首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lysophosphatidic acid (LPA) is a serum-derived phospholipid that induces a variety of biological responses in various cells via heterotrimeric G protein-coupled receptors (GPCRs) including LPA1, LPA2, and LPA3. LPA-induced cytoskeletal changes are mediated by Rho family small GTPases, such as RhoA, Rac1, and Cdc42. One of these small GTPases, RhoA, may be activated via Galpha(12/13)-linked Rho-specific guanine nucleotide exchange factors (RhoGEFs) under LPA stimulation although the detailed mechanisms are poorly understood. Here, we show that the C terminus of LPA1 and LPA2 but not LPA3 interact with the PDZ domains of PDZ domain-containing RhoGEFs, PDZ-RhoGEF, and LARG, which are comprised of PDZ, RGS, Dbl homology (DH), and pleckstrin homology (PH) domains. In LPA1- and LPA2-transfected HEK293 cells, LPA-induced RhoA activation was observed although the C terminus of LPA1 and LPA2 mutants, which failed to interact with the PDZ domains, did not cause LPA-induced RhoA activation. Furthermore, overexpression of the PDZ domains of PDZ domain-containing RhoGEFs served as dominant negative mutants for LPA-induced RhoA activation. Taken together, these results indicate that formation of the LPA receptor/PDZ domain-containing RhoGEF complex plays a pivotal role in LPA-induced RhoA activation.  相似文献   

2.
Lysophosphatidic acid (LPA) activates a family of cognate G protein-coupled receptors and is involved in various pathophysiological processes. However, it is not clearly understood how these LPA receptors are specifically coupled to their downstream signaling molecules. This study found that LPA(2), but not the other LPA receptor isoforms, specifically interacts with Na(+)/H(+) exchanger regulatory factor2 (NHERF2). In addition, the interaction between them requires the C-terminal PDZ domain-binding motif of LPA(2) and the second PDZ domain of NHERF2. Moreover, the stable expression of NHERF2 potentiated LPA-induced phospholipase C-beta (PLC-beta) activation, which was markedly attenuated by either a mutation in the PDZ-binding motif of LPA(2) or by the gene silencing of NHERF2. Using its second PDZ domain, NHERF2 was found to indirectly link LPA(2) to PLC-beta3 to form a complex, and the other PLC-beta isozymes were not included in the protein complex. Consistently, LPA(2)-mediated PLC-beta activation was specifically inhibited by the gene silencing of PLC-beta3. In addition, NHERF2 increases LPA-induced ERK activation, which is followed by cyclooxygenase-2 induction via a PLC-dependent pathway. Overall, the results suggest that a ternary complex composed of LPA(2), NHERF2, and PLC-beta3 may play a key role in the LPA(2)-mediated PLC-beta signaling pathway.  相似文献   

3.
Lysophosphatidic acid (LPA) is a serum-borne phospholipid that activates its own G protein-coupled receptors present in numerous cell types. In addition to stimulating cell proliferation, LPA also induces cytoskeletal changes and promotes cell migration in a RhoA- and Rac-dependent manner. Whereas RhoA is activated via Galpha(12/13)-linked Rho-specific guanine nucleotide exchange factors, it is unknown how LPA receptors may signal to Rac. Here we report that the prototypic LPA(1) receptor (previously named Edg2), when expressed in B103 neuroblastoma cells, mediates transient activation of RhoA and robust, prolonged activation of Rac leading to cell spreading, lamellipodia formation, and stimulation of cell migration. LPA-induced Rac activation is inhibited by pertussis toxin and requires phosphoinositide 3-kinase activity. Strikingly, LPA fails to activate Rac in cell types that lack the Rac-specific exchange factor Tiam1; however, enforced expression of Tiam1 restores LPA-induced Rac activation in those cells. Tiam1-deficient cells show enhanced RhoA activation, stress fiber formation, and cell rounding in response to LPA, consistent with Tiam1/Rac counteracting RhoA. We conclude that LPA(1) receptors couple to a G(i)-phosphoinositide 3-kinase-Tiam1 pathway to activate Rac, with consequent suppression of RhoA activity, and thereby stimulate cell spreading and motility.  相似文献   

