首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
 A simple model was developed to describe the transport of water vapour from subjects working in hot environments while wearing chemical-protective clothing. The goal of the modelling was to obtain a better estimate of evaporative cooling of the subjects, as it was hypothesised that calculations of evaporative heat loss based on changes in dressed weight over-estimate the actual benefit experienced by the subjects. The model employed measured values of vapour pressure within the clothing ensemble to estimate the skin vapour pressure. The resistance of the clothing ensemble to water vapour transport was calculated from measurements of the physical properties of the materials in conjunction with estimates of the resistance of air layers between the clothing layers. The model predicts mean evaporation rates from the skin that are approximately 60% of those calculated from measured changes in dressed weight. Error analysis failed to account for the magnitude of this difference and possible explanations for the difference are advanced. A brief examination of the effect of wicking suggests that some of the difference results from a reduction of the resistance of the garment to water vapour due to wicking of liquid sweat through fabric layers. Received: 4 June 1997 / Accepted: 21 October 1997  相似文献   

2.
The effects of inspiratory resistance on prolonged work in a hot environment wearing a nuclear, bacteriological and chemical warfare (NBCW) mask and overgarment were assessed in 10 males. Subjects walked on a treadmill at 5 km/hr, 2% gradient, until their core temperature reached 39° C or for a duration of 90 min. Rectal temperature, heart rate, ventilation, oxygen consumption and rate of perceived breathing were measured. There were no differences between break-point time without the canister (62.2 ± 21 min) and with the canister (58.9 ± 17 min). Regression analysis indicated that the mean core temperature increased by 0.02° C for every minute of work performed and heart rate by 6 beats/min for every increase of 0.2° C in core temperature. Reduction in heat transfer brought about by wearing the protective overgarment and mask with or without the canister will significantly increase core temperature and limit the performance of moderate work to approximately 1 h in a moderately fit individual.  相似文献   

3.
Heat stress in feedlot cattle causes reduced performance, and in the most severe cases, death of the animals, thus causing the loss of millions of dollars in revenue to the cattle industry. A study was designed to evaluate dynamics of thermoregulation and feeding activities when feeder cattle were exposed to simulated heat waves, in comparison with repeated sinusoidal hot and thermoneutral environments. Nine beef steers were randomly assigned to an individual pen in one of three environmental chambers. Each chamber was subjected to each of three temperature regimes (Heatwave simulation from Rockport, Mo., 1995, Heatwave simulation from Columbia, Mo., 1999, and Controlled heat stress treatment of 32±7°C) for a period of 18 days, according to a Latin square treatment design, with a 10-day thermoneutral period (18±7°C) separating treatment periods. Respiration rate, core body temperature, heat production, feed intake, and feeding behavior were measured on each animal for the duration of the experiment. Differences were found in all treatments for all parameters except feeding behavior. It was shown that the two simulated heat waves elicited very different thermoregulatory responses. Based on these results the heat wave centered at Rockport, Mo. in 1995 was devastating because the animals were not acclimated to hot conditions, thus causing an acute response to heat stress. The responses of cattle to conditions at Columbia, Mo. showed some acclimation to heat prior to the peak stress days, and therefore a dampened response was seen. It appears the extreme conditions at Columbia, Mo., 1999 were made severe by environmental conditions not simulated during this study (low wind speed and intensive solar radiation). Overall, it was determined while a cyclic heat stress treatment is a representative model to test heat stress in cattle, further heat stress experiments should be conducted in an actual feedlot.Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. 9th Street Drive, West Palmetto, FL 34221, USA.  相似文献   

4.
When individual mice were examined, it was found that the colonic body temperatureT col of each individual within a genetically heterogeneous population tended to remain either above (warm) or below (cool) the population mean.T col of warm, but not cool, mice showed circadian variation. When exposed to aT a of 43° C, theT col of cool mice increased by as musch as 2.4° C more than that of warm mice for a given 15 min increment of heating at 43°C. Survival of mice after acute lethal heat load (LD75, –45°C) was significantly inversely correlated withT col. Small persistent differences in body temperature of individuals may indicate differing thermal adaptedness.  相似文献   

