首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epstein Barr virus (EBV)-infection of normal peripheral blood mononuclear cells (PBMC) in vitro induces IFN-alpha secretion from B cell and natural killer (NK) cell populations, and IFN-gamma secretion from T cells. IFN-gamma depends on prior elaboration of IL 2 and IL 1 that originates from monocytes and NK cells. PBMC from rheumatoid arthritis (RA) patients released moderately elevated levels of IFN-alpha (236 +/- 62 U/ml vs 168 +/- 34 in normals). In contrast, IFN-gamma was significantly lower in RA (88 +/- 34 U/ml vs 209 +/- 32) with an associated deficit in IL 2. A monocyte-dependent factor was shown to be responsible for this deficit, since monocyte depletion of RA cultures normalized the levels of IL 2 and IFN-gamma. Significantly lower levels of IL 1 activity were present in the supernatants of RA PBMC cultures as compared with normal cultures, and this was shown to be associated with presence of a nondialyzable IL 1 inhibitor. This inhibitor was capable of preventing the IL 1-dependent synthesis of IL 2 and IFN-gamma by normal PBMC. Exogenous IL 1 or IL 2 restored the deficient IFN-gamma secretion in RA PBMC. Thus, the deficient ability of RA lymphocytes to control EBV infection may be secondary to impairment of a monocyte-T cell interaction at the level of IL 1.  相似文献   

2.
The ability of human T cell leukemia/lymphoma virus (HTLV)-I to alter the function of infected T lymphocytes was examined directly by investigating the properties of an antigen-specific T cell clone before and after transformation with HTLV-I. Following infection, the T4 antigen-specific clone manifested a tenfold increase in its surface interleukin 2 (IL 2) receptor (Tac) density and acquired the viral determinants p19, p24, and 4D12 not present in the uninfected clone. Prior to infection, the T cell clone responded to antigen stimulation in the presence of histocompatible antigen-presenting cells with proliferation and secretion of multiple lymphokines, including IL 2, B cell growth factor (BCGF), B cell differentiation factor (BCDF), and interferon-gamma (IFN-gamma). Following infection, the T cell clone both proliferated and produced constitutively three of these lymphokines (BCGF, BCDF, and IFN-gamma) in the absence of accessory cells or antigen. Co-cultivation with any accessory cells regardless of histocompatibility resulted in increased proliferation and lymphokine production. IL 2 production by the HTLV-I-transformed cell, however, could not be detected. Similarly, the uninfected clone was able to provide B cell help for Ig production only when stimulated with both histocompatible cells and antigen. In contrast, the infected cell provided T cell help to B cells in an unregulated manner, independent of antigen or histocompatibility. Thus, functions such as the induction of proliferation, B cell help, and lymphokine production, which are finely regulated in uninfected antigen-specific T cell clones, became indiscriminant after HTLV-I infection.  相似文献   

3.
The suppressive effect of human natural killer (NK) cells on Epstein-Barr virus (EBV)-induced immunoglobulin (Ig) synthesis by autologous B cells was investigated. By Percoll discontinuous density gradient centrifugation, low-density fractions enriched for NK cells were isolated from human peripheral blood lymphocytes. These NK-enriched fractions were added to purified autologous B cells in the presence of EBV, were cultivated for 8 days, and were examined for their suppressive effect on Ig synthesis by an enzyme-linked immunosorbent assay. The fractions markedly suppressed both IgM and IgG synthesis induced by EBV. It was possible to reduce the suppressive effect of NK-enriched cells by complement-dependent lysis of NK cells and Leu-11, but not by OKT3 monoclonal antibody, indicating that NK cells may be responsible for the suppression of Ig synthesis. Upon close examination of interferon (IFN) activity, it was revealed that the co-cultures of NK-enriched cells and EBV-infected B cells generated production of IFN-alpha, which might be produced by NK cells in response to EBV-stimulated B cells. Addition of anti-IFN-alpha but not anti-IFN-gamma serum almost completely abrogated the suppressive effect of NK-enriched cells on Ig synthesis, indicating that IFN-alpha produced are required for the NK cell-mediated suppression of Ig synthesis. However, addition of IFN-alpha into purified B cells showed no direct suppressive effect on EBV-induced Ig synthesis by B cells in the absence of NK cells. Nevertheless, NK cells when previously incubated with IFN-alpha and added to B cells showed a suppressor activity on Ig synthesis to a level higher than that of untreated NK controls. These results strongly suggest the possibility that NK cells display an interaction with EBV-infected B cells and produce IFN-alpha, which in turn activates NK cells. These activated NK cells suppress the Ig synthesis by B cells, which undergo transformation induced by EBV.  相似文献   

