首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to estimate the water repellency of post-boggy soils in north-eastern Poland. Potential water repellency was determined based on the water drop penetration time (WDPT) test and the molarity of an ethanol droplet (MED) test. A total of 276 soil samples with a varied organic carbon (OC) content, ranging from trace amounts in sandy subsoils to 44.4% in organic soils, were analyzed. The investigated material represents peat-muck soils (Eutri-Sapric Histsols) and muck-like soils (Arenic Gleysols, Areni-Humic Gleysols, Gleyic Arenosols). The mineral matter of the analyzed soils comprised loose sand. The obtained results indicate that peat soil formations are marked by higher potential water repellency than muck soil formations. The highest WDPT values (16 390 s) were reported in respect of an alder peat sample with 41.9% OC content, collected at a depth of 55–60 cm. In the group of muck soils, a sample with 36.7% OC content, collected at a depth of 15–20 cm, was marked by the highest water repellency (WDPT 10 492 s). The water repellency of the studied soils is dependent on organic matter content, and it is manifested only when organic matter content is higher than 20%. Soils with OC content of up to 12% show low water repellency or are hydrophilic. Organic soil formations (>12% OC) are characterized by a varied degree of water repellency, but WDPT values in excess of 2000 s are reported only in respect of soils containing more than 35% OC. A significant positive correlation between the content of organic matter, organic carbon, total nitrogen and water repellency was observed in the entire studied population (n = 276). A significant positive correlation was also found between WDPT values and the C:N ratio, while a significant negative correlation was reported in respect of .  相似文献   

2.
Pines, used for sand dune stabilization, can influence the hydrophysical parameters and water flow in an aeolian sandy soil considerably, mainly due to soil water repellency. Two sites, separated by distance of about 20 m, formed the basis of our study. A control soil (“Pure sand“) with limited impact of vegetation or organic matter was formed at 50 cm depth beneath a forest glade area. This was compared to a “Forest soil” in a 30-year old Scots pine (Pinus sylvestris) forest. Most of the hydrophysical parameters were substantially different between the two soil surfaces. The forest soil was substantially more water repellent and had two-times the degree of preferential flow compared to pure sand. Water and ethanol sorptivities, hydraulic conductivity, and saturated hydraulic conductivity were 1%, 84%, 2% and 26% those of the pure sand, respectively. The change in soil hydrophysical parameters due to soil water repellency resulted in preferential flow in the forest soil, emerging during a simulated heavy rain following a long hot, dry period. The wetting front established in pure sand exhibited a form typical of that for stable flow. Such a shape of the wetting front can be expected in the forest soil in spring, when soil water repellency is alleviated substantially.  相似文献   

3.
土壤结皮是一种常见的自然现象,但由于结皮形成机制的不同,会产生不同的亲水性和斥水性,从而影响土壤的水力学特征与水文循环。本研究利用水滴穿透时间法测定了野外不同植被下物理结皮和生物结皮的斥水特征,利用扫描电镜观测了结皮的表面形态,并用微型入渗装置测定了结皮及其对照土壤的入渗特征。结果表明: 1)物理结皮的平均水滴穿透时间(WDPT)为3.3 s,对照为0.9 s,表现为亲水性;生物结皮的平均WDPT介于20.9~140.9 s,是无结皮的2.8~19倍,其中君迁子和刺槐林下的生物结皮平均WDPT分别为134.5和140.9 s。2)与对照相比,物理结皮累积入渗量、平均入渗速率和吸湿力分别降低了0~4.3%、3.5%~5.1%和27.2%~90.1%,生物结皮分别降低了0~25%、1.4%~28.2%和36.0%~84.9%。3)无论是否存在结皮,利用Philip模型拟合处理入渗数据均存在“曲棍球状”曲线;曲线上斥水性停止时间(WRCT)之前,点源微入渗以水平方向上的扩散为主,WRCT点以后以垂直方向上的入渗为主,土壤结皮的形成延长了该转折点的形成时间。综上,物理结皮是无机矿质颗粒堵塞了表层土壤,不影响斥水性的变化;生物结皮表现为斥水性有机物对土壤结构的影响,增强了其斥水性。物理结皮和生物结皮均会降低土壤的累积入渗量和平均入渗速率,但物理结皮主要影响土壤的吸湿力,对稳定入渗速率影响不大;生物结皮不仅降低了土壤吸湿力,还增加了稳定入渗速率。  相似文献   

