首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
五氯酚(PCP)污染土壤厌氧生物修复技术的初步研究   总被引:14,自引:1,他引:14  
研究土壤泥浆反应器在投加厌氧颗粒污泥条件下修复PCP污染土壤的性能.结果表明,对PCP浓度30mg  相似文献   

2.
Biodegradation of pentachlorophenol (PCP) in soil by autochthonous microorganisms and in soil bioaugmented by the bacterial strain Comamonas testosteroni CCM 7530 was studied. Subsequent addition of organomineral complex (OMC) or lignite as possible sorbents for PCP immobilization has been investigated as well. The OMC was prepared from humic acids (HAs) isolated from lignite by binding them onto zeolite. Biodegradation of PCP and number of colony forming units (CFUs) were determined in the three types of soil, Chernozem, Fluvisol, and Regosol, freshly spiked with PCP and amended separately with tested sorbents. The enhancing effect of sorbent addition and bioaugmentation on PCP biodegradation depended mainly on the soil type and the initial PCP concentration. Microbial activity resulted in biotransformation of PCP into certain toxic substances, probably lower chlorinated phenols that are more soluble than PCP, and therefore more toxic to present biota. Therefore, it was necessary to monitor soil ecotoxicity during biodegradation. Addition of the OMC resulted in a more significant decrease of soil toxicity in comparison with addition of lignite. Lignite and OMC appear to be good traps for PCP with potential application in remediation technology.  相似文献   

3.
Ye FX  Li Y 《Biodegradation》2007,18(5):617-624
In order to understand the fate of PCP in upflow anaerobic sludge blanket reactor (UASB) more completely, the sorption and biodegradation of pentachlorophenol (PCP) by anaerobic sludge granules were investigated. The anaerobic granular sludge degrading PCP was formed in UASB reactor, which was seeded with anaerobic sludge acclimated by chlorophenols. At the hydraulic retention time (HRT) of 20–22 h, and PCP loading rate of 200–220 mg l−1 d−1, UASB reactor exhibited good performance in treating wastewater which containing 170–180 mg l−1 PCP and the PCP removal rate of 99.5% was achieved. Sequential appearance of tetra-, tri-, di-, and mono-chlorophenol was observed in the reactor effluent after 20 mg l−1 PCP introduction. Sorption and desorption of PCP on the anaerobic sludge granules were all fitted to the Freundlich isotherm equation. Sorption of PCP was partly irreversible. The Freundlich equation could describe the behavior of PCP amount sorbed by granular sludge in anaerobic reactor reasonably well. The results demonstrated that the main mechanism leading to removal of PCP on anaerobic granular sludge was biodegradation, not sorption or volatization.  相似文献   

4.
Lou L  Wu B  Wang L  Luo L  Xu X  Hou J  Xun B  Hu B  Chen Y 《Bioresource technology》2011,102(5):4036-4041
To investigate the feasibility of using biochar to control organic pollutants in sediments, we extracted biochar from rice-straw combustion residues (RBC) and studied its adsorption ability and effect on seed germination ecotoxicity of pentachlorophenol (PCP). The results showed that the Freundlich and dual-mode models could describe all the sorption isotherm data well, and the log KOC values increased with increasing RBC content. With 50 mg kg−1 PCP in the sediment, a significant seed growth inhibition (P < 0.01) was observed. The addition of 2.0% RBC lowered the PCP concentration in the extraction liquid from 4.53 to 0.17 mg L−1 and increased the germination rate and root length significantly. Furthermore, it was found that the addition of RBC had no toxic but stimulative effect on root elongation. Consequently, RBC could serve as a potential supersorbent for the remediation of organic pollution in situ.  相似文献   

5.
Man-made polychlorinated phenols such as pentachlorophenol (PCP) have been used extensively since the 1920s as preservatives to prevent fungal attack on wood. During this time, they have become serious environmental contaminants. Despite the recent introduction of PCP in the environment on an evolutionary time scale, PCP-degrading bacteria are present in soils worldwide. The initial enzyme in the PCP catabolic pathway of numerous sphingomonads, PCP-4-monooxygenase (PcpB), catalyzes the para-hydroxylation of PCP to tetrachlorohydroquinone and is encoded by the pcpB gene. This review examines the literature concerning pcpB and supports the suggestion that pcpB/PcpB should be considered a model system for the study of recent evolution of catabolic pathways among bacteria that degrade xenobiotic molecules introduced into the environment during the recent past.  相似文献   

