首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Paraffin sections of mouse adrenals processed with antiserum to luteinizing hormone-releasing hormone (LHRH) in the unlabeled antibody enzyme method reveal moderate staining in the cytoplasm of cells of zona fasciculata and reticularis. The stain is intensified upon pretreatment of sections with LHRH. Pretreated sections processed with solid phase immunoabsorbed LHRH are unstained. Analogues of LHRH deficient in the C-terminal glycine amide inhibit staining, while analogues deficient in the N-terminal pyroglutamic acid have no effect. It is concluded that the adrenal contains receptors for a ligand resembling LHRH in receptor and immunoreactivity. The possibility is considered that the ligand may be an inhibitor of pineal origin.  相似文献   

3.
4.
5.
Rat testis tissue receptor assays were utilized to study the kinetics of dissociation of human follicle-stimulating hormone (hFSH) and luteinizing hormone (hLH) under varying conditions of urea concentration and pH. In these competitive protein binding assays, 125I-hFSH and 125I-hLH were the radioligands and hormone dissociation was followed by a decrease in the ability of the dissociating hormone to inhibit uptake of the radioligand by tissue receptors. Rate data for dissociation of the gonadotropins were analyzed for quality of fit to first or second order integrated rate equations by nonlinear regression analysis. Treatment of hFSH with 4 M urea at pH 8 and 25 degrees for 22 hours did not result in significant dissociation, whereas in 8 M urea, over 90% dissociation was observed. The rate of dissociation of hFSH in 8 M urea was increased approximately 4-fold by raising the temperature from 25 to 37 degrees. Similar results were obtained when dissociation of hFSH was followed through use of an accepted whole animal bioassay for FSH, thus confirming the reliability of the tissue receptor assay for such dissociation studies. Kinetic studies showed that hFSH was undissociated by incubation in 6 M urea of pH 8 after 4 hours at 25 degrees. In contrast, hLH was 90% dissociated under similar conditions. This differential rate of inactivation of hLH allowed preparation of hFSH having significant reduced levels of contaminating LH activity, as determined by tissue receptor assays and by whole animal bioassays. Marked differences were noted in the rate of dissociation of hFSH and hLH under acid conditions. hFSH completely dissociated after approximately 2 min of incubation of pH 2 (25 degrees), and over 90% dissociated after 15 min of incubation at pH 3. In contrast, hLH was dissociated 60% after 20 min of incubation at pH 2 (25 degrees) and 40% dissociated after 60 min at pH 3. Neither hormone was significantly dissociated at pH 4.4 after 60 min, but hFSH showed a slightly greater rate of dissociation than did LH in the period between 1 and 23 hours of incubation at that pH. hFSH and hLH were relatively resistant to dissociation after incubation at pH 12 for 1 hour, bu;t dissociated significantly after incubation for 22 hours at that pH. The time course for dissociation of hFSH or hLH under the various conditions described above did not conform clearly to either first or second order kinetics, indicating that the over-all dissociation process represents a mixed order reaction. It appears that urea or acid-induced denaturation of one or both subunits of hLH and hFSH may occur prior to their dissociation. The very rapid rate of dissociation at acid pH values, particularly of hFSH, indicate that ionic interactions contribute importantly to the subunit association phenomenon.  相似文献   

6.
Serum levels of LH, FSH, Prolactin and Testosterone of 90 days old male rats androgenized soon after birth were determined by specific radioimmunoassay and were compared to untreated rats. LH and FSH levels were also determined in 90 days old female rats neo-natally treated with testosterone and compared with normal diestrus rats. Androgenization of male rats significantly increased serum FSH and Prolactin levels without producing changes in plasma LH and testosterone concentrations. Similar increase in the FSH levels were found in androgenized female rats although plasma FSH concentrations were lower than in the male groups. These results obtained in male rats give an additional evidence that androgens acting in the first days of life are responsible of the higher levels of FSH and Prolactin that characterize the male or tonic pattern of gonadotrophin secretion.  相似文献   

7.
8.
9.
In a previous paper we have demonstrated that growth hormone (GH) responses to growth hormone releasing hormone (GHRH) are higher in premenopausal normal women than in age matched healthy men. As in type I diabetes mellitus various disturbances of GH secretion have been reported, the aim of our study was to assess the effect of sex on basal and GHRH stimulated GH secretion in type I diabetes mellitus. In 21 female and 23 male type I diabetic patients and 28 female and 30 male control subjects GH levels were measured before and after stimulation with GHRH (1 microgram/kg body weight i.v.) by radioimmunoassay. GH responses to GHRH were significantly higher in female than in male control subjects (p less than 0.02), whereas the GH levels following GHRH stimulation were similar in female and male type I diabetic patients. GH responses to GHRH were significantly higher in the male type I diabetic patients than in the male control subjects (p less than 0.001); in the female type I diabetic patients and the female control subjects, however, GH responses to GHRH were not statistically different. The absence of an effect of sex on GHRH stimulated GH responses in type I diabetes mellitus provides further evidence of an abnormal GH secretion in this disorder.  相似文献   