4.
刘春利  邵明安 《应用生态学报》2008,19(11):2400-2407
采用地统计学中交互相关系数方法,对黄土高原六道沟流域农田、荒草地、林地、苜蓿地4种土地类型土壤剖面水力特性及其对水分分布的影响进行了分析.结果表明:研究区农田与荒草地的土壤特性相似,苜蓿地与林地相似;相同吸力条件下,土壤水分以农田最大、林地最小,而饱和导水率则相反;除土壤水分消耗期的林地和苜蓿地土壤水分随土层深度增加呈上升趋势外,其他时期各土地利用方式下土壤水分均随土层深度的增加而降低.土壤剖面饱和导水率与土壤含水量之间的影响程度依土壤水分条件而异:水分补偿期,剖面土壤饱和导水率对滞后其空间距离0~40 cm土层内的土壤含水量具有显著影响,而土壤水分含量对饱和导水率的影响范围为0~50 cm;水分稳定期,饱和导水率与土壤含水量的相互影响范围均在0~60 cm;水分补偿期和稳定期,二者之间为正相关;土壤水分消耗期,农田和荒草地饱和导水率与水分含量呈正相关,饱和导水率对土壤水分含量的影响范围在滞后其空间范围0~80 cm土层内,而土壤水分含量对饱和导水率的影响范围在0~60 cm内,林地和苜蓿地则呈负相关,相互影响范围均在0~60 cm土层内.  相似文献   

5.
Numerous recent laboratory studies have shown that vegetation can influence soil water flow by inducing very low levels of water repellency. In this study we extended on this previous research by developing a field-based test using a miniature infiltrometer to assess low levels of water repellency from physically based measurements of liquid flow in soil. The field-based test was verified through a simple laboratory experiment and then applied to determine the impact of vegetation and antecedent soil water content. The soil hydraulic properties determined were hydraulic conductivity, sorptivity, as well as the persistence and index of water repellency. Tests were conducted following a dry spell and wet spell on (1) forest soil (0 cm depth), (2) glade soil (0 cm depth) and (3) glade soil (50 cm depth). It was found that both the persistence and index of water repellency, R, decreased in the order as follows: forest soil > glade soil (0 cm) > glade soil (50 cm) for both dry and wet spell. The range of values of R was 0.28 (wettable) to 360 (highly water repellent), which affected hydraulic conductivity k r(−2 cm). R increased and hence k r(−2 cm) decreased in the order: forest soil < glade soil (0 cm) < glade soil (50 cm) for both the dry and wet spell. There were clear interactions between vegetation and changes to water flow caused by presence of repellency. Presented at the International Conference on Biohydrology, Prague, Czech Republic, 20–22 September 2006.  相似文献   

6.
王亦尘  李毅  肖珍珍 《生态学杂志》2016,27(12):3769-3776
土壤斥水性(SWR)阻碍入渗及再分布过程.虽然斥水土壤在世界广泛存在,但其产生机理并不明确.本文采用滴水穿透时间(WDPT)法、酒精摩尔浓度(MED)法和接触角(θ)法测定了新疆玛纳斯河流域典型土壤的SWR指标,其中θ的测定采用高度法和质量法.对WDPT是否受烘干及不同容重的影响进行对比,探讨各SWR指标之间的联系,并分析了SWR的关键理化性质影响因子,探讨土壤斥水的机理和原因.结果表明: 高容重土壤的WDPT值更大,烘干土壤的WDPT值比风干土壤大;3种SWR指标(WDPT、MED及θ)之间有一定的相关关系,但MED与θ的相关性并不明显,表明各SWR指标之间虽有一定联系,但表征方面具有差异性;采用高度法和质量法测量水与土壤的θ值时,高度法的θ值大于质量法,高度法之间重复差异小于质量法;使用正辛烷作为参比溶液测量水与土壤的θ值时,其重复的差异较小,低于无水乙醇;在多种理化性质中,黏粒含量比其他土壤属性更显著地影响WDPT和θ;[K+]、[Na+]均与θ呈正相关;蒙脱石含量与WDPT、MED呈负相关.综上,土壤SWR的测定方法中,WDPT法操作简单但易受影响;MED法缩短了入渗时间但试验过程耗时;接触角法操作复杂,结果相对精确,采用正辛烷作为参比溶液的高度法更可靠.建议采用多种指标综合表征土壤斥水性.  相似文献   

