首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The two domains of yeast phosphoglycerate kinase were produced by recombinant techniques. The N-domain was obtained by the introduction of a termination codon at the position coding for Phe185, and the C-domain by a deletion in the gene of the coding sequence between Ser1 and Leu186. Both domains were efficiently expressed in yeast, the level for the C-domain being greater than that for the N-domain. Both domains were found to have a quasi-native structure; the C-domain retained its ability to bind nucleotides. Small local differences were detected in domain structure compared to that in the whole enzyme, probably due to the lack of interdomain stabilizing interactions. Nevertheless, such an approach provides direct evidence for independent folding of domains in a two-domain protein.  相似文献   

2.
D Missiakas  J M Betton  P Minard  J M Yon 《Biochemistry》1990,29(37):8683-8689
The role of domains as folding units was investigated with a two-domain protein, yeast phosphoglycerate kinase. Each of the domains was produced independently by site-directed mutagenesis. It has been previously demonstrated by several criteria that these domains are able to fold in vivo into a quasi-native structure [Minard et al. (1989a) Protein Eng. 3, 55-60; Fairbrother et al. (1989) Protein Eng. 3, 5-11]. In the present study, the reversibility of the unfolding-refolding process induced by guanidine hydrochloride was investigated for the intact protein and the isolated domains. The transitions were followed by circular dichroism for both domains and the intact protein and by the variations in enzyme activity for the intact protein. Tryptophan residues were used as intrinsic conformational probes of the C-domain. An extrinsic fluorescent probe, N-[[(iodoacetyl)amino]ethyl]-8-naphthylamine-1-sulfonic acid (IAEDANS), was bound to the unique cysteinyl residue Cys97 to observe the conformational events in the N-domain. The unfolding-refolding transitions of each domain in the intact protein and in the isolated domains prepared by site-directed mutagenesis were compared. It was shown that the two domains are able to refold in a fully reversible process. A hyperfluorescent intermediate was detected during the folding of both the isolated C-domain and the intact yeast phosphoglycerate kinase. The stability of each isolated domain was found to be similar, the free energy of unfolding being approximately half that of the intact molecule.  相似文献   

3.
The structural integrity and substrate binding properties of the two genetically engineered domains of yeast phosphoglycerate kinase were investigated using one- and two-dimensional nuclear magnetic resonance techniques. Both domains were found to fold with regions of native-like structure, with the N-domain showing greater conformational flexibility than the C-domain. The 'basic patch' region of the N-domain is, however, clearly perturbed by removal of the C-domain. This is most likely due to the absence of stabilizing interactions between the C-terminal peptide (including alpha-helices XIII and XIV) and the N-domain. The C-domain is able to bind nucleotide with an affinity only three times less than that of the native protein.  相似文献   

4.
Horse muscle phosphoglycerate kinase, like other mammalian phosphoglycerate kinases, contains seven cysteine residues of which two react rapidly with 5,5'-dithio-bis(2-nitrobenzoate) (Nbs2) following second-order kinetics (k = 640 M-1.s-1). Selective cyanylation of the fast-reacting cysteines, followed by chemical cleavage and subsequent sodium dodecyl sulfate/polyacrylamide gel electrophoresis analysis of the resulting polypeptides, suggested that these cysteines are at positions 378 and 379. Cysteine residues were introduced into yeast phosphoglycerate kinase by site-directed mutagenesis. Mutant enzymes, each containing only one cysteine residue at position 364, 376, or 377, were constructed from a mutant devoid of cysteine (Cys97----Ala). In the last two mutants, the cysteines were at positions corresponding to Cys378 and Cys379, respectively, in the horse muscle enzyme. The chemical reactivity of the cysteine groups in these latter two yeast mutant enzymes was similar to that of the fast-reacting cysteines in the horse muscle enzyme. Furthermore, they were similarly modified upon substrate binding. All these data demonstrate unambiguously that the fast-reacting cysteines in the horse muscle enzyme are Cys378 and Cys379.  相似文献   

5.
The kinetics of refolding of yeast phosphoglycerate kinase were studied by following the variation in circular dichroism at 218 nm, the recovery of enzyme activity, and the susceptibility to proteolysis by trypsin and V8-protease. A very rapid phase followed by a slower one was detected by circular dichroism, which revealed the formation of secondary structures. The slower phase, with a macroscopic rate constant of 0.35 min-1, was also detected by the susceptibility of the enzyme to both proteases. It was shown that cleavage sites located in the hinge region, in a part of the C-domain and, to a lesser extent, in a region of the N-domain, which are accessible in the intermediate state, became inaccessible during the slow-refolding step of the molecule. These results demonstrate, on the one hand, the role of domains as folding intermediates, and, on the other hand, the locking of the domain structure and the domain pairing that occurs during the slow-refolding step with a rate constant of 0.35 min-1. The return of the enzyme activity occurred in a slower last step upon conformational readjustments induced by domain interactions.  相似文献   

