首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Guiard Y  Olafsdottir HB 《PloS one》2011,6(10):e24389
Fitts' law is an empirical rule of thumb which predicts the time it takes people, under time pressure, to reach with some pointer a target of width W located at a distance D. It has been traditionally assumed that the predictor of movement time must be some mathematical transform of the quotient of D/W, called the index of difficulty (ID) of the movement task. We ask about the scale of measurement involved in this independent variable. We show that because there is no such thing as a zero-difficulty movement, the IDs of the literature run on non-ratio scales of measurement. One notable consequence is that, contrary to a widespread belief, the value of the y-intercept of Fitts' law is uninterpretable. To improve the traditional Fitts paradigm, we suggest grounding difficulty on relative target tolerance W/D, which has a physical zero, unlike relative target distance D/W. If no one can explain what is meant by a zero-difficulty movement task, everyone can understand what is meant by a target layout whose relative tolerance W/D is zero, and hence whose relative intolerance 1-W/D is 1 or 100%. We use the data of Fitts' famous tapping experiment to illustrate these points. Beyond the scale of measurement issue, there is reason to doubt that task difficulty is the right object to try to measure in basic research on Fitts' law, target layout manipulations having never provided users of the traditional Fitts paradigm with satisfactory control over the variations of the speed and accuracy of movements. We advocate the trade-off paradigm, a recently proposed alternative, which is immune to this criticism.  相似文献   

2.
The lawful continuous linear relation between movement time and task difficulty (i.e., index of difficulty; ID) in a goal-directed rapid aiming task (Fitts' law) has been recently challenged in reciprocal performance. Specifically, a discontinuity was observed at critical ID and was attributed to a transition between two distinct dynamic regimes that occurs with increasing difficulty. In the present paper, we show that such a discontinuity is also present in discrete aiming when ID is manipulated via target width (experiment 1) but not via target distance (experiment 2). Fitts' law's discontinuity appears, therefore, to be a suitable indicator of the underlying functional adaptations of the neuro-muscular-skeletal system to task properties/requirements, independently of reciprocal or discrete nature of the task. These findings open new perspectives to the study of dynamic regimes involved in discrete aiming and sensori-motor mechanisms underlying the speed-accuracy trade-off.  相似文献   

3.

Objective

To investigate which of three virtual training methods produces the largest learning effects on discrete and continuous myocontrol. The secondary objective was to examine the relation between myocontrol and manual motor control tests.

Design

A cohort analytic study.

Setting

University laboratory.

Participants

3 groups of 12 able-bodied participants (N = 36).

Interventions

Participants trained the control over their myosignals on 3 consecutive days. Training was done with either myosignal feedback on a computer screen, a virtual myoelectric prosthetic hand or a computer game. Participants performed 2 myocontrol tests and 2 manual motor control tests before the first and after the last training session. They were asked to open and close a virtual prosthetic hand on 3 different velocities as a discrete myocontrol test and followed a line with their myosignals for 30 seconds as a continuous myocontrol test. The motor control tests were a pegboard and grip-force test.

Main Outcome Measures

Discrete myocontrol test: mean velocities. Continuous myocontrol test: error and error SD. Pegboard test: time to complete. Grip-force test: produced forces.

Results

No differences in learning effects on myocontrol were found for the different virtual training methods. Discrete myocontrol ability did not significantly improve as a result of training. Continuous myocontrol ability improved significantly as a result of training, both on average control and variability. All correlations between the motor control and myocontrol test outcome measures were below .50.

