首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Liu H  Yuan L  Xu S  Zhang T  Wang K 《Life sciences》2004,76(5):533-543
Oxysterols found in atherosclerotic plaque may be associated with vascular calcification. We investigated the effect of oxysterol cholestane-3beta, 5alpha, 6beta-triol (Triol) on in vitro calcification of rat vascular smooth muscle cells (VSMCs). In vitro calcification was induced by incubation of VSMCs with beta-glycerophosphate. Calcifying nodule formation, calcium deposition in extracellular matrix, and alkaline phosphatase (ALP) activity were measured as indices of calcification. Because apoptotic bodies can serve as nucleation sites for calcification, apoptosis of calcifying VSMCs was determined by Hoechst 33258 staining, TUNEL, and FITC-labeled annexin V/PI double staining. The calcium deposition and ALP activity in calcifying VSMCs were much higher than those in non-calcifying VSMCs. Triol increased calcifying nodule formation, calcium deposition, ALP activity, and apoptosis of nodular cells in calcifying VSMCs. As determined by 2,7-dichlorofluorescein fluorescence, Triol induced the generation of reactive oxygen species (ROS) in calcifying VSMCs dose- and time-dependently. Triol-induced increases in calcium deposition, ALP activity, apoptosis, and ROS generation were all attenuated by antioxidant vitamin C plus vitamin E (VC + VE). The results demonstrated that Triol promoted VSMCs calcification through direct increase of ALP activity and apoptosis, probably by ROS-related mechanism.  相似文献   

2.
3.
Wu SY  Zhang BH  Pan CS  Jiang HF  Pang YZ  Tang CS  Qi YF 《Peptides》2003,24(8):1149-1156
We observed changes of endothelin content and endothelin mRNA in vivo in vascular calcification and in vitro in calcification of vascular smooth muscle cells to explore the role of endothelin in vascular calcification. Calcification model in vivo was induced by administration of Vitamin D(3) plus nicotine. Calcification of vascular smooth muscle cells (VSMCs) was induced by beta-glycerophosphate. Endothelin content was measured by using radioimmunoassay. Endothelin mRNA amount was determined by using competitive quantitative RT-PCR. The results showed that calcium content, 45Ca(2+) uptake and alkaline phosphatase (ALP) activity were increased in calcified VSMCs, compared with controls, but were decreased, compared with calcified VSMCs plus BQ123 group. The endothelin content in the medium and endothelin mRNA in VSMCs were elevated by 35 and 120% (P<0.05), respectively, compared with those normal VSMCs. Calcium content, 45Ca(2+) accumulation and ALP activity in calcified arteries increased by 5.0-, 1.4-, and 1.4-fold. The endothelin levels in plasma and aorta as well as the amount of endothelin mRNA in calcified aorta were increased by 102, 103, and 22%, respectively, compared with control group. However, calcium content, 45Ca(2+) uptake and ALP activity in VDN plus bosentan group was 33, 36.7, and 40.4% lower than those in VDN group. These results indicated an upregulated endothelin gene expression as well as an increased production of endothelin in calcified aorta and VSMCs with BQ123 and bosentan significantly reducing vascular calcification. This suggested that endothelin might be involved in pathogenesis of vascular calcification.  相似文献   

4.
Ghrelin blunted vascular calcification in vivo and in vitro in rats   总被引:9,自引:0,他引:9  
Li GZ  Jiang W  Zhao J  Pan CS  Cao J  Tang CS  Chang L 《Regulatory peptides》2005,129(1-3):167-176
Ghrelin is a new peptide with regulatory actions in growth hormone secretion in the anterior pituitary gland and in energy metabolism. Currently, ghrelin has potently protective effects in cardiovascular diseases. We used an in vivo model of rat vascular calcification induced by vitamin D3 and nicotine and one of cultured rat vascular smooth muscular cells (VSMCs) calcification induced by beta-glycerophosphate to study the possible mechanism in the regulatory action of ghrelin in vascular calcification. Calcification increased total Ca2+ content and 45Ca2+ deposition in aortas and VSMCs and alkaline phosphatase (ALP) activation in plasma, aortas and VSMCs. However, calcified aortas and VSMCs showed a significant decrease in osteopontin (OPN) mRNA expression and a marked reduction of ghrelin levels in plasma and its mRNA expression in aortas. The aortic calcification was significantly attenuated by subcutaneous administration of ghrelin 30 and 300 nmol kg(-1) day(-1) for 4 weeks, and the latter dosage was more potent than the former. Ghrelin treatment at the two dosages reduced the total aorta Ca2+ content by 24.4% and 28.1%, aortic 45Ca2+ deposition by 18.4% and 24.9%, plasma ALP activity by 36.6% and 76.7%, and aortic ALP activity by 10.3% and 47.6% (all P < 0.01 or 0.05), respectively. Ghrelin at 10(-8)-10(-6) mol/L attenuated the calcification in cultured VSMCs, with decreased total Ca2+ content, 45Ca2+ deposition and ALP activity and increased OPN mRNA expression, in a concentration-dependent manner. In addition, endothelin levels in plasma and aortas and its mRNA expression in aortas significantly increased with calcification, but ghrelin treatment significantly decreased endothelin levels and mRNA expression, with the high dosage being more potent than the lower dosage. These results indicate that local ghrelin in vascular was down-regulated during vascular calcification, whereas administration of ghrelin effectively attenuated vascular and VSMCs calcification.  相似文献   