4.
LPA2 receptor mediates mitogenic signals in human colon cancer cells   总被引:6,自引:0,他引:6  
Lysophosphatidic acid (LPA) is a mediator of multiple cellular responses. LPA mediates its effects predominantly through the G protein-coupled receptors LPA1, LPA2, and LPA3. In the present work, we studied LPA2-mediated signaling using human colon cancer cell lines, which predominantly express LPA2. LPA2 activated Akt and Erk1/2 in response to LPA. LPA mediated Akt activation was inhibited by pertussis toxin (PTX), whereas Erk1/2 activation was completely inhibited by a blocker of phospholipase Cbeta, U-73122. LPA also induced interleukin-8 (IL-8) synthesis in the colon cancer cells by primarily activating LPA2 receptor. We also found that LPA2 interacts with Na+/H+ exchanger regulatory factor 2 (NHERF2). Activation of Akt and Erk1/2 was significantly attenuated by silencing of NHERF2 expression by RNA interference, suggesting a pivotal role of NHERF2 in LPA2-mediated signaling. We found that expression of LPA2 was elevated, whereas expression of LPA1 downregulated in several types of cancers, including ovarian and colon cancer. We conclude that LPA2 is the major LPA receptor in colon cancer cells and cellular signals by LPA2 are largely mediated through its ability to interact with NHERF2.  相似文献   

5.
Neuronal cells undergo rapid growth cone collapse, neurite retraction, and cell rounding in response to certain G protein-coupled receptor agonists such as lysophosphatidic acid (LPA). These shape changes are driven by Rho-mediated contraction of the actomyosin-based cytoskeleton. To date, however, detection of Rho activation has been hampered by the lack of a suitable assay. Furthermore, the nature of the G protein(s) mediating LPA-induced neurite retraction remains unknown. We have developed a Rho activation assay that is based on the specific binding of active RhoA to its downstream effector Rho-kinase (ROK). A fusion protein of GST and the Rho-binding domain of ROK pulls down activated but not inactive RhoA from cell lysates. Using GST-ROK, we show that in N1E-115 neuronal cells LPA activates endogenous RhoA within 30 s, concomitant with growth cone collapse. Maximal activation occurs after 3 min when neurite retraction is complete and the actin cytoskeleton is fully contracted. LPA-induced RhoA activation is completely inhibited by tyrosine kinase inhibitors (tyrphostin 47 and genistein). Activated Galpha12 and Galpha13 subunits mimic LPA both in activating RhoA and in inducing RhoA-mediated cytoskeletal contraction, thereby preventing neurite outgrowth. We conclude that in neuronal cells, LPA activates RhoA to induce growth cone collapse and neurite retraction through a G12/13-initiated pathway that involves protein-tyrosine kinase activity.  相似文献   

6.
To examine the contribution of different G-protein pathways to lysophosphatidic acid (LPA)-induced protein kinase D (PKD) activation, we tested the effect of LPA on PKD activity in murine embryonic cell lines deficient in Galpha(q/11) (Galpha(q/11) KO cells) or Galpha(12/13) (Galpha(12/13) KO cells) and used cells lacking rhodopsin kinase (RK cells) as a control. In RK and Galpha(12/13) KO cells, LPA induced PKD activation through a phospholipase C/protein kinase C pathway in a concentration-dependent fashion with maximal stimulation (6-fold for RK cells and 4-fold for Galpha(12/13) KO cells in autophosphorylation activity) achieved at 3 microm. In contrast, LPA did not induce any significant increase in PKD activity in Galpha(q/11) KO cells. However, LPA induced a significantly increased PKD activity when Galpha(q/11) KO cells were transfected with Galpha(q). LPA-induced PKD activation was modestly attenuated by prior exposure of RK cells to pertussis toxin (PTx) but abolished by the combination treatments of PTx and Clostridium difficile toxin B. Surprisingly, PTx alone strikingly inhibited LPA-induced PKD activation in a concentration-dependent fashion in Galpha(12/13) KO cells. Similar results were obtained when activation loop phosphorylation at Ser-744 was determined using an antibody that detects the phosphorylated state of this residue. Our results indicate that G(q) is necessary but not sufficient to mediate LPA-induced PKD activation. In addition to G(q), LPA requires additional G-protein pathways to elicit a maximal response with G(i) playing a critical role in Galpha(12/13) KO cells. We conclude that LPA induces PKD activation through G(q), G(i), and G(12) and propose that PKD activation is a point of convergence in the action of multiple G-protein pathways.  相似文献   