Conclusions

Three different virtual training methods showed comparable results when learning myocontrol. Continuous myocontrol was improved by training while discrete myocontrol was not. Myocontrol ability could not be predicted by the manual motor control tests.  相似文献   

4.
The Rapid Visual Information Processing (RVIP) task, a serial discrimination task where task performance believed to reflect sustained attention capabilities, is widely used in behavioural research and increasingly in neuroimaging studies. To date, functional neuroimaging research into the RVIP has been undertaken using block analyses, reflecting the sustained processing involved in the task, but not necessarily the transient processes associated with individual trial performance. Furthermore, this research has been limited to young cohorts. This study assessed the behavioural and functional magnetic resonance imaging (fMRI) outcomes of the RVIP task using both block and event-related analyses in a healthy middle aged cohort (mean age = 53.56 years, n = 16). The results show that the version of the RVIP used here is sensitive to changes in attentional demand processes with participants achieving a 43% accuracy hit rate in the experimental task compared with 96% accuracy in the control task. As shown by previous research, the block analysis revealed an increase in activation in a network of frontal, parietal, occipital and cerebellar regions. The event related analysis showed a similar network of activation, seemingly omitting regions involved in the processing of the task (as shown in the block analysis), such as occipital areas and the thalamus, providing an indication of a network of regions involved in correct trial performance. Frontal (superior and inferior frontal gryi), parietal (precuenus, inferior parietal lobe) and cerebellar regions were shown to be active in both the block and event-related analyses, suggesting their importance in sustained attention/vigilance. These networks and the differences between them are discussed in detail, as well as implications for future research in middle aged cohorts.  相似文献   

5.
Conventional cognitive testing of monkeys is time‐consuming and involves single‐caging and food or water deprivation. Here we report a novel test of global cognitive performance that can be completed in a short time period without food/water or social restrictions. Nine mazes of increasing difficulty were developed using a standard puzzle feeder, and the maze‐solving performance of ten young and five aged female cynomolgus monkeys (Macaca fascicularis) was tested. The young monkeys solved maze configurations at higher levels of difficulty and solved the first level of difficulty more quickly than aged monkeys. This task discriminated performance by age in nonhuman primates as do more conventional forms of cognitive testing and indicates that this task may be a quick and easy assessment of global cognitive function. Am. J. Primatol. 49:195–202, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

6.
Three measures of mental task strain, namely performance level, occipital midline beta-2 (Oz beta 2) amplitude and subjective rating of task difficulty, were taken in 34 healthy male students aged 19-24 years as they performed either a paced or a self-paced calculating task for 4 h. The performance levels were so constant throughout the work periods that they were of no use in evaluating mental task strain. The Oz beta 2 amplitudes increased significantly with the execution of both tasks, and a significant increase took place during the self-paced task work periods. From this, a critical value of Oz beta 2 amplitude for a heavy task strain was estimated to be about 3.5 microV (the difference between the values at work and at rest). The subjective ratings of task difficulty rose linearly with work time in both tasks. The subjective task strain attributable to work time was found to exceed the critical level long before the objective measure. In addition, other results suggest that the Oz beta 2 activity attributable to task execution is related to the capacity for achieving the task.  相似文献   

7.
The neural basis of word-retrieval deficits in normal aging has rarely been assessed and the few previous functional imaging studies found enhanced activity in right prefrontal areas in healthy older compared to younger adults. However, more pronounced right prefrontal recruitment has primarily been observed during challenging task conditions. Moreover, increased task difficulty may result in enhanced activity in the ventral inferior frontal gyrus (vIFG) bilaterally in younger participants as well. Thus, the question arises whether increased activity in older participants represents an age-related phenomenon or reflects task difficulty effects. In the present study, we manipulated task difficulty during overt semantic and phonemic word-generation and used functional magnetic resonance imaging to assess activity patterns in the vIFG in healthy younger and older adults (N = 16/group; mean age: 24 vs. 69 years). Both groups produced fewer correct responses during the more difficult task conditions. Overall, older participants produced fewer correct responses and showed more pronounced task-related activity in the right vIFG. However, increased activity during the more difficult conditions was found in both groups. Absolute degree of activity was correlated with performance across groups, tasks and difficulty levels. Activity modulation (difficult vs. easy conditions) was correlated with the respective drop in performance across groups and tasks. In conclusion, vIFG activity levels and modulation of activity were mediated by performance accuracy in a similar way in both groups. Group differences in the right vIFG activity were explained by performance accuracy which needs to be considered in future functional imaging studies of healthy and pathological aging.  相似文献   