6.
Previous studies have suggested that the carboxy-terminal peptide (residues 401-415) and interdomain helix (residues 185-199) of yeast phosphoglycerate kinase, a two-domain enzyme, play a role in the folding and stability of the amino-terminal domain (residues 1-184). A deletion mutant has been created in which the carboxy-terminal peptide is attached to the amino-terminal domain (residues 1-184) plus interdomain helix (residues 185-199) through a flexible peptide linker, thus eliminating the carboxy-terminal domain entirely. CD, fluorescence, gel filtration, and NMR experiments indicated that, unlike versions described previously, this isolated N-domain is soluble, monomeric, compactly folded, native-like in structure, and capable of binding the substrate 3-phosphoglycerate with high affinity in a saturable manner. The midpoint of the guanidine-induced unfolding transition was the same as that of the native two-domain protein (Cm approximately 0.8 M). The free energy change associated with guanidine-induced unfolding was one-third that of the native enzyme, in agreement with previous studies that evaluated the intrinsic stability of the N-domain and the contribution of domain-domain interactions to the stability of PGK. These observations suggest that the C-terminal peptide and interdomain helix are sufficient for maintaining a native-like fold of the N-domain in the absence of the C-domain.  相似文献   

7.
Unfolding and refolding kinetics of yeast phosphoglycerate kinase were studied by following the time-dependent changes of two signals: the ellipticity at 218 nm and 222 nm, and the fluorescence emission at 330 nm (following excitation at 295 nm). The protein is composed of two similar-sized structural domains. Each domain has been produced by recombinant DNA techniques. It has been previously demonstrated that the engineered isolated domains are able to fold into a quasinative structure (Minard, P., et al., 1989b, Protein Eng. 3, 55-60; Missiakas, D., Betton, J.M., Minard, P., & Yon, J.M., 1990, Biochemistry 29, 8683-8689). The behavior of the isolated domains was studied using the same two conformational probes as for the whole enzyme. We found that the refolding kinetics of each domain are multiphasic. In the whole protein, domain folding and pairing appeared to be simultaneous events. However, it was found that some refolding steps occurring during the refolding of the isolated C-domain are masked during the refolding of yeast phosphoglycerate kinase. The N-domain was also found to refold faster when it was isolated than when integrated.  相似文献   

8.
The unfolding-refolding transition of horse muscle phosphoglycerate kinase induced by guanidine hydrochloride was studied under equilibrium conditions using four different signals: fluorescence intensity at 336 nm, UV difference absorbance at 286 and 292 nm, ellipticity at 220 nm, and enzyme activity. From the following arguments, we found that the process deviates from a two-state model and intermediates are significantly populated even at equilibrium: (1) the noncoincidence of the transition curves and (2) the asymmetry of the transition curve obtained from CD measurements. From these different data and the thermodynamic analysis, it was suggested that the two domains of the horse muscle phosphoglycerate kinase refold independently of one another with different equilibrium constants, the most favorable constant referring to the folding of the C-terminal domain which contains all tryptophans.  相似文献   

9.
The characterization of early folding intermediates is key to understanding the protein folding process. Previous studies of the N-domain of phosphoglycerate kinase (PGK) from Bacillus stearothermophilus combined equilibrium amide exchange data with a kinetic model derived from stopped-flow kinetics. Together, these implied the rapid formation of an intermediate with extensive native-like hydrogen bonding. However, there was an absence of protection in the region proximal to the C-domain in the intact protein. We now report data for the intact PGK molecule, which at 394 residues constitutes a major extension to the protein size for which such data can be acquired. The methods utilised to achieve the backbone assignment are described in detail, including a semi-automated protocol based on a simulated annealing Monte Carlo technique. A substantial increase in the stability of the contact region is observed, allowing protection to be inferred on both faces of the beta-sheet in the intermediate. Thus, the entire N-domain acts concertedly in the formation of the kinetic refolding intermediate rather than there existing a distinct local folding nucleus.  相似文献   