7.
In many cell types, G-protein-coupled receptor (GPCR)-induced Erk1/2 MAP kinase activation is mediated via receptor tyrosine kinase (RTK) transactivation, in particular via the epidermal growth factor (EGF) receptor. Lysophosphatidic acid (LPA), acting via GPCRs, is a mitogen and MAP kinase activator in many systems, and LPA can regulate adipocyte proliferation. The mechanism by which LPA activates the Erk1/2 MAP kinase is generally accepted to be via EGF receptor transactivation. In primary cultures of brown pre-adipocytes, EGF can induce Erk1/2 activation, which is obligatory and determinant for EGF-induced proliferation of these cells. Therefore, we have here examined whether LPA, via EGF transactivation, can activate Erk1/2 in brown pre-adipocytes. We found that LPA could induce Erk1/2 activation. However, the LPA-induced Erk1/2 activation was independent of transactivation of EGF receptors (or PDGF receptors) in these cells (whereas in transformed HIB-1B brown adipocytes, the LPA-induced Erk1/2 activation indeed proceeded via EGF receptor transactivation). In the brown pre-adipocytes, LPA instead induced Erk1/2 activation via two distinct non-transactivational pathways, one Gi-protein dependent, involving PKC and Src activation, the other, a PTX-insensitive pathway, involving PI3K (but not Akt) activation. Earlier studies showing LPA-induced Erk1/2 activation being fully dependent on RTK transactivation have all been performed in cell lines and transfected cells. The present study implies that in non-transformed systems, RTK transactivation may not be involved in the mediation of GPCR-induced Erk1/2 MAP kinase activation.  相似文献   

8.
Many G protein-coupled receptors possess carboxyl-terminal motifs ideal for interaction with PDZ scaffold proteins, which can control receptor trafficking and signaling in a cell-specific manner. To gain a panoramic view of beta1-adrenergic receptor (beta AR) interactions with PDZ scaffolds, the beta1AR carboxyl terminus was screened against a newly developed proteomic array of PDZ domains. These screens confirmed beta1AR associations with several previously identified PDZ partners, such as PSD-95, MAGI-2, GIPC, and CAL. Moreover, two novel beta1AR-interacting proteins, SAP97 and MAGI-3, were also identified. The beta1AR carboxyl terminus was found to bind specifically to the first PDZ domain of MAGI-3, with the last four amino acids (E-S-K-V) of beta1AR being the key determinants of the interaction. Full-length beta1AR robustly associated with full-length MAGI-3 in cells, and this association was abolished by mutation of the beta1AR terminal valine residue to alanine (V477A), as determined by co-immunoprecipitation experiments and immunofluorescence co-localization studies. MAGI-3 co-expression with beta1AR profoundly impaired beta1AR-mediated ERK1/2 activation but had no apparent effect on beta1AR-mediated cyclic AMP generation or agonist-promoted beta1AR internalization. These findings revealed that the interaction of MAGI-3 with beta1AR can selectively regulate specific aspects of receptor signaling. Moreover, the screens of the PDZ domain proteomic array provide a comprehensive view of beta1AR interactions with PDZ scaffolds, thereby shedding light on the molecular mechanisms by which beta1 AR signaling and trafficking can be regulated in a cell-specific manner.  相似文献   

