait bivariate relationships within the Nepenthes genus, as in other carnivorous species (e.g. Sarraceniaceae), is substantially different from the global relationship documented in the Global Plant Trait Network.Key words: Botanical carnivory, carbon gain, functional traits, leaf chemistry, leaf lifespan, leaf mass per unit area, Nepenthes, pitcher, payback time  相似文献   

12.
Nepenthes is the largest genus of pitcher plants, with its center of diversity in SE Asia. The plants grow in substrates that are deficient in N and offset this deficiency by trapping animal prey, primarily arthropods. Recent research has provided new insights into the function of the pitchers, particularly with regard to prey tapping and retention. Species examined to date use combinations of wettable peristomes, wax layers and viscoelastic fluid to trap and retain prey. In many respects, this has redefined our understanding of the functioning of Nepenthes pitchers. In addition, recent research has shown that several Nepenthes species target specific groups of prey animals, or are even evolving away from a strictly carnivorous mode of operation. Future research into nutrient sequestration strategies and mechanisms of prey attraction would no doubt further enhance our knowledge of the ecology of this remarkable genus.Key words: carnivory, mutualism, Nepenthes, pitcher plants  相似文献   

13.
Nepenthes pitcher plants are typically carnivorous, producing pitchers with varying combinations of epicuticular wax crystals, viscoelastic fluids and slippery peristomes to trap arthropod prey, especially ants. However, ant densities are low in tropical montane habitats, thereby limiting the potential benefits of the carnivorous syndrome. Nepenthes lowii, a montane species from Borneo, produces two types of pitchers that differ greatly in form and function. Pitchers produced by immature plants conform to the ‘typical’ Nepenthes pattern, catching arthropod prey. However, pitchers produced by mature N. lowii plants lack the features associated with carnivory and are instead visited by tree shrews, which defaecate into them after feeding on exudates that accumulate on the pitcher lid. We tested the hypothesis that tree shrew faeces represent a significant nitrogen (N) source for N. lowii, finding that it accounts for between 57 and 100 per cent of foliar N in mature N. lowii plants. Thus, N. lowii employs a diversified N sequestration strategy, gaining access to a N source that is not available to sympatric congeners. The interaction between N. lowii and tree shrews appears to be a mutualism based on the exchange of food sources that are scarce in their montane habitat.  相似文献   

14.
15.
An CI  Fukusaki E  Kobayashi A 《Planta》2001,212(4):547-555
Nepenthes is a unique genus of carnivorous plants that can capture insects in trapping organs called pitchers and digest them in pitcher fluid. The pitcher fluid includes digestive enzymes and is strongly acidic. We found that the fluid pH decreased when prey accumulates in the pitcher fluid of Nepenthes alata. The pH decrease may be important for prey digestion and the absorption of prey-derived nutrients. To identify the proton pump involved in the acidification of pitcher fluid, plant proton-pump homologs were cloned and their expressions were examined. In the lower part of pitchers with natural prey, expression of one putative plasma-membrane (PM) H+-ATPase gene, NaPHA3, was considerably higher than that of the putative vacuolar H+-ATPase (subunit A) gene, NaVHA1, or the putative vacuolar H+-pyrophosphatase gene, NaVHP1. Expression of one PM H+-ATPase gene, NaPHA1, was detected in the head cells of digestive glands in the lower part of pitchers, where proton extrusion may occur. Involvement of the PM H+-ATPase in the acidification of pitcher fluid was also supported by experiments with proton-pump modulators; vanadate inhibited proton extrusion from the inner surface of pitchers, whereas bafilomycin A1 did not, and fusicoccin induced proton extrusion. These results strongly suggest that the PM H+-ATPase is responsible for acidification of the pitcher fluid of Nepenthes. Received: 8 June 2000 / Accepted: 8 August 2000  相似文献   

16.

Background and Aims

Insectivorous plants frequently display their flowers on the ends of long racemes. Conventional wisdom is that long racemes in insectivorous plants have evolved to provide spatial separation between flowers and traps, which consequently prevents pollinators from being captured. However, it is also possible that long racemes evolved for better seed dispersal or to make flowers more visible to pollinators.

Methods

Two sympatric insectivorous plants with identical pollinators were studied: Drosera cistiflora, with an upright growth form but a short raceme; and Drosera pauciflora, with a basal rosette of traps and a very long raceme. If long racemes evolved to protect their pollinators then D. cistiflora should capture more pollinators than D. pauciflora. However, if long racemes evolved to attract pollinators then taller flowers should receive more pollination visits than shorter flowers.

Key Results

Examination of D. pauciflora and D. cistiflora traps revealed that no pollinators were captured by either species, suggesting that long racemes did not evolve to protect pollinators from being captured. Experimental manipulations of flower height in D. cistiflora showed that experimentally shortened plants received significantly fewer pollination visits than plants which were taller in stature.