8.
In a previous study, we succeeded in improving the spatial working memory (WM) performance in healthy young persons by applying transcranial magnetic stimulation (TMS) to the parietal cortex and simultaneously measuring the oxygenated hemoglobin (oxy-Hb) level using near-infrared spectroscopy (NIRS). Since an improvement in WM was observed when TMS was applied to the right parietal cortex, the oxy-Hb distribution seemed to support a model of hemispheric asymmetry (HA). In the present study, we used the same study design to evaluate healthy elderly persons and investigated the effect of TMS on WM performance in the elderly, comparing the results with those previously obtained from young persons. The application of TMS did not affect WM performance (both reaction time and accuracy) of 38 elderly participants (mean age  = 72.5 years old). To investigate the reason for this result, we conducted a three-way ANOVA examining oxy-Hb in both young and elderly participants. For the right parietal TMS site in the elderly, TMS significantly decreased the oxy-Hb level during WM performance; this result was the opposite of that observed in young participants. An additional three-way ANOVA was conducted for each of the 52 channels, and a P value distribution map was created. The P value maps for the young participants showed a clearly localized TMS effect for both the WM and control task, whereas the P map for the elderly participants showed less significant channels and localization. Further analysis following the time course revealed that right-side parietal TMS had almost no effect on the frontal cortex in the elderly participants. This result can most likely be explained by age-related differences in HA arising from the over-recruitment of oxy-Hb, differentiation in the parietal cortex, and age-related alterations of the frontal-parietal networks.  相似文献   

9.
We sought to determine if tendon inflammatory and histopathological responses increase in aged rats compared to young rats performing a voluntary upper extremity repetitive task, and if these changes are associated with motor declines. Ninety-six female Sprague-Dawley rats were used in the rat model of upper extremity overuse: 67 aged and 29 young adult rats. After a training period of 4 weeks, task rats performed a voluntary high repetition low force (HRLF) handle-pulling task for 2 hrs/day, 3 days/wk for up to 12 weeks. Upper extremity motor function was assessed, as were inflammatory and histomorphological changes in flexor digitorum and supraspinatus tendons. The percentage of successful reaches improved in young adult HRLF rats, but not in aged HRLF rats. Forelimb agility decreased transiently in young adult HRLF rats, but persistently in aged HRLF rats. HRLF task performance for 12 weeks lead to increased IL-1beta and IL-6 in flexor digitorum tendons of aged HRLF rats, compared to aged normal control (NC) as well as young adult HRLF rats. In contrast, TNF-alpha increased more in flexor digitorum tendons of young adult 12-week HRLF rats than in aged HRLF rats. Vascularity and collagen fibril organization were not affected by task performance in flexor digitorum tendons of either age group, although cellularity increased in both. By week 12 of HRLF task performance, vascularity and cellularity increased in the supraspinatus tendons of only aged rats. The increased cellularity was due to increased macrophages and connective tissue growth factor (CTGF)-immunoreactive fibroblasts in the peritendon. In conclusion, aged rat tendons were overall more affected by the HRLF task than young adult tendons, particularly supraspinatus tendons. Greater inflammatory changes in aged HRLF rat tendons were observed, increases associated temporally with decreased forelimb agility and lack of improvement in task success.  相似文献   

10.
Cognitive task demands in one sensory modality (T1) can have beneficial effects on a secondary task (T2) in a different modality, due to reduced top-down control needed to inhibit the secondary task, as well as crossmodal spread of attention. This contrasts findings of cognitive load compromising a secondary modality’s processing. We manipulated cognitive load within one modality (visual) and studied the consequences of cognitive demands on secondary (auditory) processing. 15 healthy participants underwent a simultaneous EEG-fMRI experiment. Data from 8 participants were obtained outside the scanner for validation purposes. The primary task (T1) was to respond to a visual working memory (WM) task with four conditions, while the secondary task (T2) consisted of an auditory oddball stream, which participants were asked to ignore. The fMRI results revealed fronto-parietal WM network activations in response to T1 task manipulation. This was accompanied by significantly higher reaction times and lower hit rates with increasing task difficulty which confirmed successful manipulation of WM load. Amplitudes of auditory evoked potentials, representing fundamental auditory processing showed a continuous augmentation which demonstrated a systematic relation to cross-modal cognitive load. With increasing WM load, primary auditory cortices were increasingly deactivated while psychophysiological interaction results suggested the emergence of auditory cortices connectivity with visual WM regions. These results suggest differential effects of crossmodal attention on fundamental auditory processing. We suggest a continuous allocation of resources to brain regions processing primary tasks when challenging the central executive under high cognitive load.  相似文献   