5.
Shan PF  Lu Y  Cui RR  Jiang Y  Yuan LQ  Liao EY 《PloS one》2011,6(3):e17938
Vascular calcification, which results from a process osteoblastic differentiation of vascular smooth muscle cells (VSMCs), is a major risk factor for cardiovascular morbidity and mortality. Apelin is a recently discovered peptide that is the endogenous ligand for the orphan G-protein-coupled receptor, APJ. Several studies have identified the protective effects of apelin on the cardiovascular system. However, the effects and mechanisms of apelin on the osteoblastic differentiation of VSMCs have not been elucidated. Using a culture of calcifying vascular smooth muscle cells (CVMSCs) as a model for the study of vascular calcification, the relationship between apelin and the osteoblastic differentiation of VSMCs and the signal pathway involved were investigated. Alkaline phosphatase (ALP) activity and osteocalcin secretion were examined in CVSMCs. The involved signal pathway was studied using the extracellular signal-regulated kinase (ERK) inhibitor, PD98059, the phosphatidylinositol 3-kinase (PI3-K) inhibitor, LY294002, and APJ siRNA. The results showed that apelin inhibited ALP activity, osteocalcin secretion, and the formation of mineralized nodules. APJ protein was detected in CVSMCs, and apelin activated ERK and AKT (a downstream effector of PI3-K). Suppression of APJ with siRNA abolished the apelin-induced activation of ERK and Akt. Furthermore, inhibition of APJ expression, and the activation of ERK or PI3-K, reversed the effects of apelin on ALP activity. These results showed that apelin inhibited the osteoblastic differentiation of CVSMCs through the APJ/ERK and APJ/PI3-K/AKT signaling pathway. Apelin appears to play a protective role against arterial calcification.  相似文献   

6.
Yu F  Zhao J  Yang J  Gen B  Wang S  Feng X  Tang C  Chang L 《Regulatory peptides》2004,122(3):191-197
Salusin-alpha and -beta are newly found polypeptides that stimulate proliferation, hypotension and bradycardia in vascular smooth muscle cells (VSMCs) and fibroblasts. Propresalusin mRNA is widespread, and positive stains for salusins have been observed in many human tissues such as endothelium and ventricular tissue. To investigate the bio-effect of salusins on cardiovascular function, 20 nmol/kg salusin-alpha or 2 nmol/kg salusin-beta was intravenously (i.v.) injected into rats, and isolated rat hearts were perfused with 10(-12) to 10(-7) mol/l salusin-alpha or -beta. (45)Ca(2+) uptake and (3)H-Leucine incorporation were determined in cultured neonatal rat cardiomyocytes. Neither salusin-a nor -beta affected cardiac function in vivo or in vitro but salusin-beta decreased mean arterial blood pressure (MAP). The polypeptides' stimulation of (45)Ca(2+) uptake and (3)H-Leucine incorporation was concentration-dependent, and the incorporation was inhibited by nicardipine (Nic) and FK-506 [FK; an inhibitor of calcineurin (CaN)]. PD(98059) [PD; inhibitor of mitogen-activated protein kinase (MAPK)] and chelerythrine [inhibitor of protein kinase C (PKC)] inhibited salusin-stimulated (3)H-Leucine incorporation. Endothelin-1 (ET) synergistically increased salusin-induced (45)Ca(2+) uptake. Our results suggest that salusin-alpha and -beta did not directly affect cardiac function in the rat heart but that they improved calcium uptake and protein synthesis in neonatal rat cardiomyocytes through the calcium, calcineurin, MAPK and PKC signal pathways. Salusins may be regulatory factors for myocardial growth and hypertrophy.  相似文献   