9.
Platelet-derived growth factor (PDGF) has multiple functions including inhibition of apoptosis and promotion of cell proliferation. In this study, we show that Na(+)/H(+) exchanger regulatory factor 2 (NHERF2) binds to the carboxyl-terminal PDZ domain-binding motif of the PDGF receptor through a PDZ domain-mediated interaction, and evaluate the consequence on PDGF-induced proliferation. Stable transfection with NHERF2 increased the PDGF-induced phosphorylation of ERK and Akt in Rat1 embryonic fibroblasts. The phosphorylation of Akt was blocked by pretreatment with LY294002, a PI-3-kinase inhibitor, in both Rat1/NHERF2 and Rat1/vector cells. In Rat1/vector cells, PDGF-induced phosphorylation of ERK was completely inhibited by pretreatment with PD98059, a MEK inhibitor. In contrast, the NHERF2-dependent increase of ERK phosphorylation was not affected by pretreatment with PD98059 in Rat1/NHERF2 cells. Thus, the NHERF2-dependent increase of ERK phosphorylation occurs in a MEK-independent fashion. Pretreatment with PP2, a specific inhibitor of Src family tyrosine kinase, completely blocked the NHERF2-dependent increase of the phosphorylation of ERK and Akt, suggesting that NHERF2 up-regulates Erk phosphorylation through a Src family kinase-dependent pathway. Consistent with these results, the PDGF-induced thymidine incorporation was increased in Rat1/NHERF2 cells, and the NHERF2-dependent increase of thymidine incorporation was prevented by treatment with LY294002 and PP2 but not with PD98059. These results suggest that NHERF2 stimulates PDGF-induced proliferation by increasing PI-3-kinase/Akt, MEKindependent ERK, and Src family kinase-mediated signaling pathways.  相似文献   

10.
Lysophosphatidic acid (LPA) has been shown to be a potent mitogen for vascular smooth muscle cells. Src-dependent transactivation of receptor tyrosine kinases has been previously demonstrated to mediate LPA-induced activation of MAP kinase ERK1/2. Furthermore, generation of reactive oxygen species (ROS) by LPA is also known to contribute to MAP kinase activation. Rho family small G-proteins Rac and Cdc42, and their immediate downstream effector p21-activated kinase (PAK), have been demonstrated to mediate important effects on the cytoskeleton that are relevant for cell migration and proliferation. In the present report we evaluated stimulation of PAK by LPA in rat aortic vascular smooth muscle cells (VSMC) by PAK immunocomplex MBP in-gel kinase assay. LPA increased PAK activity 3-fold, peaking at 5 min and showing sustained activation up to 45 min. Inhibition of tyrosine kinases by pretreatment of VSMC with genistein or specific inhibition of Src by PP1 greatly diminished LPA-induced PAK activation, whereas specific inhibition of PDFG- and EGF receptor kinase by tyrphostin AG1296 and AG1478 had no effect. Furthermore, inhibition of Galpha(i) by pertussis toxin and inhibition of NADH/NADPH oxidase by diphenylene iodonium also diminished LPA-induced stimulation of PAK. This is the first study to demonstrate that LPA activates PAK. In VSMC, PAK activation by LPA is mediated by Galpha(i) and is dependent on Src, whereas EGF- or PDGF receptor transactivation are not involved. Furthermore, generation of ROS is required for LPA-induced activation of PAK.  相似文献   

11.
Among phospholipase C (PLC) isozymes (β, γ, δ, ε, ζ and η), PLC-β plays a key role in G-protein coupled receptor (GPCR)-mediated signaling. PLC-β subtypes are often overlapped in their distribution, but have unique knock-out phenotypes in organism, suggesting that each subtype may have the different role even within the same type of cells. In this study, we examined the possibility of the differential coupling of each PLC-β subtype to GPCRs, and explored the molecular mechanism underlying the specificity. Firstly, we found that PLC-β1 and PLC-β3 are activated by bradykinin (BK) or lysophosphatidic acid (LPA), respectively. BK-triggered phosphoinositides hydrolysis and subsequent Ca2+ mobilization were abolished specifically by PLC-β1 silencing, whereas LPA-triggered events were by PLC-β3 silencing. Secondly, we showed the evidence that PDZ scaffold proteins is a key mediator for the selective coupling between PLC-β subtype and GPCR. We found PAR-3 mediates physical interaction between PLC-β1 and BK receptor, while NHERF2 does between PLC-β3 and LPA2 receptor. Consistently, the silencing of PAR-3 or NHERF2 blunted PLC signaling induced by BK or LPA respectively. Taken together, these data suggest that each subtype of PLC-β is selectively coupled to GPCR via PDZ scaffold proteins in given cell types and plays differential role in the signaling of various GPCRs.  相似文献   

