首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The 46-kb plasmid pSK41 is the prototype of a family of staphylococcal conjugative multiresistance plasmids. Sequence analyses have revealed the presence of a putative resolvase gene, res, on pSK41, and identical or related genes carried by other staphylococcal multiresistance plasmids. Carriage of the res region was found to ameliorate the accumulation of multimeric plasmid forms, and recombinant plasmids encoding a wild-type res gene exhibited greater plasmid segregational stability than counterparts carrying a nonfunctional mutant, irrespective of whether the cognate or a heterologous replication system and host was utilized. In vitro DNA-binding studies demonstrated that purified Res protein binds within the intergenic region upstream of the res coding sequence. Six copies of an imperfect 11-bp repeat sequence were identified within DNA sequences protected by Res in DNAseI footprinting studies, in an arrangement that suggests a typical resolution site organization consisting of three subsites.  相似文献   

3.
Abstract A 5.8-kb Cla I fragment of pRJ9, a bacteriocinogenic plasmid of Sphylococcus aureus , was cloned in the unique Cla I site of pRJ5. The recombinant plasmid obtained, pRJ23, failed to confer bacteriocin production and immunity to bacteriocin on host cells. The cloned fragment was shown to contain the complete replicon of pRJ9. Attempts to clone the 4.4-kb Cla I fragment of pRJ9 were unsuccessful, apparently due to the inactivation of the basic replicon of the cloning vector. Therefore, plasmid pRJ5 cut at its Cla I site appears to be a suitable vector for cloning replication regions of plasmids that cab replicate in S. aureus .  相似文献   

4.
5.
6.
7.
Among the recently discovered Staphylococcus aureus immune evasion proteins, Sbi is unique in its ability to interact with components of both the adaptive and innate immune systems of the host. Sbi domains I and II (Sbi-I and Sbi-II) bind IgG. Sbi domain IV (residues 198-266) binds the central complement protein C3. When linked to Sbi-III, Sbi-IV induces a futile consumption of complement via alternative pathway activation, whereas isolated Sbi-IV specifically inhibits the alternative pathway without complement consumption. Here we have determined the three-dimensional structure of Sbi-IV by NMR spectroscopy, showing that Sbi-IV adopts a three-helix bundle fold similar to those of the S. aureus complement inhibitors Efb-C, Ehp, and SCIN. The (1)H-(15)N HSQC spectrum of Sbi-III indicates that this domain, essential for futile complement consumption, is natively unfolded, at least when isolated from the rest of Sbi. Sbi-IV and Sbi-III-IV both bind C3dg with 1:1 stoichiometry and submicromolar affinity. Despite low overall sequence identity, Sbi possesses the same residues as Efb at two positions essential for Efb-C binding to C3d. Mutation to alanine of either of these residues, Arg-231 and Asn-238, abolishes both Sbi-IV binding to C3dg and Sbi-IV alternative pathway inhibition. The almost complete conservation of Sbi-III and Sbi-IV amino acid sequences across more than 30 strains isolated from human and animal hosts indicates that the unique mechanism of Sbi in complement system subversion is a feature of infections of both humans and economically important animals.  相似文献   

8.
J Germino  D Bastia 《Cell》1983,34(1):125-134
Initiation of DNA replication in plasmid R6K is potentiated by the plasmid-encoded 35 kd replication initiator protein. We had previously reported that the initiator bound to two regions of R6K DNA called Site I and Site II. Using DNAase I footprinting technique we have demonstrated that the initiator bound to seven tandem repeats of a 22 bp long sequence in Site I. In Site II, the initiator bound to a single repeat having the same consensus sequence and to two partial repeats that most likely overlap the promoter of the initiation protein cistron. Using dimethyl sulfate as a chemical probe, we have determined the purine residues of Site I and Site II that make contact with the initiator protein. The results show that eight out of nine contact points per repeat in Site I were located on one of the two strands of the DNA. The binding of the initiator to the Site II sequence could explain the observed autoregulation of the synthesis of the initiator protein by promoter occlusion.  相似文献   