4.
This study documents the influence of rIL-4, IFN-gamma, and IFN-alpha on the production of IgE-BF and the expression of lymphocyte receptor for IgE or CD23 Ag (Fc epsilon R II) by human mononuclear cells. IL-4 increases the secretion of IgE-binding factor (BF) by highly purified B lymphocytes, adherent cells, and U937 monoblastic cells. The effect of IL-4 on purified B cells is augmented by costimulating the cells with F(ab')2 anti-IgM. IFN-gamma, IL-2, IL-1-alpha, or IL-1 beta and the low m.w. B cell growth factor have no effect on IgE-BF production by purified B cells even when they are used in combination with anti-IgM. Stimulation of purified T cells with IL-4 or IL-4 plus PMA leads to the production of very small amounts of IgE-BF that might well be derived from the contaminating non-T cells. IFN-gamma increases IgE-BF synthesis by unfractionated PBMC, T cell-depleted PBMC, adherent cells, and U937 cells suggesting that it induces monocytes to release IgE-BF, IFN-gamma suppresses the IL-4-induced Fc epsilon R II expression and IgE-BF production by highly purified B cells but not by PBMC or their T cell-depleted fractions. IFN-alpha inhibits IgE-BF production by IFN-gamma-stimulated PBMC and by IL-4-stimulated cells suggesting that it exerts its effect on B cells and on monocytes. Moreover IFN-alpha suppresses the IL-4-induced expression of Fc epsilon R II on B cells. Both IFN-alpha and IFN-gamma suppress the synthesis of IgE by PBMC in response to IL-4. Taken collectively the results indicate that: 1) IL-4 induces IgE-BF production by both B cells and monocytes, 2) IFN-gamma stimulates IgE-BF synthesis by monocytes but suppresses its production by IL-4-stimulated B cells, and finally 3) IFN-alpha inhibits IgE-BF synthesis in response to either IFN-gamma or IL-4.  相似文献   

5.
Ontogenic development and the lymphokine responsiveness of human NK cell activity against K562 target cells in peripheral blood lymphocytes were evaluated in fetuses, premature infants, and term neonates by using a 4-hr 51Cr-release assay. Basal NK activity and NK boosting by lymphokines were comparatively assayed after an 18-hr incubation with medium alone, recombinant human IFN-gamma (1000 U/ml), and recombinant human IL 2 (25 U/ml), respectively. Lymphocytes from 20-wk-old fetuses lacked NK cell activity even after the pretreatment with IFN-gamma. Low, but significant levels of NK activity and NK boosting by IFN-gamma were observed in premature infants after 27 wk of gestation, with a progressive intrauterine maturation of these activities. Both basal NK activity and NK boosting by IFN-gamma in term neonates were still lower than those of adult controls. The grade of NK boosting by IFN-gamma appeared to depend on the development of basal NK activity. Contrary to IFN-gamma, IL 2 could induce marked NK activity even in 20-wk-old fetuses who lacked both basal and IFN-gamma inducible NK activities. NK boosting by IL 2 was much more efficient than that by IFN-gamma at any period of human life. The facts that IL 2-induced NK boosting could occur without any appreciable production of IFN-gamma in neonatal lymphocytes, and that ample neutralizing doses of anti-IFN-gamma antibody hardly suppressed IL 2-mediated NK boosting even in adult lymphocytes, indicated that the effect of IL 2 on NK boosting might be independent of IFN-gamma production. On the basis of the ontogenic differences in the development of the lymphokine responsiveness of NK cell activity and on the different NK boosting mechanisms of these lymphokines it was suggested that so-called human "pre-NK cells" might be divided into IFN-gamma sensitive and IL 2-sensitive cells. Whether these cell populations belong to different cell lineages or different maturation stages of the same cell line, however, remains unsettled.  相似文献   