7.
Cortistatin (CST) is a newly discovered polypeptide with multiple biological activities that plays a regulatory role in the nervous, endocrine and immune systems. However, the role of CST in the pathogenesis of cardiovascular diseases remains unclear. In this study, we investigated in rats whether CST inhibits vascular calcification induced by vitamin D3 and nicotine treatment in vivo and calcification of cultured rat vascular smooth muscular cells (VSMCs) induced by beta-glycerophosphate in vitro and the underlying mechanism. We measured rat hemodynamic variables, alkaline phosphatase (ALP) activity, calcium deposition and pathological changes in aortic tissues and cultured VSMCs. CST treatment significantly improved hemodynamic values and arterial compliance in rats with vascular calcification, by decreasing systolic blood pressure, pulse pressure, left ventricular end-systolic pressure and left ventricular end-diastolic pressure. CST also significantly decreased ALP activity and calcium deposition, alleviated pathological injury and down-regulated the mRNA expression of type III sodium-dependent phosphate co-transporter-1 (Pit-1) in aortic tissues. It dose-independently inhibited the calcification of VSMCs by decreasing ALP activity and calcium deposition, alleviating pathologic injury and down-regulating Pit-1 mRNA expression. As with CST treatment, ALP activation and calcium deposition were decreased significantly on treatment with ghrelin, the endogenous agonist of growth hormone secretagogue receptor 1a (GHSR1a), but not significantly with somatostatin-14 or proadrenomedullin N-terminal 20 peptide in VSMCs. Further, growth hormone-releasing peptide-6[D-lys], the endogenous antagonist of GHSR1a, markedly reversed the increased ALP activity and calcium deposition in VSMCs. CST could be a new target molecule for the prevention and therapy of vascular calcification, whose effects are mediated by GHSR1a rather than SSTRs or Mrg X2.  相似文献   

8.
9.
Our previous studies demonstrated that taurine inhibits osteoblastic differentiation of vascular smooth muscular cells (VSMCs) via the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway, but the underlying mechanism is not elucidated. The tyrosine kinase receptor Axl and its ligand growth arrest-specific protein 6 (Gas6) are expressed in VSMCs. Axl/Gas6 signaling system is known to inhibit VSMCs calcification. We herein showed that taurine partially restored Axl and Gas6 expression in β-glycerophosphate (β-GP)-induced VSMC calcification model. Taurine also induced activation of ERK, but not other two MAPKs including c-jun N-terminal Kinase (JNK) and p38 in VSMCs. Either knockdown of the taurine transporter (TAUT) or treatment with the ERK-specific inhibitor PD98059 blocked the activation of ERK by taurine and abolished taurine-induced Axl/Gas6 expression and calcium deposition reduction in β-GP-induced VSMC calcification model. These results demonstrate for the first time that taurine stimulates expression of Axl and Gas6 via TAUT/ERK signaling pathway in β-GP-induced VSMC calcification model.  相似文献   

10.
11.
Liang QH  Jiang Y  Zhu X  Cui RR  Liu GY  Liu Y  Wu SS  Liao XB  Xie H  Zhou HD  Wu XP  Yuan LQ  Liao EY 《PloS one》2012,7(4):e33126
Vascular calcification results from osteoblastic differentiation of vascular smooth muscle cells (VSMCs) and is a major risk factor for cardiovascular events. Ghrelin is a newly discovered bioactive peptide that acts as a natural endogenous ligand of the growth hormone secretagog receptor (GHSR). Several studies have identified the protective effects of ghrelin on the cardiovascular system, however research on the effects and mechanisms of ghrelin on vascular calcification is still quite rare. In this study, we determined the effect of ghrelin on osteoblastic differentiation of VSMCs and investigated the mechanism involved using the two universally accepted calcifying models of calcifying vascular smooth muscle cells (CVSMCs) and beta-glycerophosphate (beta-GP)-induced VSMCs. Our data demonstrated that ghrelin inhibits osteoblastic differentiation and mineralization of VSMCs due to decreased alkaline phosphatase (ALP) activity, Runx2 expression, bone morphogenetic protein-2 (BMP-2) expression and calcium content. Further study demonstrated that ghrelin exerted this suppression effect via an extracellular signal-related kinase (ERK)-dependent pathway and that the suppression effect of ghrelin was time dependent and dose dependent. Furthermore, inhibition of the growth hormone secretagog receptor (GHSR), the ghrelin receptor, by siRNA significantly reversed the activation of ERK by ghrelin. In conclusion, our study suggests that ghrelin may inhibit osteoblastic differentiation of VSMCs through the GHSR/ERK pathway.  相似文献   

12.