10.
Somatic angiotensin-converting enzyme (ACE) consists of two homologous domains, each domain bearing a catalytic site. Differential scanning calorimetry of the enzyme revealed two distinct thermal transitions with melting points at 55.3 and 70.5 degrees C. which corresponded to denaturation of C- and N-domains, respectively. Different heat stability of the domains underlies the methods of acquiring either single active N-domain or active N-domain with inactive C-domain within parent somatic ACE. Selective denaturation of C-domain supports the hypothesis of independent folding of the two domains within the ACE molecule. Modeling of ACE secondary structure revealed the difference in predicted structures of the two domains, which, in turn, allowed suggestion of the region 29-133 in amino acid sequence of the N-part of the molecule as responsible for thermostability of the N-domain.  相似文献   

11.
The complete amino acid sequence of yeast phosphoglycerate kinase.   总被引:4,自引:1,他引:3       下载免费PDF全文
The complete amino acid sequence of yeast phosphoglycerate kinase, comprising 415 residues, was determined. The sequence of residues 1-173 was deduced mainly from nucleotide sequence analysis of a series of overlapping fragments derived from the relevant portion of a 2.95-kilobase endonuclease-HindIII-digest fragment containing the yeast phosphoglycerate kinase gene. The sequence of residues 174-415 was deduced mainly from amino acid sequence analysis of three CNBr-cleavage fragments, and from peptides derived from these fragments after digestion by a number of proteolytic enzymes. Cleavage at the two tryptophan residues with o-iodosobenzoic acid was also used to isolate fragments suitable for amino acid sequence analysis. Determination of the complete sequence now allows a detailed interpretation of the existing high-resolution X-ray-crystallographic structure. The sequence -Ile-Ile-Gly-Gly-Gly- occurs twice in distant parts of the linear sequence (residues 232-236 and 367-371). Both these regions contribute to the nucleoside phosphate-binding site. A comparison of the sequence of yeast phosphoglycerate kinase reported here with the sequences of phosphoglycerate kinase from horse muscle and human erythrocytes shows that the yeast enzyme is 64% identical with the mammalian enzymes. The yeast has strikingly fewer methionine, cysteine and tryptophan residues.  相似文献   

12.
Escherichia coli phosphoglycerate kinase (PGK) is resistant to proteolytic cleavage while the yeast homolog from Saccharomyces cerevisiae is not. We have explored the biophysical basis of this surprising difference. The sequences of these homologs are 39% identical and 56% similar. Determination of the crystal structure for the E. coli protein and comparison to the previously solved yeast structure reveals that the two proteins have extremely similar tertiary structures, and their global stabilities determined by equilibrium denaturation are also very similar. The extrapolated unfolding rate of E. coli PGK is, however, 10(5) slower than that of the yeast homolog. This surprisingly large difference in unfolding rates appears to arise from a divergence in the extent of cooperativity between the two structural domains (the N and C-domains) that make up these kinases. This is supported by: (1) the C-domain of E. coli PGK cannot be expressed or fold independently of the N-domain, while both domains of the yeast protein fold in isolation into stable structures and (2) the energetics and kinetics of the proteolytically sensitive state of E. coli PGK match those for global unfolding. This suggests that proteolysis occurs from the globally unfolded state of E. coli PGK, while the characteristics defining the yeast homolog suggest that proteolysis occurs upon unfolding of only the C-domain, with the N-domain remaining folded and consequently resistant to cleavage.  相似文献   

13.
Recombinant calreticulin and discrete domains of calreticulin were expressed in Escherichia coli, using the glutathione S-transferase fusion protein system, and their Ca2+ binding properties were determined. Native calreticulin bound 1 mol of Ca2+/mol of protein with high affinity, and also bound approximately 20 mol of Ca2+/mol of protein with low affinity. Both Ca2+ binding sites were present in the recombinant calreticulin indicating that proper folding of the protein was achieved using this system. Calreticulin is structurally divided into three distinct domains: the N-domain encompassing the first 200 residues; the P-domain which is enriched in proline residues (residue 187-317); and the C-domain which covers the carboxyl-terminal quarter of the protein (residues 310-401), and contains a high concentration of acidic residues. These domains were expressed in E. coli, isolated, and purified, and their Ca2+ binding properties were analyzed. The C-domain bound approximately 18 mol of Ca2+/mol of protein with a dissociation constant of approximately 2 mM. The P-domain bound approximately 0.6-1 mol of Ca2+/mol of protein with a dissociation constant of approximately 10 microM. The P-domain and the C-domain, when expressed together as the P+C-domain, bound Ca2+ with both high affinity and low affinity, reminiscent of both full length recombinant calreticulin and native calreticulin. In contrast the N-domain, did not bind any detectable amount of 45Ca2+. We conclude that calreticulin has two quite distinct types of Ca2+ binding sites, and that these sites are in different structural regions of the molecule. The P-domain binds Ca2+ with high affinity and low capacity, whereas the C-domain binds Ca2+ with low affinity and high capacity.  相似文献   