6.
Kyo Sato 《Plant and Soil》1983,75(3):417-426
Although pentachlorophenol (PCP) retarded the initial increase in total viable bacteria and gram-negative bacteria in the percolated soil, populations exceeded those in the percolated soils without the addition of PCP at a later period. This seems to be a phenomenon similar to “the partial sterilization effect”. On the other hand, spore counts were continuously lower in the percolated soils when PCP had been added. Ammonification of glycine was also slightly inhibited, but nitrification of ammonium was strongly depressed by PCP. Other physicochemical changes of the percolate proceeded according to those of bacterial populations and biochemical reactions.  相似文献   

7.
Zeng G  Yu Z  Chen Y  Zhang J  Li H  Yu M  Zhao M 《Bioresource technology》2011,102(10):5905-5911
Two composting piles were prepared by adding to a mixture of rice straw, vegetables and bran: (i) raw soil free from pentachlorophenol (PCP) contamination (pile A) and (ii) PCP-contaminated soil (pile B). It was shown by the results that compost maturity characterized by water soluble carbon (WSC), TOC/TN ratio, germination index (GI) and dehydrogenase activity (DA) was significantly affected by PCP exposure, which resulted in an inferior degree of maturity for pile B. DGGE analysis revealed an inhibited effect of PCP on compost microbial abundance. The bacteria community shifts were mainly consistent with composting factors such as temperature, pH, moisture content and substrates. By contrast, the fungal communities were more sensitive to PCP contamination due to the significant correlation between fungal community shifts and PCP removal. Therefore, the different microbial community compositions for properly evaluating the degree of maturity and PCP contamination were suggested.  相似文献   

8.
Kyo Sato  H. Kato  C. Furusaka 《Plant and Soil》1987,100(1-3):333-343
Summary The effects of pentachlorophenol (PCP) applications on the taxonomic composition of bacterial microflora were studied in water-logged soil (WS) and in shake cultures of suspended soil (SS). PCP applications resulted in a predominancy of Gram-negative bacteria over Gram-positive species. Members of theAcinetobacter group were the most common in PCP-treated soil although a small portion of the flora were in thePseudomonas-Alcaligenes group or belonged to theEnterobacteriaceae. Coryneform bacteria and species of theBacillus were the dominant forms in untreated WS; however, WS cultures treated with PCP at recommended rates (2.67 gm/m2) evidenced species ofPseudomonas, Alcaligenes, Acinetobacter, and members of theEnterobacteriaceae as the predominant bacterial species. The dominance of Gram-negative bacteria in PCP-treated soil was evidenced for 3 months after application of the compound but was not evident after 17 months when PCP had dissipated. Gram-negative bacteria found in PCP-treated soil were highly tolerant of the phenol. In WS cultures coryneform bacteria were the most common although PCP tolerance was heterogenous in nature.  相似文献   

9.
研究了污染沉积物泥浆液、固两相五氯酚(PCP)厌氧生物降解.结果表明,投加10g·kg-1厌氧颗粒污泥,经31d处理泥浆液、固两相PCP降解率达98.9%,平均降解速率达到80mg·kg-1·d-1,对照处理平均降解速率仅为4.4mg·kg-1·d-1,颗粒污泥生物强化作用明显.作为泥浆修复过程的调控因子,有机溶剂、共基质和表面活性剂对PCP降解效应不同,投加乙醇,可提高PCP解吸和降解速率,4d内两相PCP降解速率达到54.3mg·kg-1·d-1;而投加共基质和非离子表面活性剂乙二醇丁醚后,液、固两相PCP降解均出现迟滞,两者均不同程度地抑制PCP降解.  相似文献   

10.
采用正交实验法研究了温度、pH、离子强度和溶解性有机质(DOC)对沉积物吸附菲和五氯酚(PCP)能力的影响.结果表明,上覆水温度和pH对个别沉积物的吸附能力有显著影响,其他因素及交互作用对菲和PCP的吸附无显著影响.沉积物对菲的吸附能力随温度升高而降低,对PCP在中温(20℃)时最小.pH对菲的吸附无显著影响,PCP的吸附量随pH升高而降低.DOC升高微弱地降低了菲和PCP的吸附,离子强度升高使PCP的吸附有微弱升高.沉积物对有机污染物的吸附能力主要由沉积物和有机污染物性质决定,受上覆水性质影响较小.  相似文献   