7.
Vegetative restoration may increase stability of degraded soil through enrichment of soil organic carbon (SOC). It is not clear whether hydrophobic fractions of dissolved organic carbon (DOC) function, although soil water repellency is generally linked to soil stability. The objectives of this study were to determine the effects of vegetative restoration and hydrophobic DOC fractions on soil hydrological and mechanical stability. Five investigated plots included eroded bare soil as a control, restored eroded soils planted either with Camphor tree (Cinnamomum camphora) or Lespedeza shrub (Lespedeza bicolor) since 1987, and two undisturbed soils with the same vegetation types. Water stability (WS), tensile strength (TS), and soil water repellency (SWR) of soil aggregates were measured at three water potentials, i.e., ?6, ?60 hPa and oven drying at 40 °C and at three depths (0–5, 5–10 and 10–20 cm). Reforestation of Lespedeza and Camphor trees for over 15 years increased SOC, hydrophobic DOC (H-DOC) and hydrophobic acid DOC (HA-DOC), WS and TS of the restored soils compared with the eroded bare soil, with more profound effects under Lespedeza shrubs than under Camphor trees, especially for TS. No significant differences were found between the restored and undisturbed soil under the same vegetation type. SOC was significantly correlated to total porosity, hydrological and mechanical stability and soil water repellency, suggesting the significant effect of SOC on soil restoration. SWR was more closely correlated to SOC and to H-DOC concentration than to total DOC and HA-DOC in the top soil. The humification and aromaticity indices of DOC indicated that greater SWR in the soils under Lespedeza than under Camphor trees can be attributed to greater amount of litter fall and more active microbial decomposition. Although WS and TS varied with soil water potentials, TS was strongly correlated to SWR, but no link was found with WS. This study suggests that the combined influences of soil organic compounds binding and coating soil particles, retarding water wettability and modifying soil porosity are probably extremely important mechanisms of mechanical stabilization in soil. Such intricate feedback during vegetation restoration needs further study.  相似文献   

8.
Cold-season processes are known to contribute substantially to annual carbon (C) and nitrogen (N) budgets in continental high elevation and high-latitude soils, but their role in more temperate alpine ecosystems has seldom been characterized. We used a 4-month lab incubation to describe temperature (−2, 0, 5°C) and moisture [50, 90% water-holding capacity (WHC)] effects on soil C and N dynamics in two wet and one dry meadow soil from the Sierra Nevada, California. The soils varied in their capacity to process N at and below 0°C. Only the dry meadow soil mineralized N at −2°C, but the wet meadow soils switched from net N consumption at −2°C to net N mineralization at temperatures ≥0°C. When the latter soils were incubated at −2°C at either moisture level (50 or 90% WHC), net NO3 production decreased even as NH4 + continued to accumulate. The same pattern occurred in saturated (90% WHC) soils at warmer temperatures (≥0°C), suggesting that dissimilatory processes could control N cycling in these soils when they are frozen.  相似文献   

9.

Aims

“Grain for Green Program” (GGP), i.e., re-conversion of cropland into forest or grassland, initiated by Chinese government has a profound impact on mitigating environmental degradation. The objectives of this study were to assess the changes of some soil properties during the processes of re-conversion from cropland to grassland over time in the semiarid steppe region of north China.

Methods

Two sites with different ages of re-conversion were selected for measurements of organic matter (SOM), total nitrogen (TN) and phosphorus (TP), bulk density (BD) and grain size distribution. Saturated hydraulic conductivity was determined by the constant hydraulic head method and unsaturated hydraulic conductivity by disc infiltrometer at tensions of 30, 60 and 150 mm. Soil water content was measured using the gravimetric method. Wetting front depths in the soil after rainfall were also recorded at the study sites.

Results

Natural grasslands had higher belowground biomass than re-converted grasslands. Re-converted grasslands had lower SOM and TN at depths of 0–20 cm and higher saturated hydraulic conductivity at depths of 0–10 cm than natural grassland. The natural grassland soils had higher soil water contents in the surface soil (0–20 cm) and lower soil water contents at deeper depths than re-converted grassland soils. Soil aggregate stability reached the natural steppe level 12 years after re-conversion.