6.
To determine whether natural killer (NK) cells are the cells responsible for inhibition of outgrowth of Epstein-Barr virus (EBV)-infected autologous B lymphocytes, NK-enriched or NK-depleted populations were prepared by Percoll density gradient fractionation and complement lysis depletion of cells reacting with NK-specific monoclonal antibody HNK-1. These cells were then examined in parallel for NK activity and inhibition of outgrowth. NK-enriched low density cells inhibited outgrowth whereas NK-depleted high density cells did not. Low density cells treated with monoclonal antibodies HNK-1 and DR plus complement had little NK activity and failed to inhibit EBV-induced outgrowth, whereas these same cells treated with monoclonal antibodies OKT3 and DR plus complement had strong NK activity and caused marked inhibition of outgrowth. These findings indicate that NK cells rather than mature T cells, monocytes, or B cells, are responsible for inhibition of EBV-induced B cell outgrowth.  相似文献   

7.
Human large granular lymphocytes (LGL), which are known to be responsible for natural killer (NK) cell activity, also produced a variety of lymphokines including interleukin 2 (IL 2), colony stimulating factor (CSF), and interferon (IFN) in response to phytohemagglutinin (PHA) or concanavalin A (Con A). Human peripheral blood LGL, which were purified by removal of monocytes adhering to plastic flasks and nylon columns, followed by separation on a discontinuous Percoll gradient, and additional treatment with anti-OKT3 and Leu-M1 plus complement, were more potent producers of these lymphokines than unseparated mononuclear cells (MNC), nylon column-eluted cells, or purified T lymphocytes. Moreover, IL 2 production by LGL could be further distinguished in that it was not enhanced by the addition of macrophages or macrophage-derived factor, i.e., IL 1, whereas addition of macrophages did potentiate IL 2 production by T lymphocytes. Further analysis of cells in the LGL population using various monoclonal antibodies revealed that removal of cells with OKT11 or AF-10, a monoclonal antibody against human HLA-DR antigen, decreased IL 2 production, whereas removal of OKT8+, OKM1+, Leu-M1+, or Leu-7+ cells led to enhanced IL 2 production. The LGL population is therefore heterogeneous and includes at least three functionally and phenotypically distinct subsets. An atypical T cell subset (OKT3-, Leu-1-, OKT11+) rather than the myeloid subset of LGL (Leu-M1+ or OKMI+) was the source of LGL-derived IL 2, whereas the latter subset and/or another subset of OKT8+ cells appear to regulate this IL 2 production. In addition to performing NK activity, LGL on a per cell basis seem to be more effective than T lymphocytes in producing lymphokines, namely, IL2, CSF, and IFN.  相似文献   