5.
This study evaluated the effectiveness of a six-pack versus a four-pack cool vest in reducing heat strain in men dressed in firefighting ensemble, while resting and exercising in a warm/humid environment [34.4°C (day bulb), 28.9°C (wet bulb)]. Male volunteers (n = 12) were monitored for rectal temperature (T re), mean skin temperature (T sk), heart rate, and energy expenditure during three test trials: control (no cool vest), four-pack vest, and six-pack vest. The cool vests were worn under the firefighting ensemble and over Navy dungarees. The protocol consisted of two cycles of 30 min seated rest and 30 min walking on a motorized treadmill (1.12 m · s–1, 0% grade). Tolerance time for the control trial (93 min) was significantly less than both vest trials (120 min). Throughout heat exposure, energy expenditure varied during rest and exercise, but no differences existed among all trials (P > 0.05). During the first 60 min of heat exposure, physiological responses were similar for the four-pack and six-pack vests. However, during the second 60 min of heat exposure the six-pack vest had a greater impact on reducing heat strain than the four-pack vest. PeakT e andT sk at the end of heat exposure for 6-pack vest [mean (SD) 38.0(0.3)°C and 36.8(0.7)°C] were significantly lower compared to four-pack [38.6 (0.4)°C and 38.1(0.5)°C] and controls [38.9(0.5)°C and 38.4(0.5)°C]. Our findings suggest that the six-pack vest is more effective than the four-pack vest at reducing heat strain and improves performance of personnel wearing a firefighting ensemble.  相似文献   

6.
In female rats, rectal temperature (Tre), tail vasomotor response, oxygen uptake (VO2), and carbon dioxide production (VCO2) were measured in proestrus and estrus stages during treadmill running at two different speeds at an ambient temperature (Ta) of 24 degrees C. Experiments were performed at 2.00-6.00 a.m., when the difference in Tre was greatest between the two stages; Tre at rest in the estrus stage was 0.54 degrees C higher than in the proestrus stage. In a mild warm environment, threshold Tre for a rise in tail skin temperature (Ttail) was also higher in the estrus stage than in the proestrus stage. In contrast, no difference was seen in the threshold Tre and steady state Tre at the end of exercise between proestrus and estrus stages. These values were higher at the higher work intensity. VO2 was also similar between the two stages, except in the second 5 min after the beginning of exercise, when VO2 was greater and Tre rose more steeply in the proestrus stage. These data indicate that deep body temperature during exercise is regulated at a certain level depending on the work intensity and is not influenced by the estrus cycle.  相似文献   

7.
The experiment was conducted to investigate the human thermoregulatory responses during rest, exercise and recovery atT a 20°C and 60% R.H. under the conditions of wearing two different types of clothing. Six healthy men wore two types of clothing: one covering the whole body area except the head (Type A, weight 1656 g), and the other covering only the trunk, upper arms and thighs (Type B, weight 996 g). The level of rectal temperature was kept significantly higher in Type B than in Type A during rest and recovery. The increased and decreased rates of rectal temperature during exercise and recovery were significantly greater in Type A than in Type B, respectively. These findings are discussed from the viewpoint of the differences of skin temperatures of the extremities between Type A and Type B.  相似文献   

8.
 This study evaluates the effect of different levels of insulation on esophageal (T es) and rectal (T re) temperature responses during and following moderate exercise. Seven subjects completed three 18-min bouts of treadmill exercise (75% VO2max, 22°C ambient temperature) followed by 30 min of recovery wearing either: (1) jogging shoes, T-shirt and shorts (athletic clothing); (2) single-knit commercial coveralls worn over the athletic clothing (coveralls); or (3) a Canadian Armed Forces nuclear, bacteriological and chemical warfare protective overgarment with hood, worn over the athletic clothing (NBCW overgarment). T es was similar at the start of exercise for each condition and baseline T re was ∼0.4°C higher than T es. The hourly equivalent rate of increase in T es during the final 5 min of exercise was 1.8°C, 3.0°C and 4.2°C for athletic clothing, coveralls and NBCW overgarment respectively (P<0.05). End-exercise T es was significantly different between conditions [37.7°C (SEM 0.1°C), 38.2°C (SEM 0.2°C and 38.5°C (SEM 0.2°C) for athletic clothing, coveralls and NBCW overgarment respectively)] (P<0.05). No comparable difference in the rate of temperature increase for T re was demonstrated, except that end-exercise T re for the NBCW overgarment condition was significantly greater (0.5°C) than that for the athletic clothing condition. There was a drop in T es during the initial minutes of recovery to sustained plateaus which were significantly (P<0.05) elevated above pre-exercise resting values by 0.6°C, 0.8°C and 1.0°C, for athletic clothing, coveralls, and NBCW overgarment, respectively. Post-exercise T re decreased very gradually from end-exercise values during the 30-min recovery. Only the NBCW overgarment condition T re was significantly elevated (0.3°C) above the athletic clothing condition (P<0.05). In conclusion, T es is far more sensitive in reflecting the heat stress of different levels of insulation during exercise and post-exercise than T re. Physiological mechanisms are discussed as possible explanations for the differences in response. Received: 30 June 1998 / Accepted: 19 February 1999  相似文献   