11.
The study aimed to clarify the role of apoptosis in pentachlorophenol (PCP) induced testicular, ovarian and renal cell genotoxicity of Heteropneustes fossilis. It was further intended to find the target germ cell type and assess the cellular and nuclear damage. Treatment of PCP was used for multiduration on the germinal tissues and they were processed to detect structural changes by light and electron microscopic evaluation and kidney cells for subsequent detection of DNA fragmentation by agarose gel electrophoresis. Findings suggest functional and morphological changes in the tissues are due to apoptosis, as evidenced by some biochemical and cytological signs. Histological observation on germinal epithelium reveals cell suicidal symptoms such as vacuolization, liquefied regions in the cytoplasm of oocytes, margination of nuclei, clumping of chromatin, and compaction of cytoplasmic organelle. Biochemical manifestation concurrent to this, is; cleavage of kidney cell DNA into low molecular weight fragments confirming apoptosis. Subsequently, it is further cleaved into nucleosome size fragments or its multiples. Ultra-structural histopathology and DNA studies conclusively lead to the PCP induced apoptosis in the exposed cell types. Results further support the usefulness of this assay in the related studies and its feasibility in generating a base line data.  相似文献   

12.
《Inorganica chimica acta》2004,357(10):2953-2956
The novel phosphinito iridium PCP pincer complex, IrH4{C6H3-2,6-(OPPri2)2} can be conveniently synthesized and isolated in 74% overall yield. The complex catalyzes the dehydrogenation of linear alkanes to alkenes at the rate of 13 turnovers min−1 at 200 °C. This catalytic activity is slightly higher than that exhibited by iridium complexes of analogous bis(phosphino) PCP ligands. The bis(phosphinito) complex is resistant to decomposition for periods up to 7 days at temperatures as high as 200 °C thus matching the thermal stability of the bis(phosphino) pincer complexes.  相似文献   

13.
Environments co-contaminated with metals and organic compounds are difficult to remediate. Actinobacteria is an important group of microorganisms found in soils, with high metabolic versatility and potential for bioremediation. In this paper, actinobacteria were used to remediate soil co-contaminated with Cr(VI) and lindane. Five actinobacteria, tolerant to Cr(VI) and lindane mixture were selected: Streptomyces spp. A5, A11, M7, and MC1, and Amycolatopsis tucumanensis DSM 45259. Sterilized soil samples were inoculated with actinobacteria strains, either individually or as a consortium, and contaminated with Cr(VI) and lindane, either immediately or after 7 days of growth, and incubated at 30 °C during 14 days. All actinobacteria were able to grow and remove both contaminants, the consortium formed by Streptomyces spp. A5, M7, MC1, and A. tucumanensis showed the highest Cr(VI) removal, while Streptomyces sp. M7 produced the maximum lindane removal. In non-sterile soil samples, Streptomyces sp. M7 and the consortium removed more than 40% of the lindane, while Streptomyces sp. M7 demonstrated the greatest Cr(VI) removal. The most appropriate strategy for bioremediation of Cr(VI) and lindane co-contaminated soils would be the inoculation with Streptomyces sp. M7.  相似文献   

14.
The development of reedbed technology for bioremediation is reviewed. The future development, potential and implementation of these systems are considered in detail together with the cost effectiveness and ease of maintenance.  相似文献   

15.
The combined effect of phenanthrene and Cr(VI) on soil microbial activity, community composition and on the efficiency of bioremediation processes has been studied. Biometer flask systems and soil microcosm systems contaminated with 2,000 mg of phenanthrene per kg of dry soil and different Cr(VI) concentrations were investigated. Temperature, soil moisture and oxygen availability were controlled to support bioremediation. Cr(VI) inhibited the phenanthrene mineralization (CO2 production) and cultivable PAH degrading bacteria at levels of 500–2,600 mg kg−1. In the bioremediation experiments in soil microcosms the degradation of phenanthrene, the dehydrogenase activity and the increase in PAH degrading bacteria counts were retarded by the presence of Cr(VI) at all studied concentrations (25, 50 and 100 mg kg−1). These negative effects did not show a correlation with Cr(VI) concentration. Whereas the presence of Cr(VI) had a negative effect on the phenanthrene elimination rate, co-contamination with phenanthrene reduced the residual Cr(VI) concentration in the water exchangeable Cr(VI) fraction (WEF) in comparison with the soil microcosm contaminated only with Cr(VI). Clear differences were found between the denaturing gradient gel electrophoresis (DGGE) patterns of each soil microcosm, showing that the presence of different Cr(VI) concentrations did modulate the community response to phenanthrene and caused perdurable changes in the structure of the microbial soil community.  相似文献   