8.
Addition of serotonin to mixtures of target cells and natural killer (NK)-enriched human mononuclear cells (MNC) in a 4-hr 51Cr-release assay strongly augmented NK cell cytotoxicity (NKCC) vs K562, Chang, or Molt-4 target cells. The effect was dose dependent at serotonin concentrations of 10(-4) to 10(-7) M, expressed at several effector to target cell ratios, and required the presence of accessory monocytes. A 5-HT1-specific receptor agonist, 8-OH-DPAT, mimicked the enhancing properties of serotonin with similar potency. Equimolar concentrations of the mixed 5-HT1/5-HT2 receptor antagonist cyproheptadine, but not the 5-HT2-specific antagonist ketanserin, completely blocked the serotonin-induced NKCC enhancement. Monocyte/NK cell mixtures incubated with serotonin for 1 hr produced a soluble factor that could enhance the cytotoxicity of autologous, NK-enriched cells depleted of monocytes, which did not respond to serotonin alone. The factor displayed no IFN or IL 2 activity as judged by the lack of antiviral activity and inability to support the growth of an IL 2-dependent cell line. In the presence of monocytes, serotonin (10(-5) M) was considerably more effective than human IFN-alpha or IFN-gamma at optimal concentrations and was about equally effective as IL 2 at a final concentration of 50 U/ml in a short-term NK assay. The potency and efficacy for serotonin were similar to that earlier reported for histamine in monocyte-containing effector cells. The NKCC-enhancing effect of serotonin was additive to that induced by IFN-alpha, IFN-gamma, or IL 2, but not to histamine. The presented data suggest an earlier unrecognized, serotonin receptor-mediated regulation of human NK cells.  相似文献   

9.
Bacterial lipopolysaccharide (LPS) induced human peripheral blood mononuclear cells (PBMC) to produce interferon-gamma (IFN-gamma). Monocytes play a mandatory accessory role in this process, because purified T lymphocytes failed to produce IFN-gamma in response to LPS and the addition of 2% monocytes to T cell cultures resulted in an optimal LPS-induced IFN-gamma production. IFN-gamma production was abolished in the presence of monoclonal antibodies specific for HLA-DR antigen. Addition of exogenous interleukin 2 (IL 2) markedly enhanced IFN-gamma secretion by PBMC induced with LPS. The addition of anti-Tac antibody specific for IL 2 receptors abrogated IFN-gamma production, suggesting that an interaction of IL 2 with IL 2 receptors was involved. By using a specific antibody binding assay, LPS was shown to amplify IL 2 receptor expression on PBMC, whereas exogenous IL 2 showed only a negligible enhancing effect on the expression of its own receptors. Interleukin 1 (IL 1), a product of LPS-stimulated monocytes, potentiated IL 2-induced IFN-gamma production in the absence of LPS. Neither IL 1 nor IL 2 alone induced IFN-gamma production in purified T lymphocyte cultures. When added together, however, substantial levels of IFN-gamma were induced. An enhanced IL 2 receptor expression on T cells was also demonstrated as a result of the combined action of IL 1 and IL 2. These results suggest that induction of IFN-gamma by LPS is due mainly to the generation of IL 1 and an enhanced expression of IL 2 receptors.  相似文献   

10.
11.
Mechanism of Epstein-Barr virus-induced human B-lymphocyte activation   总被引:5,自引:0,他引:5  
The mechanism of Epstein-Barr virus (EBV) activation of human B lymphocytes toward Ig synthesis was investigated in a direct anti-sheep red blood cell (SRBC) antibody plaque-forming cell (PFC) system. Exposure of human peripheral blood lymphocytes to EBV in vitro resulted in an anti-SRBC PFC response in 12 of 16 normal donors. The EBV-induced anti-SRBC PFC response did not require the presence of autologous helper T lymphocytes, but was inhibited by the presence of autologous concanavalin A-generated suppressor T cells. Live virus was required for B-cell activation since the EBV-induced PFC response was inhibited by exposure of EBV to ultraviolet light. Using fluorescent techniques which detected simultaneous intracytoplasmic (ICP) Ig production and the presence of EB nuclear antigen, we found that most, if not all, EBV-activated ICP Ig-positive cells were virally infected. Thus, these studies suggest that viral infection of Ig-producing B lymphocytes is required for EBV-induced polyclonal B-lymphocyte activation. Although the participation of T lymphocytes is not required for the induction of EBV-triggered B-lymphocyte Ig production, activated T lymphocytes can serve as modulators of this response.  相似文献   