9.
Tympanic temperature (Tty), mean skin temperature (Tsk) and dynamics of sweating were measured in male subjects, performing prolonged, bicycle-exercise. The exercise was performed under thermoneutral environment after the normal-mixed (C) and low-carbohydrate (LCHO) diet. No difference in changes of Tty was observed after the C and LCHO diets. Sweating was triggered much faster after the LCHO diet. The delay in onset and inertia time of sweating was shorter after the LCHO diet. It is concluded that LCHO diet affects the thermoregulatory responses to exercise by acceleration of sweating, without noticeable differences in body temperature.  相似文献   

10.
The purpose of this study was to evaluate the effect of exercise on the subsequent post-exercise thresholds for vasoconstriction and shivering measured during water immersion. On 2 separate days, seven subjects (six males and one female) were immersed in water (37.5 degrees C) that was subsequently cooled at a constant rate of approximately 6.5 degrees C x h(-1) until the thresholds for vasoconstriction and shivering were clearly established. Water temperature was then increased to 37.5 degrees C. Subjects remained immersed for approximately 20 min, after which they exited the water, were towel-dried and sat in room air (22 degrees C) until both esophageal temperature and mean skin temperature (Tsk) returned to near-baseline values. Subjects then either performed 15 min of cycle ergometry (at 65% maximal oxygen consumption) followed by 30 min of recovery (Exercise), or remained seated with no exercise for 45 min (Control). Subjects were then cooled again. The core temperature thresholds for both vasoconstriction and shivering increased significantly by 0.2 degrees C Post-Exercise (P < 0.05). Because the Tsk at the onset of vasoconstriction and shivering was different during Pre- and Post-Exercise Cooling, we compensated mathematically for changes in skin temperatures using the established linear cutaneous contribution of skin to the control of vasoconstriction and shivering (20%). The calculated core temperature threshold (at a designated skin temperature of 32.0 degrees C) for vasoconstriction increased significantly from 37.1 (0.3) degrees C to 37.5 ( 0.3) degrees C post-exercise (P < 0.05). Likewise, the shivering threshold increased from 36.2 (0.3) degrees C to 36.5 (0.3) degrees C post-exercise (P < 0.05). In contrast to the post-exercise increase in cold thermal response thresholds, sequential measurements demonstrated a time-dependent similarity in the Pre- and Post-Control thresholds for vasoconstriction and shivering. These data indicate that exercise has a prolonged effect on the post-exercise thresholds for both cold thermoregulatory responses.  相似文献   

11.
Hypothermia is considered a sericus problem in big cities. In order to clarify factors contributing to urban hypothermia and death from cold which will continue to be an issue in cities in the future, we analyzed autopsy reports recorded in the Tokyo Medical Examiner's Office from 1974 to 1983. In a total of 18346 autopsy reports 157 deaths had been diagnosed as due to exposure to cold. Of these cases, the greatest number were males in their forties and fifties, and most of these were inebriated and/or homeless. Eighty-four perent of urban hypothermia cases occurred when the outdoor temperature was below 5°C, and 50% of deaths from cold occurred when the outdoor temperature was between 0° and 5°C. There were no incidences of death from cold when the minimum outdoor temperature had remained above 16°C. Seventy-four percent of deaths from cold occurred during the winter months of December, January and February, and most of the remaining deaths occurred in March and November. There were no deaths from cold from June to August. More than half of all deaths from cold occurred from 3.00 a.m. to 9.00 a.m., with the peak occurring at 5.00 a.m. A blood alcohol concentration of over 2.5 mg/ml had often been found in those in their forties and fifties who had died from hypothermia, and autopsy had often revealed disorders of the liver, digestive system, and circulatory system. Chronic lesions of the liver, probably due to alcoholism, were found in many cases; few cases showed no evidence of alcoholism and these were significantly different from the former group.  相似文献   