16.
The toxicokinetics and biotransformation of pentachlorophenol (PCP) were determined in the topsmelt (Atherinops affinis) In a static system, topsmelt (n = 9) were exposed to 50 μg/L of [U-14C]PCP for 24 hours to determine the absorption rate constant (Ka), the whole-body bio-concentration (at steady-state conditions), the elimination rate constant UQ, and the elimination half-life (t1/2). Kinetics were determined by direct quantitation of radioactivity in the exposure water. Following exposure, fish were placed in a flow-through metabolism chamber for 24 hours to allow depuration of retained residues, which were collected on XAD-4 resin. Excreted residues were identified and quantified by high-pressure liquid co-chromatography, fraction collection, and liquid scintillation counting. The Ka and Ke, calculated using a simplified model, were 0.012 M-1 0.005/h and 0.014±;0.003/h, respectively, while the 24 hour total concentration factor was 278.0×182.0 and the t1/2 was 52.7±;11.2. During 24 hours of exposure to dean seawater, topsmelt depurated 32.9% of retained residues, and while PCP was primarily excreted unchanged (64.9%), significant amounts of both pentachlorophenylsulfate (18.9%) and pentachloro-β-D-glucuronide (16.2%) were also formed.  相似文献   

17.
18.
This study verifies the potential applicability of horizontal-flow anaerobic immobilized biomass (HAIB) reactors to pentachlorophenol (PCP) dechlorination. Two bench-scale HAIB reactors (R1 and R2) were filled with cubic polyurethane foam matrices containing immobilized anaerobic sludge. The reactors were then continuously fed with synthetic wastewater consisting of PCP, glucose, acetic acid, and formic acid as co-substrates for PCP anaerobic degradation. Before being immobilized in polyurethane foam matrices, the biomass was exposed to wastewater containing PCP in reactors fed at a semi-continuous rate of 2.0 μg PCP g−1 VS. The applied PCP loading rate was increased from 0.05 to 2.59 mg PCP l−1 day−1 for R1, and from 0.06 to 4.15 mg PCP l−1 day−1 for R2. The organic loading rates (OLR) were 1.1 and 1.7 kg COD m−3 day−1 at hydraulic retention times (HRT) of 24 h for R1 and 18 h for R2. Under such conditions, chemical oxygen demand (COD) removal efficiencies of up to 98% were achieved in the HAIB reactors. Both reactors exhibited the ability to remove 97% of the loaded PCP. Dichlorophenol (DCP) was the primary chlorophenol detected in the effluent. The adsorption of PCP and metabolites formed during PCP degradation in the packed bed was negligible for PCP removal efficiency.  相似文献   

19.
The microbial community structure changes of an aged-coal-tar soil contaminated with polycyclic aromatic hydrocarbons (PAHs) were investigated during simulated bioremediation at the laboratory-scale using an in-vessel composting approach. The composting reactors were operated using a logistic three-factor factorial design with three temperatures (T=38, 55 or 70 °C), four soil to green-waste amendment ratios (S:GW=0.6:1, 0.7:1, 0.8:1 or 0.9:1 on a dry weight basis) and three moisture contents (MC=40%, 60% or 80%). Relative changes in microbial populations were investigated by following the dynamics of phospholipid fatty acid (PLFA) signatures using a 13C-labeled palmitic acid internal standard and sensitive GC/MS analysis during in-vessel composting over 98 days. The results of this investigation indicated that fungal to bacterial PLFA ratios were significantly influenced by temperature (p<0.05), and Gram-positive to Gram-negative bacterial ratios were significantly influenced by temperature (p<0.001) and S:GW ratio (p<0.01) during in-vessel composting. Additionally, the Gram-positive to Gram-negative bacterial ratios were correlated to the extent of PAH losses (p<0.005) at 70 °C.  相似文献   

20.
Soil containing hexachlorocyclohexane (HCH) was spiked with 14C--HCH and then subjected to bioremediation in bench-scale microcosms to determine the rate and extent of mineralization of the 14C-labeled HCH to 14CO2. The soil was treated using two different DARAMEND amendments, D6386 and D6390. The amendments were previously found to enhance natural HCH bioremediation as determined by measuring the disappearance of parent compounds under either strictly oxic conditions (D6386), or cycled anoxic/oxic conditions (D6390). Within 80 days of the initiation of treatment, mineralization was observed in all of the strictly oxic microcosms. However, mineralization was negligible in the cycled anoxic/oxic microcosms throughout the 275-day study, even after cycling was ceased at 84 days and although significant removal (up to 51%) of indigenous -HCH (146 mg/kg) was detected by GC with electron capture detector. Of the amended, strictly oxic treatments, only one, in which 47% of the spiked 14C-HCH was recovered as 14CO2, enhanced mineralization compared with an unamended treatment (in which 34% recovery was measured). Other oxic treatments involving higher amendment application rates or auxiliary carbon sources were inhibitory to mineralization. Thus, although HCH degradation occurs during the application of either oxic or cycled anoxic/oxic DARAMEND treatments, mineralization of -HCH may be inhibited depending on the amendment and treatment protocol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号