12.
We have purified subpopulations of B lineage cells from human adult (rib) bone marrow by cell sorting and panning. Limiting dilution analysis was then used for a clonal analysis of cells able to secrete IgG, IgA, or IgM spontaneously or after infection with EBV. Nonproliferating, high rate IgG or IgA producers occurred at frequencies of about one per 1000 marrow mononuclear cells. Their frequency and Ig production was unaffected by EBV, and they appeared not to express EBNA after exposure to EBV. These cells were Ia+, B1+, and over 85% expressed sIg of the IgM/D (up to 75%) and/or IgG/A isotypes (40 to 60%). B cells committed to the secretion of IgM represent 2 to 10% of marrow B lymphocytes. They were found to be Ia+/B1+/B2+/CALLA- and C3b receptor (CR3)-cells, and most (greater than 90%) required infection with EBV and proliferation to develop into IgM-producing lymphocytes. Thirty to 40% of these cells did not express Ig (H or L chain) on their surface, and therefore resembled pre-B cells at the beginning of the 4- to 5-wk culture period. Proliferating pre-B cells from adult human marrow have been described, but their conversion into IgM-producing cells has not been formally demonstrated. Although EBV induces IgM production, the expression of EBNA, and several rounds of cell division in these cells, the induction of stable (greater than 5 wk) growth transformation represents a rare event in these pre-B cells: in several thousand limiting dilution wells, not a single culture of sIg-cells showed stable growth transformation. The dichotomy between EBV-induced high-rate IgM responses and absent growth transformation discriminates activation and transformation as distinct aspects of EBV-induced B cell "responses", and suggests that cellular properties play critical roles for viral transformation. We propose a model in which cellular target genes for transforming sequences in the EBV genome are transiently expressed during B cell differentiation.  相似文献   

13.
Cyclosporin A (CsA) has been found previously to block mitogen-stimulated T cell proliferation and production of discrete T cell-derived lymphokines such as interleukin 2 (IL 2) and interferon (IFN)-gamma. In addition, CsA blocks pokeweed mitogen (PWM)-driven T cell-dependent differentiation of B cells into immunoglobulin (Ig)-secreting cells. Recently, we reported that CsA (1 microgram/ml) inhibited PWM-induced T cell production of IL 2 and IFN-gamma, but supernatants retained B cell differentiation factor (BCDF)-like activity. The present study demonstrates the ability of CsA to suppress T cell functions in PWM-driven Ig production in mononuclear cells (MNC), and the capacity of exogenous T cell lymphokines to reverse CsA-induced suppression. CsA profoundly suppressed PWM-driven PFC formation (greater than 95%). However, Ig production was substantially reconstituted by the addition of IL 2 at concentrations of 10 to 50 U/ml. In contrast, no effects were observed by the addition of IFN-gamma or BCGF. The kinetics of CsA inhibition of Ig production and IL 2 secretion were found to be closely related. In addition, to obtain effective reconstitution in the CsA-treated PWM-MNC system it was necessary to add IL 2 at the initiation of culture. T cells themselves were also required for B cell differentiation in this system. However, surface Ig+ cells obtained by cell sorting after 3 days of culture could differentiate in the absence of T cells but only in response to IL 2, not in response to IFN-gamma or BCDF. Thus, in PWM-driven B cell differentiation T cells are necessary early in culture, whereas IL 2 is essential from the initial stage of B cell activation through the final stage of B cell differentiation.  相似文献   

14.
The essential components of the immune system that control primary and chronic infection with herpes simplex virus type 1 (HSV-1) in mice were investigated. Infection within the first few days can be controlled by alpha/beta interferon (IFN-alpha/beta) alone without significant contribution of B, T, or NK cells. IFN-alpha/beta and IFN-gamma cooperate in the elimination of virus in the absence of these lymphocytes. In contrast, B, T, or NK cells appear to be required to control persistent infection with HSV-1. These results suggest that distinct and essential immune elements are recruited in a time-dependent fashion to control acute and persistent HSV-1 infection.  相似文献   