14.
Analysis of the reversible unfolding of yeast phosphoglycerate kinase leads to the conclusion that the two lobes are capable of folding independently, consistent with the presence of intermediates on the folding pathway with a single domain folded. The domains have different free energies of stabilisation. Immunological cross-reactivity, circular dichroism and thiol reactivity provide evidence for cyanogen bromide peptide 1-173, which comprises five-sixths of the N-terminal domain, containing sufficient information to refold into a native-like structure which dimerises.  相似文献   

15.
The crystal structure of ribonuclease?H3 from Aquifex?aeolicus (Aae-RNase?H3) was determined at 2.0?? resolution. Aae-RNase?H3 consists of an N-terminal TATA box-binding protein (TBP)-like domain (N-domain) and a C-terminal RNase?H domain (C-domain). The structure of the C-domain highly resembles that of Bacillus?stearothermophilus RNase?H3 (Bst-RNase?H3), except that it contains three disulfide bonds, and the fourth conserved glutamate residue of the Asp-Glu-Asp-Glu active site motif (Glu198) is located far from the active site. These disulfide bonds were shown to contribute to hyper-stabilization of the protein. Non-conserved Glu194 was identified as the fourth active site residue. The structure of the N-domain without the C-domain also highly resembles that of Bst-RNase?H3. However, the arrangement of the N-domain relative to the C-domain greatly varies for these proteins because of the difference in the linker size between the domains. The linker of Bst-RNase?H3 is relatively long and flexible, while that of Aae-RNase?H3 is short and assumes a helix formation. Biochemical characterizations of Aae-RNase?H3 and its derivatives without the N- or C-domain or with a mutation in the N-domain indicate that the N-domain of Aae-RNase?H3 is important for substrate binding, and uses the flat surface of the β-sheet for substrate binding. However, this surface is located far from the active site and on the opposite side to the active site. We propose that the N-domain of Aae-RNase?H3 is required for initial contact with the substrate. The resulting complex may be rearranged such that only the C-domain forms a complex with the substrate.  相似文献   

16.
This work shows that the partial replacement of diamagnetic Ca2+ by paramagnetic Tb3+ in Ca2+/calmodulin systems in solution allows the measurement of interdomain NMR pseudocontact shifts and leads to magnetic alignment of the molecule such that significant residual dipolar couplings can be measured. Both these parameters can be used to provide structural information. Species in which Tb3+ ions are bound to only one domain of calmodulin (the N-domain) and Ca2+ ions to the other (the C-domain) provide convenient systems for measuring these parameters. The nuclei in the C-domain experience the local magnetic field induced by the paramagnetic Tb3+ ions bound to the other domain at distances of over 40 A from the Tb3+ ion, shifting the resonances for these nuclei. In addition, the Tb3+ ions bound to the N-domain of calmodulin greatly enhance the magnetic susceptibility anisotropy of the molecule so that a certain degree of alignment is produced due to interaction with the external magnetic field. In this way, dipolar couplings between nuclear spins are not averaged to zero due to solution molecular tumbling and yield dipolar coupling contributions to, for example, the one-bond 15N-1H splittings of up to 17 Hz in magnitude. The degree of alignment of the C-domain will also depend on the degree of orientational freedom of this domain with respect to the N-domain containing the Tb3+ ions. Pseudocontact shifts for NH groups and 1H-15N residual dipolar couplings for the directly bonded atoms have been measured for calmodulin itself, where the domains have orientational freedom, and for the complex of calmodulin with a target peptide from skeletal muscle myosin light chain kinase, where the domains have fixed orientations with respect to each other. The simultaneous measurements of these parameters for systems with domains in fixed orientations show great potential for the determination of the relative orientation of the domains.  相似文献   