12.
1. The course and outcome of many wildlife diseases are context-dependent, and therefore change depending on the behaviour of hosts and environmental response of the pathogen.2. Contemporary declines in amphibian populations are widely attributed to chytridiomycosis, caused by the pathogenic fungus Batrachochytrium dendrobatidis. Despite the thermal sensitivity of the pathogen and its amphibian hosts, we do not understand how host thermal regimes experienced by frogs in the wild directly influence pathogen growth.3. We tested how thermal regimes experienced by the rainforest frog Litoria rheocola in the wild influence pathogen growth in the laboratory, and whether these responses differ from pathogen growth under available environmental thermal regimes.4. Frog thermal regimes mimicked in the laboratory accelerated pathogen growth during conditions representative of winter at high elevations more so than if temperatures matched air or stream water temperatures. By contrast, winter frog thermal regimes at low elevations slowed pathogen growth relative to air temperatures, but not water temperatures.5. The growth pattern of the fungus under frog thermal regimes matches field prevalence and intensity of infections for this species (high elevation winter > high elevation summer > low elevation winter > low elevation summer), whereas pathogen growth trajectories under environmental temperatures did not match these patterns.6. If these laboratory results translate into field responses, tropical frogs may be able to reduce disease impacts by regulating their body temperatures to limit pathogen growth (e.g., by using microhabitats that facilitate basking to reach high temperatures); in other cases, the environment may limit the ability of frogs to thermoregulate such that individuals are more vulnerable to this pathogen (e.g., in dense forests at high elevations).7. Species-specific thermoregulatory behaviour, and interactions with and constraints imposed by the environment, are therefore essential to understanding and predicting the spatial and temporal impacts of this global disease.  相似文献   

13.
The work described in this paper investigated the effects of two types of clothing, leaving the legs covered or uncovered, on seasonal cold acclimation in women. Experiments were carried out to observe the different thermal physiological responses between two groups of subjects, who dressed themselves in kneelength skirts or trousers during the daytime for 3 months from September to November. It was found that rectal temperatures and heart rates in the subjects wearing skirts were shifted to lower levels when the season gradually became colder. The results suggest that the clothing type worn in daily life may play a potential role in seasonal cold acclimation of thermal physiological responses in man.  相似文献   

14.
Most computer models of human thermoregulation are population based. Here, we individualised the Fiala model [Fiala et al. (2001) Int J Biometeorol 45:143–159] with respect to anthropometrics, body fat, and metabolic rate. The predictions of the adapted multisegmental thermoregulatory model were compared with measured skin temperatures of individuals. Data from two experiments, in which reclining subjects were suddenly exposed to mild to moderate cold environmental conditions, were used to study the effect on dynamic skin temperature responses. Body fat was measured by the three-compartment method combining underwater weighing and deuterium dilution. Metabolic rate was determined by indirect calorimetry. In experiment 1, the bias (mean difference) between predicted and measured mean skin temperature decreased from 1.8°C to −0.15°C during cold exposure. The standard deviation of the mean difference remained of the same magnitude (from 0.7°C to 0.9°C). In experiment 2 the bias of the skin temperature changed from 2.0±1.09°C using the standard model to 1.3±0.93°C using individual characteristics in the model. The inclusion of individual characteristics thus improved the predictions for an individual and led to a significantly smaller systematic error. However, a large part of the discrepancies in individual response to cold remained unexplained. Possible further improvements to the model accomplished by inclusion of more subject characteristics (i.e. body fat distribution, body shape) and model refinements on the level of (skin) blood perfusion, and control functions, are discussed.  相似文献   

15.
16.
Alpha-melanocyte-stimulating-hormone (alpha-MSH) is a neuropeptide that induces weight loss via its anorexigenic and hypermetabolic/hyperthermic effects. Two major public health problems of the human population involving energy balance (i.e. middle-aged obesity and aging cachexia) also appear in other mammals, therefore age-related regulatory alterations may also be assumed in the background.Previous studies demonstrated characteristic age-related shifts in the anorexigenic effects of centrally applied alpha-MSH with strong effects in young adult, diminished efficacy in middle-aged and very pronounced responsiveness in old rats. The present study aimed to investigate age-related changes in the acute central thermoregulatory responsiveness to an alpha-MSH injection in rats and to compare them with those of food intake-related responsiveness. Oxygen consumption (VO2), core (Tc) and tail skin temperatures (Ts, indicating heat loss) of male Wistar rats of different age groups (from 2 to 24 months of age), were recorded in an indirect calorimeter complemented by thermocouples upon intracerebroventricular alpha-MSH administration (0, 5 µg) at a slightly subthermoneutral environment (25–26 °C).Acute alpha-MSH-induced rises in VO2 and Tc were most pronounced in the young adult age-group. In these rats the hyperthemic effects were somewhat diminished by an activation of heat loss. Juvenile animals showed weaker hyperthermic responses, middle-aged rats none at all. Alpha-MSH-induced hyperthermia became significant again in old rats.Acute thermoregulatory (hypermetabolic/hyperthermic) responsiveness to alpha-MSH shows a distinct age-related pattern similar to that of acute anorexigenic responsiveness.Thus, our results may also contribute to the explanation of both middle-aged obesity and aging cachexia.  相似文献   

17.