15.
Recombinant human interferon alpha (IFN-alpha) and interferon gamma (IFN-gamma) were compared for their ability to influence the proliferative capacity of tumor-derived cell lines and of normal B lymphocytes infected in vitro by Epstein-Barr virus (EBV). EBV-induced B-cell proliferation was suppressed almost completely when 10(2) U/ml IFN-alpha were added to the culture medium while the same dose of IFN-gamma had significantly lower inhibitory activity. The pure IFNs differed in their ability to influence the growth of three Burkitt lymphoma-derived cell lines, Raji, Daudi, and Namalwa, depending on whether the cells were propagated in suspension or in semisolid cultures. IFN-alpha inhibited cell proliferation under both culture conditions with thresholds of sensitivity characteristics for each cell line. In contrast, IFN-gamma had no effect on the growth in suspension but it abolished the clonogenic potential of tumor cell lines in semisolid agarose. The results suggest that the two IFN types may exert their growth inhibitory activity through different mechanisms of action.  相似文献   

16.
We examined the ability of human natural killer (NK) cells to modulate T cell-dependent mitogen-induced B cell responses. Highly purified NK cells inhibited the polyclonal antibody responses of autologous pokeweed mitogen (PWM)-stimulated unfractionated mononuclear cells in a reverse hemolytic plaque-forming cell (PFC) assay. Investigation of the possible mechanism(s) of the suppressor activity of NK cells revealed that lysis of mitogen-stimulated cells was unlikely. Chromium-51 release cytotoxicity assays of PWM-stimulated mononuclear cells did not demonstrate lysis by NK cells. Additionally, the monoclonal antibody 13.3, which abrogates NK cell cytolysis, did not reverse NK cell-dependent suppression of PFC formation. The putative lytic molecule elaborated by NK cells, NK cytotoxic factor, did not suppress B cell responses, further supporting a nonlytic inhibitory mechanism. That NK cell-derived lymphokines such as IFN-alpha, IFN-gamma, or IL-2 were uninvolved in the down-regulation of B cells was corroborated by the failure of antibodies to these mediators to reverse the suppression. NK cells did not suppress PFC formation when T cells were replaced by supernatants from PWM-stimulated T cells; additionally, NK cells had no effect on the generation of these necessary T cell factors. However, the coculture of T cells with NK cells resulted in the induction of suppressor activity within the T cell population suggesting that this was the mechanism of NK cell-mediated suppression of B cell responses.  相似文献   

17.
Infection with Epstein Barr virus (EBV) is accompanied by seroconversion and life-long persistence of the virus in B lymphocytes. During acute EBV-induced infectious mononucleosis, suppressor T cells become activated, which may provide an additional mechanism of host defense against the causative agent. When cultures of lymphocytes from normal adults seropositive for EBV were stimulated with the B95-8 strain of EBV, purified B cells produced increasingly higher numbers of immunoglobulin- (Ig) secreting cells, whereas in co-cultures of autologous B and T cells a profound suppressor T cell activity inhibited further B cell activation after 10 to 12 days in culture. No such T cell-mediated inhibitory effect was seen in cultures of lymphocytes obtained from normal adults seronegative for EBV, indicating a correlation between the suppressor effect with evidence of prior immunity to this virus. The T cell-mediated suppression in patients with infectious mononucleosis is characterized by an early-acting inhibitory effect on B cell differentiation that is not specific in that all polyclonal B cell activators are inhibited, whereas in EBV-seropositive normal subjects suppression is delayed in time and affects only EBV-activated cultures. These data indicate that after infection with EBV, immunoregulatory T cells are generated that are capable of inhibiting further EBV-induced activation of autologous B cells and thus may provide an additional unique mechanism of host defense against persisting EBV-infected B cells.  相似文献   