12.
Lysophosphatidic acid (LPA) is elevated in ascites of ovarian cancer patients and is involved in growth and invasion of ovarian cancer cells. Accumulating evidence suggests a pivotal role of mesenchymal stem cells (MSCs) or stromal cells in tumorigenesis. In the present study, we demonstrated that ascites from ovarian cancer patients and LPA increased migration of human MSCs. The migration of MSCs induced by LPA and malignant ascites was completely abrogated by pretreatment with Ki16425, an antagonist of LPA receptors, and by silencing of endogenous LPA(1), but not LPA(2), with small interference RNA, suggesting a key role of LPA played in the malignant ascites-induced migration. LPA induced activation of ERK through pertussis toxin-sensitive manner, and pretreatment of MSCs with U0126, a MEK inhibitor, or pertussis toxin attenuated the LPA-induced migration. Moreover, LPA induced activation of RhoA in MSCs, and pretreatment of the cells with Y27632, a Rho kinase inhibitor, markedly inhibited the LPA-induced migration. In addition, LPA and malignant ascites increased intracellular concentration of calcium in MSCs, and Ki16425 completely inhibited the elevation of intracellular calcium. These results suggest that LPA is a crucial component of the malignant ascites which induce the migration of MSCs and elevation of intracellular calcium.  相似文献   

13.
The Na(+)/H(+) exchanger regulatory factor (NHERF; also known as EBP50) contains two PDZ domains that mediate the assembly of transmembrane and cytosolic proteins into functional signal transduction complexes. The NHERF PDZ1 domain interacts specifically with the motifs DSLL, DSFL, and DTRL present at the carboxyl termini of the beta(2) adrenergic receptor (beta(2)AR), the platelet-derived growth factor receptor (PDGFR), and the cystic fibrosis transmembrane conductance regulator (CFTR), respectively, and plays a central role in the physiological regulation of these proteins. The crystal structure of the human NHERF PDZ1 has been determined at 1.5 A resolution using multiwavelength anomalous diffraction phasing. The overall structure is similar to known PDZ structures, with notable differences in the NHERF PDZ1 carboxylate-binding loop that contains the GYGF motif, and the variable loop between the beta2 and beta3 strands. In the crystalline state, the carboxyl-terminal sequence DEQL of PDZ1 occupies the peptide-binding pocket of a neighboring PDZ1 molecule related by 2-fold crystallographic symmetry. This structure reveals the molecular mechanism of carboxyl-terminal leucine recognition by class I PDZ domains, and provides insights into the specificity of NHERF interaction with the carboxyl termini of several membrane receptors and ion channels, including the beta(2)AR, PDGFR, and CFTR.  相似文献   

14.
Epithelial ovarian cancer (EOC) is asymptomatic at early stages and is often diagnosed late when tumor cells are highly metastatic. Lysophosphatidic acid (LPA) has been implicated in ovarian oncogenesis as levels of this lipid are elevated in patient ascites and plasma. Because the underlying mechanism governing LPA regulation of matrix metalloproteinase-2 (MMP-2) activation remains undefined, we investigated the relationship between LPA-induced changes in actin microfilament organization and MMP-2 enzymatic activity. We report that when cells were cultured at a high density, LPA mediated stress fiber and focal adhesion disassembly and significantly repressed RhoA activity in EOC cells. Inhibition of Rho-kinase/ROCK enhanced both LPA-stimulated loss of stress fibers and pro-MMP-2 activation. In contrast, expression of the constitutively active RhoA(G14V) mutant diminished LPA-induced pro-MMP-2 activation. LPA had no effects on membrane type 1-MMP or tissue inhibitor of metalloproteinase-2 expression, but up-regulated MMP-2 levels, contributing to the induction of MMP-2 activation. Interestingly, when cells were cultured at a low density, stress fibers were present after LPA stimulation, and ROCK activity was required for EOC cell migration. Collectively, these results were consistent with a model in which LPA stimulates the metastatic dissemination of EOC cells by initiating loss of adhesion and metalloproteinase activation.  相似文献   