1. 1. Ten male students remained in a severely cold room (-25°C) for 20 min. thereafter, they transferred in a warm room (25°C) for 20 min.

2. 2. This pattern was repeated three times, total cold exposure time amounting to 60 min.

3. 3. In the warm room, the subjects removed their cold-protective jackets, or wore them continously.

4. 4. Rectal temperature, skin temperatures, manual performance and thermal comfort were measured during the experiment.

5. 5. Removing cold-protective jackets after severe cold exposure increased peripheral skin temperatures and reduced the discomfort in the warm room.

6. 6. However, these results were accompanied by a greater decrease in rectal temperature and manual performance.

7. 7. It is recommended that workers continue to wear cold-protective clothing in the warm areas outside of the cold storage to prevent decreases in deep body temperature and work efficiency caused by repated cold exposures.

Author Keywords: Cold environment; body temperature; manual performance; protective clothing  相似文献   


18.
Several mathematical models of human thermoregulation have been developed, contributing to a deep understanding of thermal responses in different thermal conditions and applications. In these models, the human body is represented by two interacting systems of thermoregulation: the controlling active system and the controlled passive system. This paper reviews the recent research of human thermoregulation models. The accuracy and scope of the thermal models are improved, for the consideration of individual differences, integration to clothing models, exposure to cold and hot conditions, and the changes of physiological responses for the elders. The experimental validated methods for human subjects and manikin are compared. The coupled method is provided for the manikin, controlled by the thermal model as an active system. Computational Fluid Dynamics (CFD) is also used along with the manikin or/and the thermal model, to evaluate the thermal responses of human body in various applications, such as evaluation of thermal comfort to increase the energy efficiency, prediction of tolerance limits and thermal acceptability exposed to hostile environments, indoor air quality assessment in the car and aerospace industry, and design protective equipment to improve function of the human activities.  相似文献   

19.
When protective clothing is worn that restricts evaporative heat loss, it is not valid to assume that the higher sweat rates associated with improvements in aerobic fitness will increase heat tolerance. An initial study compared thermoregulatory and cardiovascular responses to both compensable and uncompensable heat stress before and after 8 weeks of endurance training in previously sedentary males. Despite a 15% improvement in VO2peak, and lower heart rates and rectal temperature (T(re)) responses while wearing combat clothing, no changes were noted when subjects wore a protective clothing ensemble. Tolerance times were unchanged at approximately 50 min. A subsequent short-term training model that used daily 1-h exercise sessions for 2 weeks also failed to show any benefit when the protective clothing was worn in the heat. Cross-sectional comparisons between groups of high and low aerobic fitness, however, have revealed that a high aerobic fitness is associated with extended tolerance time when the protective clothing is worn. The longer tolerance time is a function of both a lower starting T(re) and a higher T(re) tolerated at exhaustion. Improvements in cardiovascular function with long-term training may allow higher core temperatures to be reached prior to exhaustion. Conversely, elevations in core temperature that occur with normal training sessions may familiarize the more fit subjects to the discomforts of exercise in the heat. Other factors such as differences in body fatness may account for a faster increase in tissue temperature at a given metabolic rate for less fit individuals.  相似文献   

20.

1. 1.Hypothalamic temperature (Thy), nonevaporative heat loss (R + C + K), evaporative heat loss (E), thermal conductance (k), metabolic heat production (M) and heat storage (S) of rats were simultaneously measured by direct and indirect calorimetry during internal heat loading (2 W per rat) with an intraperitoneal electric heater.

2. 2.The tests were made twice a day; once during the day (1000–1200 h) and once at night (2200–2400 h) at an ambient temperature of 24°C.

3. 3.The resting values of Thy, colonic temperature, (R + C + K), E, M and heart rate, and the Thy threshold for tail skin vasodilation (Tth) during internal heat load were significantly higher at night than during the day.

4. 4.The slopes showing the relationshiop between (R + C + K), k or M and Thy were significantly steeper during the day than at night after Thy exceeded Tth.

5. 5.The slopes showing the relationship between E or S and Thy were not different during the day and at night.

6. 6.These results indicate that the responses of nonevaporative heat loss and heat production to internal heat load vary with the time of day in rats.

Author Keywords: Circadian rhythm; direct calorimetry; heat loss; heat storage; heat load  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号