9.
The replication frequency of the IncB miniplasmid pMU720 is dependent upon the expression of the repA gene. Binding of a small, highly structured, antisense RNA (RNA I) to its complementary target in the RepA mRNA (RNA II) inhibits repA expression and thus regulates replication. Analyses of binding of RNA I to RNA II indicated that the reaction consists of three major steps. The first step, initial kissing complex formation, involves base pairing between complementary sequences in the hairpin loops of RNA I and RNA II. The second step is facilitated by interior loop structures in the upper stems of RNA I and RNA II and involves intrastand melting and interstrand pairing of the upper stem regions to form an extended kissing complex. This complex was shown to be sufficient for inhibition of repA expression. The third step involves stabilization of the extended kissing complex by pairing between complementary single-stranded tail regions of RNA I and RNA II. Thus, the final product of RNA I-RNA II binding is not a full duplex between the two molecules.  相似文献   

10.
Purified Rep protein, a replication initiator protein of plasmid pSC101, has less binding affinity for the direct repeats (DR) in the replication origin region (ori) than that for the inverted repeats (IR) in the promoter region of the structure gene of Rep (rep) (Sugiura, S. et al. (1990) J. Biochem. 107, 369-376). We found a protein factor that promotes binding of purified Rep to the DR sequence in the cell extract of Escherichia coli. In the presence of the factor, DNA fragments containing the DR sequence can form a specific DNA-protein complex by the addition of low concentrations of Rep. On the contrary, IR-containing DNA loses its binding activity for Rep by preincubation with the factor. We purified extensively the factor and identified it as exonuclease III (exo III). Enzymatic action of the factor or authentic exo III at 37 degrees C is necessary for binding of Rep to DR-DNA. This binding of Rep to duplex DNA treated with exo III is DR-sequence specific. Since Rep cannot bind to the single stranded DR sequence, the present finding suggests that partial single-stranded regions around the DR sequence are required for binding of Rep.  相似文献   

11.
Abstract pT181 is a Staphylococcus aureus rolling circle replicating plasmid whose copy number is controlled by regulating the synthesis and activity of the initiator protein, RepC. The RepC dimer is modified during pT181 replication by the addition of an oligodeoxynucleotide, giving rise to a new form, RepC*. To purify RepC*, RepC was expressed in S. aureus as a fusion protein with a polyhistidine tail. The histidine-tagged RepC retains its initiation and topoisomerase activities in vitro. Histagged RepC/RepC and RepC/RepC* were purified in a two-step procedure. Peptide mapping, mass spectrometric analysis and protein sequencing of purified RepC and RepC* were carried out, and both proteins appeared identical, except that the peptide containing the RepC active site tyrosine used in nicking activity was absent when the purified RepC* sample was analyzed. The absence of the active site in RepC* suggests that this site was modified during replication. The results provide the first direct biochemical evidence that RepC* is a modified form of RepC, and support a model in which RepC replication of pT181 leaves RepC with an oligonucleotide blocking the active site of one of its subunits.  相似文献   

12.
We previously isolated a nuclear 5.7 kb genomic fragment carrying the NAM7/UPF1 gene, which is able to suppress mitochondrial splicing deficiency when present in multiple copies. We show here that an immediately adjacent gene ISF1 (Increasing Suppression Factor) increases the efficiency of the NAM7/UPF1 suppressor activity. The ISF1 gene has been independently isolated as the MBR3 gene and comparison of the ISF1 predicted protein sequence with data libraries revealed a significant similarity with the MBRI yeast protein. The ISF1 and NAM7 genes are transcribed in the same direction, and RNase mapping allowed the precise location of their termini within the intergenic region to be determined. The ISF1 gene is not essential for cell viability or respiratory growth. However as for many mitochondrial genes, ISF1 expression is sensitive to fermentative repression; in contrast expression of the NAM7 gene is unaffected by glucose. We propose that ISF1 could influence the NAM7/UPF1 function, possibly at the level of mRNA turnover, thus modulating the expression of nuclear genes involved in mitochondrial biogenesis.  相似文献   