15.
16.
M Kumar  H Liu  AP Rice 《PloS one》2012,7(7):e41251
The NS1 protein from avian influenza A viruses contains a PDZ binding motif (PBM) at its carboxyl terminus with the consensus sequence ESEV. The ESEV PBM confers binding to several cellular PDZ proteins, including Dlg1, MAGI-1 and Scribble. The interaction between NS1 and Scribble protects infected cells from apoptosis, while the interaction between NS1 and both Dlg1 and Scribble disrupts tight junctions. In this study, we examined the MAGI-1 protein. We made the unexpected observation that siRNA depletion of MAGI-1 activates IRF3 and induces the IFN-β promoter. We found that the ESEV NS1 protein sequesters MAGI-1 away from the plasma membrane in infected cells. Using plasmid vectors to express NS1 proteins, we observed that the ESEV PBM elicits an IFN-β induction signal as indicated by activation of IRF3 and a relative deficiency in NS1 inhibition of induction of the IFN-β promoter by dsRNA or RIG-I. Taken together, our data suggest that disruption of MAGI-1 by the ESEV PBM activates an IFN-β induction signal. During viral infection, however, induction of the IFN-β gene does not occur presumably because other anti-IFN functions dominate over the IFN-activation activity of the ESEV PBM. We postulate that the ESEV PBM's broad binding activity for PDZ proteins may allow NS1 to bind to some PDZ proteins such as MAGI-1 that confer no benefit or may even be detrimental to viral replication. However, the advantage of binding to key PDZ proteins such as Dlg1 and Scribble may dominate and therefore provide an overall benefit for the virus to encode the ESEV PBM.  相似文献   

17.
MAGI proteins are Membrane-Associated Guanylate Kinase Inverted proteins that belong to the MAGUK family. They are scaffolding proteins that were shown to mediate the trafficking and signaling of various G protein-coupled receptors (GPCRs). They contain PDZ domains in their structure and many GPCRs interact with these proteins via the PDZ motifs on the carboxyl terminal end of a receptor. In a PDZ overlay assay performed with the carboxyl terminal tail of 5-HT2AR, we were able to detect all three members of the MAGI subfamily, MAGI-1, MAGI-2 and MAGI-3 as interacting PDZ proteins. The PDZ motif of 5-HT2AR consists of three amino acids; serine (S), cysteine (C) and valine (V). In this study, we characterize these 5-HT2AR interactions with MAGI proteins. We first confirm the interaction using co-immunopricipitation and illustrate that the interaction is PDZ motif-dependent in human embryonic kidney (HEK 293) cells. We then assess the effects of overexpression and knockdown of the MAGI proteins on the internalization, trafficking and signaling of 5-HT2AR. We find that knockdown of either MAGI-1 or MAGI-3 using siRNA results in a significant reduction in the internalization of 5-HT2AR. As for signaling, we report here that MAGI proteins can modulate the signaling via the two transduction pathways that 5-HT2AR can activate. We illustrate a significant effect of modulating MAGI proteins expression on 5-HT-stimulated IP formation. We demonstrate an enhancement in 5-HT2AR-stimulated IP formation upon MAGI proteins overexpression. In addition, we show that knockdown of MAGI proteins with siRNA leads to a significant reduction in 5-HT2AR-stimulated IP formation. Furthermore, we illustrate a significant increase in 5-HT-stimulated ERK1/2 phosphorylation upon MAGI proteins knockdown. Interestingly, this effect on ERK1/2 activation is PDZ motif-independent. We also suggest two possible mechanisms of regulation for the effect of MAGI proteins on 5-HT2AR function. One mechanism involves the regulation of cell surface expression since we show that both MAGI-2 and MAGI-3 can enhance receptor trafficking to the plasma membrane when overexpressed in HEK 293 cells. The other mechanism points to regulation of second messengers in the signaling pathways. Specifically, we show that overexpression of any of the three MAGI proteins can enhance the recruitment of PLCβ3 to 5-HT2AR. In addition, we report a negative effect for knocking down MAGI-3 on β-arrestin recruitment to the receptor and this effect is PDZ motif-independent. Taken together, our findings document distinct roles for the three MAGI proteins in regulating 5-HT2AR trafficking and signaling and emphasize the importance of studying PDZ proteins and their interactions with GPCRs to regulate their function.  相似文献   