Conclusions

The recovery of soil properties after GGP appeared to be slow, and these properties did not return to natural grassland status before cultivation after 12 years of re-conversion.  相似文献   

10.
Several studies have shown improved soil stability under elevated atmospheric CO2 caused by increased plant and microbial biomass. These studies have not quantified the mechanisms responsible for soil stabilisation or the effect on water relations. The objective of this study was to assess changes in water repellency under elevated CO2. We hypothesised that increased plant biomass will drive an increase in water repellency, either directly or through secondary microbial processes. Barley plants were grown at ambient (360 ppm) and elevated (720 ppm) CO2 concentrations in controlled chambers. Each plant was grown in a separate tube of 1.2 m length constructed from 22 mm depth × 47 mm width plastic conduit trunk and packed with sieved arable soil to 55% porosity. After 10 weeks growth the soil was dried at 40°C before measuring water sorptivity, ethanol sorptivity and repellency at many depths with a 0.14 mm radius microinfiltrometer. This provided a microscale measure of the capacity of soil to rewet after severe drying. At testing roots extended throughout the depth of the soil in the tube. The depth of the measurement had no effect on sorptivity or repellency. A rise in CO2 resulted in a decrease in water sorptivity from 1.13 ± 0.06 (s.e) mm s−1/2 to 1.00 ± 0.05 mm s−1/2 (P < 0.05) and an increase in water repellency from 1.80 ± 0.09 to 2.07 ± 0.08 (P < 0.05). Ethanol sorptivity was not affected by CO2 concentration, suggesting a similar pore structure. Repellency was therefore the primary cause of decreased water sorptivity. The implications will be both positive and negative, with repellency potentially increasing soil stability but also causing patchier wetting of the root-zone.  相似文献   

11.
Many forest roads are being closed as a step in watershed restoration. Ripping roads with subsoilers or rock rippers is a common practice to increase the infiltration capacity of roads before closure. When considering the effectiveness of ripping for reducing runoff and erosion and the potential reduction in slope stability by saturating road fills, it is important to know how ripping changes the infiltration capacity of forest roads. Hydrographs from simulated rainfall on 1 × 1 m plots were analyzed to find the saturated hydraulic conductivity, an indicator of infiltration capacity. I examined saturated hydraulic conductivity for three treatments on two different soils. One road was built in a soil derived from the metamorphic belt series geology of northern Idaho, a soil noted for its high rock fragment content. The second road was built in a sandy soil derived from decomposed granitics of the Idaho batholith. On each soil, five plots were installed on a road before ripping, and nine plots were installed on the same road segment following ripping, four covered with a heavy straw mulch and five without. Three half-hour rainfall events with intensities near 90 mm/hr were simulated on each plot. Results show that ripping increases hydraulic conductivities enough to reduce risk of runoff but does not restore the natural hydraulic conductivity of a forested slope. The unripped road surfaces had hydraulic conductivities in the range of 0–4 mm/hr, whereas ripped roads were in the range of 20–40 mm/hr after the second event. Surface sealing and tilled soil subsidence processes are important in reducing the hydraulic conductivity of the soils with repeated wetting. Subsidence appears to be important on the granitic soil, whereas surface sealing was more important on the belt series soil.  相似文献   

12.
Summary Four paddy soils from Thailand were included in this investigation. The soils are described as marine alluvial, fresh water alluvial, hydromorphic alluvial and hydromorphic non-calcareous brown soil. The hydraulic conductivity of water saturated soil was determined on puddled samples, and soil moisture retention curves were recorded for unpuddled samples. In a pot experiment rice variety RD-1 was grown on the soils under flooded and unflooded conditions. For the soils studied a negative relationship was found between the hydraulic conductivity and the ability of the soil to retain water against a given suction. The grain yield was higher under flooded conditions, while among the various soils studied in this experiment grain yield increased with decreasing water content in the suction range studied and increasing hydraulic conductivity of the soils. Better root development facilitated by more favourable physical conditions in highly permeable soils could be the possible reason for the yield increase.  相似文献   