11.
The present experiment assessed learning and memory of a positional task by evaluating behavioral strategies as well as accuracy of a task in four young and four aged monkeys. They were tested in a delayed response (DR) task that has been widely used to study animal models of aging. The task consisted of two phases; an acquisition of the task and a positional memory test with five delay times (1-30 s). There was no clear difference between age groups in the number of trials needed for acquisition of the task. However, an analysis of behavior revealed differences in behavioral characteristics displayed during testing. The young monkeys showed various irrelevant behaviors during the execution of the task. In contrast, the aged monkeys consistently concentrated on the task exhibiting no behaviors irrelevant to the task. These results showed than the aged monkeys' performance was supported by a different behavioral strategy from the young monkeys. The results of the memory test were similar to those of the acquisition on the accuracy and the behavior. The aged monkeys depended on behavioral cues to preserve their positional memory, especially during the task. The present study suggests that cognitive impairments in aged monkeys can be compensated for by employing behavioral strategies.  相似文献   

12.
The inhibitory deficit hypothesis of cognitive aging posits that older adults’ inability to adequately suppress processing of irrelevant information is a major source of cognitive decline. Prior research has demonstrated that in response to task-irrelevant auditory stimuli there is an age-associated increase in the amplitude of the N1 wave, an ERP marker of early perceptual processing. Here, we tested predictions derived from the inhibitory deficit hypothesis that the age-related increase in N1 would be 1) observed under an auditory-ignore, but not auditory-attend condition, 2) attenuated in individuals with high executive capacity (EC), and 3) augmented by increasing cognitive load of the primary visual task. ERPs were measured in 114 well-matched young, middle-aged, young-old, and old-old adults, designated as having high or average EC based on neuropsychological testing. Under the auditory-ignore (visual-attend) task, participants ignored auditory stimuli and responded to rare target letters under low and high load. Under the auditory-attend task, participants ignored visual stimuli and responded to rare target tones. Results confirmed an age-associated increase in N1 amplitude to auditory stimuli under the auditory-ignore but not auditory-attend task. Contrary to predictions, EC did not modulate the N1 response. The load effect was the opposite of expectation: the N1 to task-irrelevant auditory events was smaller under high load. Finally, older adults did not simply fail to suppress the N1 to auditory stimuli in the task-irrelevant modality; they generated a larger response than to identical stimuli in the task-relevant modality. In summary, several of the study’s findings do not fit the inhibitory-deficit hypothesis of cognitive aging, which may need to be refined or supplemented by alternative accounts.  相似文献   

13.
The use of motor learning strategies may enhance rehabilitation outcomes of individuals with neurological injuries (e.g., stroke or cerebral palsy). A common strategy to facilitate learning of challenging tasks is to use sequential progression – i.e., initially reduce task difficulty and slowly increase task difficulty until the desired difficulty level is reached. However, the evidence related to the use of such sequential progressions to improve learning is mixed for functional skill learning tasks, especially considering situations where practice duration is limited. Here, we studied the benefits of sequential progression using a functional motor learning task that has been previously used in gait rehabilitation. Three groups of participants (N = 43) learned a novel motor task during treadmill walking using different learning strategies. Participants in the specific group (n = 21) practiced only the criterion task (i.e., matching a target template that was scaled-up by 30%) throughout the training. Participants in the sequential group (n = 11) gradually progressed to the criterion task (from 3% to 30% in increments of 3%), whereas participants in the random group (n = 11) started at 3% and progressed in random increments (involving both increases and decreases in task difficulty) to the criterion task. At the end of training, kinematic tracking performance on the criterion task was evaluated in all participants both with and without visual feedback. Results indicated that the tracking error was significantly lower in the specific group, and no differences were observed between the sequential and the random progression groups. The findings indicate that the amount of practice in the criterion task is more critical than the difficulty and variations of task practice when learning new gait patterns during treadmill walking.  相似文献   