10.
O A Ashiru  C A Blake 《Life sciences》1978,23(14):1507-1513
The periovulatory increases of follicle-stimulating hormone (FSH) in rat sera can be divided into two phases. The first phase consists of a rise and fall during proestrus and the second phase consists of a rise and fall during estrus. The second phase was not blocked by phenobarbital (100 mg/kg BW) injected i.p. between the first and second phases. In contrast, phenobarbital administered prior to the onset of the first phase blocked both phases of increased serum FSH. In phenobarbital-blocked rats, administration of luteinizing hormone releasing hormone (LHRH) during proestrus, either by s.c. injection (10 μg) or by a 3 hr constant-rate i.v. infusion (50 ng/hr), simulated both the proestrous and estrous phases of increased serum FSH. These results indicate that 1) the second phase of the serum FSH rise is itself not susceptible to phenobarbital blockade, 2) a proestrous mechanism susceptible to phenobarbital alteration is necessary for both phases of increased serum FSH to occur, and 3) administration of LHRH to phenobarbital-blocked rats during proestrus restores both phases of FSH release.  相似文献   

11.
12.
13.
H Kawauchi 《Life sciences》1989,45(13):1133-1140
Melanin-concentrating hormone is a neuropeptide produced in teleost hypothalami and transferred to the neurohypophysis. Salmon MCH was a novel cyclic heptadecapeptide capable of inducing melanin aggregation of integumentary melanophores at picoto nano-molar concentrations in all teleosts tested. The MCH gene is intronless and the exon encodes a 132 amino acid precursor protein, in which the heptadecapeptide of MCH locates at the C-terminal end. Immunohistochemical surveys with anti-salmon MCH antiserum strongly suggest that an MCH-like peptide is present in the hypothalami of higher vertebrates. Biological effects of salmon MCH on other vertebrates are found to be versatile.  相似文献   

14.
15.
16.
The effects of LH-RH on pregnancy in rats were investigated. A single 500 mcg injection of LH-RH on Days 9, 10, or 11 of pregnancy terminated pregnancy, whereas injection on Days 6-8 or 13-16 had little or no effect. The ED 50 on Day 10 for b.i.d. administration was 150 mcg and 550 mcg for a single injection. Administration on Day 9 was followed by a decrease in circulating progesterone levels on Days 10 and 11. The administration of large doses of progesterone reversed the effects of LH-RH administration on Days 7-12. Treatment with estradiol-17beta did not potentiate the effect of progesterone, but appeared to slightly retard fetal resorption when administered alone. The results suggest that the antifertility effect of LH-RH is mediated via functional luteolysis.  相似文献   

17.
18.
The multiplication of Chlamydomonas reinhardtii wild type cells can be arrested by the spirolactone RU 26752 and this is fully reversible by the natural mineralocorticoid aldosterone. Evidence is presented for a 52 kDa protein that possesses functional DNA and ligand binding domains and tests positive for mineralocorticoid receptor-like activity by immuneprecipitation, macroaggregation, and photoaffinity. The regulation of trans-activation by steroid hormones in the animal world would therefore appear to be just as valid for the plant kingdom, thereby providing a new model for genetic analysis.  相似文献   

19.
Nuclear hormone receptors are of critical importance for skin homeostasis where they modulate cellular metabolism, proliferation, differentiation, cell death, and inflammation. The cutaneous role of the glucocorticoid, androgen, and estrogen receptors was explored initially. In recent years, sequence homology comparisons have uncovered the complete superfamily of related receptors, many of which are also implicated in cutaneous homeostasis. A subgroup of these receptors acts in concert with the retinoid X receptor by heterodimerization and has been successfully targeted for dermatologic therapy; i.e., the retinoic acid receptor and the vitamin D receptor. Ongoing research is aimed at delineating the cutaneous effects of additional members of this subgroup including the peroxisome proliferator-activated receptors and the liver X receptors. The various receptors exert differential effects in skin and can be rationally chosen as drug targets for the treatment of cutaneous pathologies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号