13.
Over the last few decades, due to increase in grazing intensity, animal trampling has led to soil structure deterioration in Inner Mongolia, China. We investigated two different steppe ecosystems: Leymus chinensis (LCh, characterized by relatively higher precipitation) and Stipa grandis (SG) and two grazing intensities: ungrazed since 1979 (UG79) and grazed (continuously grazed, CG, at the Stipa grandis site and winter grazed, WG, at Leymus chinensis). Soil mechanical and hydraulic properties of semiarid steppe soils from each site and treatment were determined for soil aggregates and disturbed and bulk soil samples from different depths (4?C8, 18?C22, 30?C34 and 56?C60 cm for disturbed and bulk samples and 0?C15 cm for the aggregates). Grazing causes a significant increase in tensile strength of aggregates and in the precompression stress of the bulk soil as well as a decrease in air and saturated hydraulic conductivity, irrespective of the vegetation type. Furthermore, exclusion from grazing led to more pronounced recovery of soil strength and pore continuity and hydraulic conductivity at the LCh site but it also depended on the moisture conditions of the sites. Under wetter conditions as well as after repeated freezing and thawing the soil strength declined.  相似文献   

14.
The hydraulic conductivity of a paddy field (Anthraquic Dystrustept), a silty clay soil containing more than 29% (w/w) of gravel, in Nagoya University Farm was reduced by in situ treatment of subsurface soil using bentonite and biocalcification (microbial calcium carbonate precipitation) through the addition of CaCl2, urea, and corn steep liquor (CSL). The treatment decreased the hydraulic conductivity of the field from an average of 10?3 cm/s to a range of 10?5 to 10?7 cm/s during 69 days, with reducing the proportion of pores of subsurface soil larger than 75 µm in diameter. The biocalcification effect was observed at 10-cm thickness from the treated subsurface. Laboratory soil core experiments demonstrated that the decrease in the hydraulic conductivity was not attributed to the effect of bentonite but mainly to the effect of biocalcification. The addition of CSL enhanced the urease activity of soil required for biocalcification, even at 4°C, as indicated by a decrease in urease activation energy temperature sensitivity. These experimental results agreed with the gradual decrease in hydraulic conductivity observed in the field when the average daily temperature was 7°C (days 24–69). It was suggested that the biocalcification is a potential technique to reduce the hydraulic conductivity of paddy field.  相似文献   

15.
Virus movement in soil during saturated and unsaturated flow   总被引:3,自引:0,他引:3  
Virus movement in soil during saturated and unsaturated flow was compared by adding poliovirus to sewage water and applying the water at different rates to a 250-cm-long soil column equipped with ceramic samplers at different depths. Movement of viruses during unsaturated flow of sewage through soil columns was much less than during saturated flow. Viruses did not move below the 40-cm level when sewage water was applied at less than the maximum infiltration rate; virus penetration in columns flooded with sewage was at least 160 cm. Therefore, virus movement in soils irrigated with sewage should be less than in flooded groundwater recharge basins or in saturated soil columns. Management of land treatment systems to provide unsaturated flow through the soil should minimize the depth of virus penetration. Differences in virus movement during saturated and unsaturated flow must be considered in the development of any model used to simulate virus movement in soils.  相似文献   

16.
In the next decades, many soils will be subjected to increased drying/wetting cycles or modified water availability considering predicted global changes in precipitation and evapotranspiration. These changes may affect the turnover of C and N in soils, but the direction of changes is still unclear. The aim of the review is the evaluation of involved mechanisms, the intensity, duration and frequency of drying and wetting for the mineralization and fluxes of C and N in terrestrial soils. Controversial study results require a reappraisal of the present understanding that wetting of dry soils induces significant losses of soil C and N. The generally observed pulse in net C and N mineralization following wetting of dry soil (hereafter wetting pulse) is short‐lived and often exceeds the mineralization rate of a respective moist control. Accumulated microbial and plant necromass, lysis of live microbial cells, release of compatible solutes and exposure of previously protected organic matter may explain the additional mineralization during wetting of soils. Frequent drying and wetting diminishes the wetting pulse due to limitation of the accessible organic matter pool. Despite wetting pulses, cumulative C and N mineralization (defined here as total net mineralization during drying and wetting) are mostly smaller compared with soil with optimum moisture, indicating that wetting pulses cannot compensate for small mineralization rates during drought periods. Cumulative mineralization is linked to the intensity and duration of drying, the amount and distribution of precipitation, temperature, hydrophobicity and the accessible pool of organic substrates. Wetting pulses may have a significant impact on C and N mineralization or flux rates in arid and semiarid regions but have less impact in humid and subhumid regions on annual time scales. Organic matter stocks are progressively preserved with increasing duration and intensity of drought periods; however, fires enhance the risk of organic matter losses under dry conditions. Hydrophobicity of organic surfaces is an important mechanism that reduces C and N mineralization in topsoils after precipitation. Hence, mineralization in forest soils with hydrophobic organic horizons is presumably stronger limited than in grassland or farmland soils. Even in humid regions, suboptimal water potentials often restrict microbial activity in topsoils during growing seasons. Increasing summer droughts will likely reduce the mineralization and fluxes of C and N whereas increasing summer precipitation could enhance the losses of C and N from soils.  相似文献   