14.
Anodal transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) has been proposed as a possible therapeutic rehabilitation technique for motor impairment. However, despite extensive investigation into the effects of anodal tDCS on motor output, there is little information on how anodal tDCS affects response processes. In this study, we used a cued go/nogo task with both directional and non-directional cues to assess the effects of anodal tDCS over the dominant (left) primary motor cortex on prepared and unprepared motor responses. Three experiments explored whether the effectiveness of tDCS varied with timing between stimulation and test. Healthy, right-handed young adults participated in a double-blind randomised controlled design with crossover of anodal tDCS and sham stimulation. In Experiment 1, twenty-four healthy young adults received anodal tDCS over dominant M1 at least 40 mins before task performance. In Experiment 2, eight participants received anodal tDCS directly before task performance. In Experiment 3, twenty participants received anodal tDCS during task performance. In all three experiments, participants responded faster to directional compared to non-directional cues and with their right hand. However, anodal tDCS had no effect on go/nogo task performance at any stimulation – test interval. Bayesian analysis confirmed that anodal stimulation had no effect on response speed. We conclude that anodal tDCS over M1 does not improve response speed of prepared or unprepared responses of young adults in a go/nogo task.  相似文献   

15.
It has been proposed that the central nervous system determines reaching movement trajectories so as to minimize the positional variance of the endpoint in the presence of signal-dependent noise. The hypothesis well reproduces the empirical movement trajectories for noise to the control signal whose variance is proportional to the second power of the amplitude of the control signal. However, empirical studies do not necessarily exhibit such a simple signal-noise relationship. The studies exhibit a wide distribution of estimates of the value of the exponent. This discrepancy raises the question of how the minimum endpoint variance trajectory depends on the value of the exponent. To address this question, we calculated minimum endpoint variance trajectories in simulations in which the value of the exponent was varied from 0 to 3. We found that the optimal trajectories differed according to the value of the exponent, and the profiles of optimal trajectories gradually diverged from the empirical ones as the value approached 0, though this change was not remarkable for larger values. Moreover, the optimal trajectories failed to replicate Fitts' law when the value was not equal to 2. These results suggest that the acceptability of the minimum endpoint variance theory depends on the value of the exponent in our motor system.  相似文献   

16.
Brain-computer interfaces (BCIs) provide a non-muscular communication channel for persons with severe motor impairments. Previous studies have shown that the aptitude with which a BCI can be controlled varies from person to person. A reliable predictor of performance could facilitate selection of a suitable BCI paradigm. Eleven severely motor impaired participants performed three sessions of a P300 BCI web browsing task. Before each session auditory oddball data were collected to predict the BCI aptitude of the participants exhibited in the current session. We found a strong relationship of early positive and negative potentials around 200 ms (elicited with the auditory oddball task) with performance. The amplitude of the P2 (r  =  −0.77) and of the N2 (r  =  −0.86) had the strongest correlations. Aptitude prediction using an auditory oddball was successful. The finding that the N2 amplitude is a stronger predictor of performance than P3 amplitude was reproduced after initially showing this effect with a healthy sample of BCI users. This will reduce strain on the end-users by minimizing the time needed to find suitable paradigms and inspire new approaches to improve performance.  相似文献   