18.
Lysophosphatidic acids (LPA) exert growth factor-like effects through specific G protein-coupled receptors. The presence of different LPA receptors often determines the specific signaling mechanisms and the physiological consequences of LPA in different environments. Among the four members of the LPA receptor family, LPA(2) has been shown to be overexpressed in colon cancer suggesting that the signaling by LPA(2) may potentiate growth and survival of tumor cells. In this study, we examined the effect of LPA on survival of colon cancer cells using Caco-2 cells as a cell model system. LPA rescued Caco-2 cells from apoptosis elicited by the chemotherapeutic drug, etoposide. This protection was accompanied by abrogation of etoposide-induced stimulation of caspase activity via a mechanism dependent on Erk and PI3K. In contrast, perturbation of cellular signaling mediated by the LPA(2) receptor by knockdown of a scaffold protein NHERF2 abrogated the protective effect of LPA. Etoposide decreased the expression of Bcl-2, which was reversed by LPA. Etoposide decreased the phosphorylation level of the proapoptotic protein Bad in an Erk-dependent manner, without changing Bad expression. We further show that LPA treatment resulted in delayed activation of Erk. These results indicate that LPA protects Caco-2 cells from apoptotic insult by a mechanism involving Erk, Bad, and Bcl-2.  相似文献   

19.
Lysophosphatidic acid (LPA) induces actin rearrangement, focal adhesion assembly, and cell migration through the activation of small G protein Rho and its downstream effectors. These diverse cellular responses are mediated by its associated G protein-coupled receptors. However, the mechanisms and specificity by which these LPA receptors mediate LPA actions are still poorly understood. Here we show that LPA stimulation promotes the interaction of the LPA(2) receptor with a focal adhesion molecule, TRIP6 (thyroid receptor interacting protein 6)/ZRP-1 (zyxin-related protein 1). TRIP6 directly binds to the carboxyl-terminal tail of the LPA(2) receptor through its LIM domains. LPA-dependent recruitment of TRIP6 to the plasma membrane promotes its targeting to focal adhesions and co-localization with actin stress fibers. In addition, TRIP6 associates with the components of focal complexes including paxillin, focal adhesion kinase, c-Src, and p130(cas) in an agonist-dependent manner. Overexpression of TRIP6 augments LPA-induced cell migration; in contrast, suppression of endogenous TRIP6 expression by a TRIP6-specific small interfering RNA reduces it in SKOV3 ovarian cancer cells. Strikingly, the association with TRIP6 is specific to the LPA(2) receptor but not LPA(1) or LPA(3) receptor, indicating a specific role for TRIP6 in regulating LPA(2) receptor-mediated signaling. Taken together, our results suggest that TRIP6 functions at a point of convergence between the activated LPA(2) receptor and downstream signals involved in cell adhesion and migration.  相似文献   

20.
We examined the effects of lysophosphatidic acid (LPA) on microglia, which may play an important role in the development and maintenance of neuropathic pain. LPA caused membrane ruffling as detected by scanning electron microscopy, and increased the expression of brain-derived neurotrophic factor (BDNF) in a primary culture of rat microglia, which express LPA(3), but not LPA(1) or LPA(2) receptors. These actions were inhibited by a Galpha(q/11)-antisense oligodeoxynucleotide (AS-ODN), U73122, an inhibitor of phospholipase C (PLC), and apyrase, which specifically degrades ATP and ADP. When ATP release was measured using a luciferin-luciferase bioluminescence assay, LPA was shown to increase it in an LPA(3) and PLC inhibitor-reversible manner. However, LPA-induced ATP release was also blocked by the Galpha(q/11) AS-ODN, but not by pertussis toxin. These results suggest that LPA induces the release of ATP from rat primary cultured microglia via the LPA(3) receptor, Galpha(q/11) and PLC, and that the released ATP or ectopically converted ADP may in turn cause membrane ruffling via P2Y(12) receptors and Galpha(i/o) activation, and BDNF expression via activation of P2X(4) receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号