17.
Virus movement in soil during saturated and unsaturated flow.   总被引:7,自引:3,他引:4       下载免费PDF全文
Virus movement in soil during saturated and unsaturated flow was compared by adding poliovirus to sewage water and applying the water at different rates to a 250-cm-long soil column equipped with ceramic samplers at different depths. Movement of viruses during unsaturated flow of sewage through soil columns was much less than during saturated flow. Viruses did not move below the 40-cm level when sewage water was applied at less than the maximum infiltration rate; virus penetration in columns flooded with sewage was at least 160 cm. Therefore, virus movement in soils irrigated with sewage should be less than in flooded groundwater recharge basins or in saturated soil columns. Management of land treatment systems to provide unsaturated flow through the soil should minimize the depth of virus penetration. Differences in virus movement during saturated and unsaturated flow must be considered in the development of any model used to simulate virus movement in soils.  相似文献   

18.
《Bioresource technology》2000,71(3):253-259
Organic fertilizer produced by composting 62% town wastes, 21% sewage sludge and 17% sawdust by volume, was applied at the rates of 0 (control), 75, 150 and 300 m3 ha−1 to loamy and clay soils, in order to investigate its potential for soil improvement. The experiments were conducted in areas characterised by a semi-arid climate. The chemical properties of the soils were affected directly by the amendment compost. The physical properties of the amended soils were improved in all cases as far as the saturated and unsaturated hydraulic conductivity, water retention capacity, bulk density, total porosity, pore size distribution, soil resistance to penetration, aggregation and aggregate stability, were concerned. In most of the cases the improvements were proportional to the application rates of the compost and they were greater in the loamy soil than in the clay soil.  相似文献   

19.
秦岭火地塘林区土壤大孔隙分布特征及对导水性能的影响   总被引:8,自引:0,他引:8  
陆斌  张胜利  李侃  马国栋 《生态学报》2014,34(6):1512-1519
大孔隙广泛分布于森林土壤中,是定量研究与土壤水分运动有关的重要因素,其研究可深化森林涵养水源机理的认识。基于田间持水量到饱和含水量之间的土壤孔隙作为大孔隙的标准,利用土壤水分穿透曲线和Poiseulle方程研究了秦岭火地塘林区森林土壤大孔隙分布特征及其对土壤饱和导水率的影响。结果表明,林区土壤大孔隙当量孔径主要分布在0.3—3.8 mm之间;当量孔径1.5 mm的大孔隙密度较小,其数量仅占大孔隙总数量的5.37%;各当量孔径的大孔隙密度随土层分布基本呈现为上层大、下层小的特点,且垂直分布差异显著,其与有机质含量分布有极显著的相关性。0—60 cm土层大孔隙平均面积比顺序为:针阔混交林油松林落叶阔叶林华山松林。不同当量孔径的大孔隙密度与饱和导水率呈显著正相关关系,当量孔径大于1.5 mm的大孔隙密度决定了饱和导水率84%的变异;大孔隙率平均在1.6%—13.3%之间,当其小于5%时,饱和导水率随着大孔隙率增大而增大。  相似文献   

20.
This study examined the impact of plants on acid sulphate soils with the aim of determining whether plants are able to reduce acid production. The study was conducted with clayey acid sulphate soil under controlled conditions with treatments lasting up to 24 weeks and measurements made in the top 0?C60 mm of soil. pH profiles in the soil were strongly dependent on soil moisture and the pattern of irrigation. When bare soil was allowed to dry down without further irrigation, there was very little acidification of either the surface or subsurface layers. Planting of Phragmites accelerated soil drying and caused extensive cracking and acidification of the subsoil under simulated drought conditions. Under a wetting and drying regime, both Phragmites and a surface spreading grass Paspalum increased soil acidification, while a surface spreading herbaceous shrub Cotula had little effect on acidification. There was no evidence that live plants could ameliorate acid sulphate soils. However, application of dead plant matter to the surface of the soil was effective in reducing acidification, especially if submerged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号