17.
The aim of this study was to assess the extent to which Need for Cognitive Closure (NCC), an individual-level epistemic motivation, can explain inter-individual variability in the cognitive effort invested on a perceptual decision making task (the random motion task). High levels of NCC are manifested in a preference for clarity, order and structure and a desire for firm and stable knowledge. The study evaluated how NCC moderates the impact of two variables known to increase the amount of cognitive effort invested on a task, namely task ambiguity (i.e., the difficulty of the perceptual discrimination) and outcome relevance (i.e., the monetary gain associated with a correct discrimination). Based on previous work and current design, we assumed that reaction times (RTs) on our motion discrimination task represent a valid index of effort investment. Task ambiguity was associated with increased cognitive effort in participants with low or medium NCC but, interestingly, it did not affect the RTs of participants with high NCC. A different pattern of association was observed for outcome relevance; high outcome relevance increased cognitive effort in participants with moderate or high NCC, but did not affect the performance of low NCC participants. In summary, the performance of individuals with low NCC was affected by task difficulty but not by outcome relevance, whereas individuals with high NCC were influenced by outcome relevance but not by task difficulty; only participants with medium NCC were affected by both task difficulty and outcome relevance. These results suggest that perceptual decision making is influenced by the interaction between context and NCC.  相似文献   

18.
This study was designed to assess the effect of ageing on spatial (allocentric and egocentric) strategies in rats. Two different tasks were designed for this purpose: one involving Morris' circular pool (distal extramaze cues) and another using the T water maze (egocentric cues). In the first task, the aged rats showed some difficulty in acquiring allocentric spatial learning skills. After increasing the number of trials in this task, there was no significant improvement in the performance of the aged group of rats compared to the adult group. However, in the second spatial task (using egocentric cues), both age groups gave a similar performance. Therefore, the effect of ageing on spatial learning depends on the strategy required to acquire this learning.  相似文献   

19.
An inability to perform tasks involving reaching is a common problem for stroke patients. Knowledge of normal muscle activation patterns during these tasks is essential to the identification of abnormal patterns in post-stroke hemiplegia. Findings will provide insight into changes in muscle activation patterns associated with recovery of upper limb function.In this study with neurologically intact participants the co-ordination of shoulder and elbow muscle activity during two dimensional reaching tasks is explored. Eight participants undertook nine tracking tasks in which trajectory (orientation and length), duration, speed and resistance to movement were varied. The participants’ forearm was supported using a hinged arm-holder, which constrained their hand to move in a two dimensional plane. EMG signals were recorded from triceps, biceps, anterior deltoid, upper, middle and lower trapezius and pectoralis major.A wide variation in muscle activation patterns, in terms of timing and amplitude, was observed between participants performing the same task. EMG amplitude increased significantly with length, duration and resistance of the task for all muscles except anterior deltoid. Co-activation between biceps and triceps was significantly dependent on both task and trajectory orientation. Activation pattern of pectoralis major was dependent on trajectory. Neither trajectory orientation nor task condition affected the activation pattern of anterior deltoid. Normal ranges of timing of muscle activity during the tasks were identified.  相似文献   

20.
In numerous studies the P300 component of the event-related brain potential (ERP) has been shown to occur in connection with stimulus evaluation processes. 10 healthy right-handed volunteers (3 women, 7 men) aged from 25 to 30 years (mean age 27.8 years) participated in the experiments. One of 5 equiprobably occurring two-letter strings appeared on the screen always at the same central location. The strings informed the subjects about the difficulty of subsequently presented mental arithmetic tasks. After the letter strings vanished from the screen the subjects were to press the space-bar whereby a mental arithmetic task was presented corresponding in difficulty to the preceding message. The EEG was recorded by means of Ag/AgCl electrodes from frontal (F zeta), central (C zeta) and parietal (P zeta) midline electrodes referenced to linked earlobes. EEG and EOG were sampled 1200 ms, starting 200 ms prior to string onset. P300 peak latencies, peak amplitudes and areas in the time range 300 to 900 ms were measured in ERPs averaged selectively for the 5 strings. The main finding was that the P300 amplitude in ERPs to the 5 different strings varied in a U-shaped trend as a function of announced task difficulty. This result gives further evidence that the P300 amplitude reflects distance between incoming information and current adaptation level at the inferred internal dimension, i.e. task difficulty in this experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号