18.
Highly enriched populations of human large granular lymphocytes (LGL), natural killer (NK) cells, and T cells were obtained from low and high density fractions, respectively, of discontinuous Percoll gradients. The NK cells were composed of 75 to 90% LGL, with the majority of the contaminating cells being monocytes. The T cells were greater than 95% OKT3+. The proliferative and cytotoxic progenitors in both fractions were examined by using a limiting dilution assay with interleukin 2 (IL 2) from four sources: 1) crude supernatant of a gibbon lymphoma (MLA-144), 2) purified (150,000-fold) MLA-144 IL 2, 3) partially purified human IL 2, and 4) purified recombinant human IL 2. The proliferative capacity was measured at day 7 by [3H]thymidine incorporation, whereas the progenitors of cells with NK-like activity were evaluated by assessing cytotoxic activity against K562 cells at day 8 in a 4-hr 51Cr-release assay. The frequency of proliferative progenitors among T cells was approximately 1/5 and was approximately 1/60 with LGL. Titration of the highly purified IL 2 preparation demonstrated that LGL proliferated with as little as 2 U of IL 2. The frequency of detectable cytotoxic progenitors in the LGL population, however, fell sharply when less than 40 U of IL 2 were employed. The T cells failed to demonstrate cytotoxic activity against the NK-susceptible target cells at any concentration of IL 2 tested. The IL 2 preparations also were examined for their ability to directly and rapidly enhance the cytotoxic activity of highly purified NK cells. All four preparations of IL 2 enhanced the cytotoxic activity of LGL without any detectable accessory requirement after incubation for as little as 6 hr, even though the MLA-144 IL 2 preparations were devoid of detectable interferons (IFN). These data indicate that IL 2 has dual effects on NK cells, regulating their activity was well as promoting their proliferation. Collectively, these results demonstrate that highly purified IL 2, devoid of other detectable lymphokines, is capable of supporting the growth of human NK cells and augmenting their in vitro activity. In parallel experiments, these same IL 2 preparations were quite active in causing the proliferation of T lymphocytes, clearly demonstrating a role of IL 2 in promoting the proliferation of NK cells as well as T cells. The mechanism of IL 2 boosting appears to be a direct interaction with LGL, resulting in the production of IFN gamma.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
NK cells express receptors that allow them to recognize pathogens and activate effector functions such as cytotoxicity and cytokine production. Among these receptors are the recently identified TLRs that recognize conserved pathogen structures and initiate innate immune responses. We demonstrate that human NK cells express TLR3, TLR7, and TLR8 and that these receptors are functional. TLR3 is expressed at the cell surface where it functions as a receptor for polyinosinic acid:cytidylic acid (poly(I:C)) in a lysosomal-independent manner. TLR7/8 signaling is sensitive to chloroquine inhibition, indicating a requirement for lysosomal signaling as for other cell types. Both R848, an agonist of human TLR7 and TLR8, and poly(I:C) activate NK cell cytotoxicity against Daudi target cells. However, IFN-gamma production is differentially regulated by these TLR agonists. In contrast to poly(I:C), R848 stimulates significant IFN-gamma production by NK cells. This is accessory cell dependent and is inhibited by addition of a neutralizing anti-IL-12 Ab. Moreover, stimulation of purified monocyte populations with R848 results in IL-12 production, and reconstitution of purified NK cells with monocytes results in increased IFN-gamma production in response to R848. In addition, we demonstrate that while resting NK cells do not transduce signals directly in response to R848, they can be primed to do so by prior exposure to either IL-2 or IFN-alpha. Therefore, although NK cells can be directly activated by TLRs, accessory cells play an important and sometimes essential role in the activation of effector functions such as IFN-gamma production and cytotoxicity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号