Conclusions

Long scapes in Drosera and non-insectivorous plants probably evolved due to similar selective pressures such as pollinator attraction.  相似文献   

17.
Mechanisms that improve prey richness in carnivorous plants may involve three crucial phases of trapping:attraction, capture and retention.Nepenthes rafflesiana var. typica is an insectivorous pitcher plant that is widespread in northern Borneo.It exhibits ontogenetic pitcher dimorphism with the upper pitchers trapping more flying prey than the lower pitchers.While this difference in prey composition has been ascribed to differences in attraction,the contribution of capture and retention has been overlooked.This study focused on distinguishing between the prey trapping mechanisms, and assessing their relative contribution to prey diversity.Arthropod richness and diversity of both visitors and prey in the two types of pitchers were analysed to quantify the relative contribution of attraction to prey trapping.Rate of insect visits to the different pitcher parts and the presence or absence of a sweet fragrance was recorded to clarify the origin and mechanism of attraction.The mechanism of retention was studied by insect bioassays and measurements of fluid viscosity. Nepenthes rafflesiana was found to trap a broader prey spectrum than that previously described for any Nepenthes species,with the upper pitchers attracting and trapping a greater quantity and diversity of prey items than the lower pitchers.Capture efficiency was low compared with attraction or retention efficiency.Fragrance of the peristome,or nectar rim,accounted mainly for the observed non-specific, better prey attraction by the upper pitchers, while the retentive properties of the viscous fluid in these upper pitchers arguably explains the species richness of their flying prey.The pitchers of N. rafflesiana are therefore more than simple pitfall traps and the digestive fluid plays an important yet unsuspected role in the ecological success of the species.  相似文献   

18.

Background

Baited traps are potential tools for removal or surveillance of disease vectors. To optimize the use of counter-flow traps baited with human odor (nylon socks that had been worn for a single day) to capture wild mosquitoes in the Gambia, investigations were conducted at a field experimental site.

Methodology/Principal Findings

Experiments employing Latin square design were conducted with a set of six huts to investigate the effects of the following on overnight mosquito trap catches: (1) placement of traps indoors or immediately outdoors, CO2 supply, and presence of a human subject in the hut; (2) trap height for collecting mosquitoes immediately outdoors; (3) height and distance from hut; (4) interaction between multiple traps around a single hut and entry of mosquitoes into huts. A total of 106,600 adult mosquitoes (9.1% Anopheles gambiae s.l., 4.0% other Anopheles species) were collected over 42 nights. The high numbers of An. gambiae s.l. and other mosquitoes collected by odor-baited traps required CO2 but were largely independent of the presence of a person sleeping in the hut or of trap placement indoors or outdoors. For outdoor collection that is considered less intrusive, traps opening 15 cm above the floor of the hut veranda were more highly effective than traps at other heights or further from the hut. There was no significant evidence of saturation or competition by the traps, with multiple traps around a hut each collecting almost as many mosquitoes as single traps and no effect on the numbers of mosquitoes entering the huts.

Conclusions/Significance

The outdoor trapping protocol is convenient to compare attractiveness of different odors or synthetic chemicals to malaria vectors and other wild mosquitoes. The finding that such traps are reliably attractive in the presence or absence of a human volunteer encourages their potential development as standardised surveillance tools.  相似文献   

19.
Abstract.
  • 1 Two contrasting hypotheses concerning patterns in food web structure within pitchers of Nepenthes are tested using new information from six species of Nepenthes from Borneo.
  • 2 In general, predictions that webs will be more complex, and the food chains they contain will be longer, the closer they are to the centre of Nepenthes species diversity, are supported.
  • 3 For Nepenthes albomarginata, a widespread species with a distinctive north Bornean form, a contrasting pattern is evident explicable in terms of the morphology of the pitchers and local habitat preferences.
  • 4 General explanations for food web patterns will always be susceptible to exception, reflecting nuances of natural history.
  相似文献   

20.
Background and Aims Nepenthes pitcher plants have evolved modified leaves with slippery surfaces and enzymatic fluids that trap and digest prey, faeces and/or plant detritus. Although the fluid’s contribution to insect capture is recognized, the physico-chemical properties involved remain underexplored and may vary among species, influencing their diet type. This study investigates the contributions of acidity and viscoelasticity in the fluid’s capture efficiency of two ant and two fly species in four Nepenthes species with different nutrition strategies.Methods Four Nepenthes species were studied, namely N. rafflesiana, N. gracilis, N. hemsleyana and N. ampullaria. Fluid was collected from pitchers of varying ages from plants growing in the field and immediately transferred to glass vials, and individual ants (tribe Campotini, Fomicinae) and flies (Calliphora vomitoria and Drosophila melanogaster) were dropped in and observed for 5 min. Water-filled vials were used as controls. Survival and lifetime data were analysed using models applied to right-censored observations. Additional laboratory experiments were carried out in which C. vomitoria flies were immersed in pH-controlled aqueous solutions and observed for 5 min.Key Results Pitcher fluid differed among Nepenthes species as regards insect retention capacity and time-to-kill, with differences observed between prey types. Only the fluids of the reputedly insectivorous species were very acidic and/or viscoelastic and retained significantly more insects than the water controls. Viscoelastic fluids were fatal to flies and were able to trap the broadest diversity of insects. Younger viscoelastic fluids showed a better retention ability than older fluids, although with less rapid killing ability, suggesting that a chemical action follows a mechanical one. Insect retention increased exponentially with fluid viscoelasticity, and this happened more abruptly and at a lower threshold for flies compared with ants. Flies were more often retained if they fell into the traps on their backs, thus wetting their wings. Insect retention and death rate increased with fluid acidity, with a lower threshold for ants than for flies, and the time-to-kill decreased with increasing acidity. The laboratory experiments showed that fewer flies escaped from acidic solutions compared with water.Conclusions In addition to viscoelasticity, the pitcher’s fluid acidity and wetting ability influence the fate of insects and hence the diet of Nepenthes. The plants might select the prey that they retain by manipulating the secretion of H+ ions and polysaccharides in their pitcher fluid. This in turn might participate in possible adaptive radiation of this genus with regard to nutrient sequestration strategy. These plants might even structurally influence insect fall-orientation and capture-probability, inspiring biomimetic designs for pest control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号