17.
J E Scheffler  M Cohn 《Biochemistry》1986,25(13):3788-3796
A photochemically induced dynamic nuclear polarization (photo-CIDNP) study of yeast and horse muscle phosphoglycerate kinase with flavin dyes was undertaken to identify the histidine, tryptophan, and tyrosine resonances in the aromatic region of the simplified 1H NMR spectra of these enzymes and to investigate the effect of substrates on the resonances observable by CIDNP. Identification of the CIDNP-enhanced resonances with respect to the type of amino acid residue has been achieved since only tyrosine yields emission peaks and the dye 8-aminoriboflavin enhances tryptophan but not histidine. By use of the known amino acid sequences and structures derived from X-ray crystallographic studies of the enzymes from the two species, assignment of the specific residues in the protein sequences giving rise to the CIDNP spectra was partially achieved. In addition, flavin dye accessibility was used to probe any changes in enzyme structure induced by substrate binding. The nine resonance peaks observed in the CIDNP spectrum of yeast phosphoglycerate kinase have been assigned tentatively to five residues: histidines-53 and -151, tryptophan-310, and tyrosines-48 and -195. The accessibility of a tyrosine to photoexcited flavin is reduced in the presence of MgATP. Since the tyrosine residues are located some distance from the MgATP binding site of the catalytic center, it is proposed either that this change is due to a distant conformational change or that a second metal-ATP site inferred from other studies lies close to one of the tyrosines. Horse muscle phosphoglycerate kinase exhibits seven resonances by CIDNP NMR.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Cunningham EL  Mau T  Truhlar SM  Agard DA 《Biochemistry》2002,41(28):8860-8867
The extracellular bacterial protease, alpha-lytic protease (alphaLP), is synthesized with a large, two-domain pro region (Pro) that catalyzes the folding of the protease to its native conformation. In the absence of its Pro folding catalyst, alphaLP encounters a very large folding barrier (DeltaG = 30 kcal mol(-1)) that effectively prevents the protease from folding (t(1/2) of folding = 1800 years). Although homology data, mutational studies, and structural analysis of the Pro.alphaLP complex suggested that the Pro C-terminal domain (Pro C-domain) serves as the minimum "foldase" unit responsible for folding catalysis, we find that the Pro N-terminal domain (Pro N-domain) is absolutely required for alphaLP folding. Detailed kinetic analysis of Pro N-domain point mutants and a complete N-domain deletion reveal that the Pro N-domain both provides direct interactions with alphaLP that stabilize the folding transition state and confers stability to the Pro C-domain. The Pro N- and C-domains make conflicting demands upon native alphaLP binding that are alleviated in the optimized interface of the folding transition state complex. From these studies, it appears that the extremely high alphaLP folding barrier necessitates the presence of both the Pro domains; however, alphaLP homologues with less demanding folding barriers may not require both domains, thus possibly explaining the wide variation in the pro region size of related pro-proteases.  相似文献   

19.
The guanidinium-denatured state of the N-domain of phosphoglycerate kinase (PGK) has been characterized using solution NMR. Rather than behaving as a homogenous ensemble of random coils, chemical shift changes for the majority of backbone amide resonances indicate that the denatured ensemble undergoes two definable equilibrium transitions upon titration with guanidinium, in addition to the major refolding event. (13)C and (15)N chemical shift changes indicate that both intermediary states have distinct helical character. At denaturant concentrations immediately above the mid-point of unfolding, size-exclusion chromatography shows N-PGK to have a compact, denatured form, suggesting that it forms a helical molten globule. Within this globule, the helices extend into some regions that become beta strands in the native state. This predisposition of the denatured state to extensive non-native-like conformation, illustrates that, rather than directing folding, conformational pre-organization in the denatured state can compete with the normal folding direction. The corresponding reduction in control of the direction of folding as proteins become larger, could thus constitute a restriction on the size of protein domains.  相似文献   

20.
Calcium-saturated calmodulin (CaM) directly activates CaM-dependent protein kinase I (CaMKI) by binding to a region in the C-terminal regulatory sequence of the enzyme to relieve autoinhibition. The structure of CaM in a high-affinity complex with a 25-residue peptide of CaMKI (residues 294-318) has been determined by X-ray crystallography at 1.7 A resolution. Upon complex formation, the CaMKI peptide adopts an alpha-helical conformation, while changes in the CaM domain linker enable both its N- and C-domains to wrap around the peptide helix. Target peptide residues Trp-303 (interacting with the CaM C-domain) and Met-316 (with the CaM N-domain) define the mode of binding as 1-14. In addition, two basic patches on the peptide form complementary charge interactions with CaM. The CaM-peptide affinity is approximately 1 pM, compared with 30 nM for the CaM-kinase complex, indicating that activation of autoinhibited CaMKI by CaM requires a costly energetic disruption of the interactions between the CaM-binding sequence and the rest of the enzyme. We present biochemical and structural evidence indicating the involvement of both CaM domains in the activation process: while the C-domain exhibits tight binding toward the regulatory sequence, the N-domain is necessary for activation. Our crystal structure also enables us to identify the full CaM-binding sequence. Residues Lys-296 and Phe-298 from the target peptide interact directly with CaM, demonstrating overlap between the autoinhibitory and CaM-binding sequences. Thus, the kinase activation mechanism involves the binding of CaM to residues associated with the inhibitory pseudosubstrate sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号