13.
14.
15.
To study the functions of the mini-P1 replication initiation protein RepA quantitatively, we have developed a method to measure RepA concentration by using immunoblotting. In vivo, there are about 20 RepA dimers per unit-copy plasmid DNA. RepA was deduced to be a dimer from gel filtration of the purified protein. Since there are 14 binding sites of the protein per replicon, the physiological concentration of the protein appears to be sufficiently low to be a rate-limiting factor for replication. Autoregulation is apparently responsible for the low protein level; at the physiological concentration of the protein, the repA promoter retains only 0.1% of its full activity as determined by gene fusions to lacZ. When the concentration is further decreased by a factor of 3 or increased by a factor of 40, replication is no longer detectable.  相似文献   

16.
Nishio SY  Itoh T 《Plasmid》2008,59(2):102-110
Replication of the ColE2 plasmid requires a plasmid-coded initiator protein (Rep). Rep expression is controlled by antisense RNA (RNAI) against the Rep mRNA at a translational step. In this paper, we examined the effects of host RNA degradation enzymes on the degradation process of the Rep mRNA and its degradation intermediates especially those carrying the 5' untranslated region. We showed that the Rep mRNA is subjected to complex degradation pathways involving at least RNase I, RNase II, RNase III, RNase E, RNase G and PNPase. RNase II acts as a major exoribonuclease and PNPase plays a minor role. We also showed that the PcnB (polyA polymerase I) plays only a minor role in the Rep mRNA degradation process. The RNA degradation pathways of the Rep mRNA and RNAI of the ColE2 plasmid are quite different. Based on these results, we speculate that the ColE2 Rep mRNA and RNAI are endowed with individual RNA half lives required for the efficient copy number control by being subjected to different RNA degradation systems.  相似文献   

17.
The key protein in the initiation of Helicobacter pylori chromosome replication, DnaA, has been characterized. The amount of the DnaA protein was estimated to be approximately 3000 molecules per single cell; a large part of the protein was found in the inner membrane. The H.pylori DnaA protein has been analysed using in vitro (gel retardation assay and surface plasmon resonance (SPR)) as well as in silico (comparative computer modeling) studies. DnaA binds a single DnaA box as a monomer, while binding to the fragment containing several DnaA box motifs, the oriC region, leads to the formation of high molecular mass nucleoprotein complexes. In comparison with the Escherichia coli DnaA, the H.pylori DnaA protein exhibits lower DNA-binding specificity; however, it prefers oriC over non-box DNA fragments. As determined by gel retardation techniques, the H.pylori DnaA binds with a moderate level of affinity to its origin of replication (4nM). Comparative computer modelling showed that there are nine residues within the binding domain which are possible determinants of the reduced H.pylori DnaA specificity. Of these, the most interesting is probably the triad PTL; all three residues show significant divergence from the consensus, and Thr398 is the most divergent residue of all.  相似文献   

18.
19.
Kim PD  Rosche TM  Firshein W 《Plasmid》2000,43(3):214-222
Plasmid RK2 codes for two species of the replication initiator protein TrfA (33 and 44 kDa). Both polypeptides are strongly associated with membrane fractions of Escherichia coli host cells (W. Firshein and P. Kim, Mol. Microbiol. 23, 1-10, 1997). We investigated the role of a 12-amino-acid hydrophobic region (HR) in the membrane association of TrfA. Epitope-tagged polypeptide fragments of TrfA that contained HR were expressed and found to be associated with membrane fractions. Site-directed mutagenesis of trfA revealed that changes of specific amino acids in HR can affect both TrfA association with the membrane and its ability to support replication of an RK2 oriV plasmid in vivo. These results are consistent with the hypothesis that membrane association of TrfA is functionally relevant and that the HR region of TrfA is involved in membrane association and DNA replication in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号