Background

Vascular calcification is associated with poor cardiovascular outcome. Histochemical analysis of calcification and the expression of proteins involved in mineralization are usually based on whole section analysis, thereby often ignoring regional differences in atherosclerotic lesions. At present, limited information is available about factors involved in the initiation and progression of atherosclerosis.

Aim of This Study

This study investigates the intra-section association of micro-calcifications with markers for atherosclerosis in randomly chosen section areas of human coronary arteries. Moreover, the possible causal relationship between calcifying vascular smooth muscle cells and inflammation was explored in vitro.

Technical Approach

To gain insights into the pathogenesis of atherosclerosis, we performed analysis of the distribution of micro-calcifications using a 3-MeV proton microbeam. Additionally, we performed systematic analyses of 30 to 40 regions of 12 coronary sections obtained from 6 patients including histology and immuno-histochemistry. Section areas were classified according to CD68 positivity. In vitro experiments using human vascular smooth muscle cells (hVSMCs) were performed to evaluate causal relationships between calcification and inflammation.

Results

From each section multiple areas were randomly chosen and subsequently analyzed. Depositions of calcium crystals at the micrometer scale were already observed in areas with early pre-atheroma type I lesions. Micro-calcifications were initiated at the elastica interna concomitantly with upregulation of the uncarboxylated form of matrix Gla-protein (ucMGP). Both the amount of calcium crystals and ucMGP staining increased from type I to IV atherosclerotic lesions. Osteochondrogenic markers BMP-2 and osteocalcin were only significantly increased in type IV atheroma lesions, and at this stage correlated with the degree of calcification. From atheroma area type III onwards a considerable number of CD68 positive cells were observed in combination with calcification, suggesting a pro-inflammatory effect of micro-calcifications. In vitro, invasion assays revealed chemoattractant properties of cell-culture medium of calcifying vascular smooth muscle cells towards THP-1 cells, which implies pro-inflammatory effect of calcium deposits. Additionally, calcifying hVSMCs revealed a pro-inflammatory profile as compared to non-calcifying hVSMCs.

Conclusion

Our data indicate that calcification of VSMCs is one of the earliest events in the genesis of atherosclerosis, which strongly correlates with ucMGP staining. Our findings suggest that loss of calcification inhibitors and/or failure of inhibitory capacity is causative for the early precipitation of calcium, with concomitant increased inflammation followed by osteochondrogenic transdifferentiation of VSMCs.  相似文献   

13.
Arterial medial calcifications occur often in diabetic individuals as part of the diabetic macroangiopathy. The pathogenesis is unknown, but the presence of calcifications predicts risk of cardiovascular events. We examined the effects of insulin on calcifying smooth muscle cells in vitro and measured the expression of the bone-related molecule osteoprotegerin (OPG). Human vascular smooth muscle cells (VSMCs) were grown from aorta from kidney donors. Induction of calcification was performed with beta-glycerophosphate. The influence of insulin (200 microU/ml or 1,000 microU/ml) on calcification was judged by measuring calcium content in the cell layer and by von Kossa staining. OPG was measured in the medium by ELISA. Histochemistry was used for determination of alkaline phosphatase (ALP). Bone sialoprotein (BSP) and OPG mRNA expressions were done by RT-PCR. beta-Glycerophosphate was able to induce calcification in human smooth muscle cells from a series of donors after variable time in culture. Decreased OPG amounts were observed from the cells during the accelerated calcification phase. High dose of insulin (1,000 microU/ml) accelerated the calcification, whereas lower concentrations (200 microU/ml) did not. Calcified cells expressed ALP and BSP activity in high levels. In conclusion, high concentration of insulin enhances in vitro-induced calcification in VSMCs. Altered OPG levels during the calcification raise the possibility that OPG may have a potent function in regulating the calcification process or it may represent a consequence of mineralization. Effects of insulin and modulations by OPG on the calcification process in arterial cells may play a role in the development of calcifications as part of the diabetic macroangiopathy.  相似文献   

14.
The onset of mineralization in embryonic chick femurs was studied as a model for the initiation of biological calcification. Electron microscopy confirmed the presence of calcifying matrix vesicles within newly formed bone, and showed that these vesicles were the initial site of crystal deposition. Matrix vesicles were first seen on day 6 of embryonic development, and already were present in considerable numbers on day 7, at which time mineral deposition was just beginning. As a reflection of initial mineralization the uptake of 45Ca and 40Ca into 7-day-old bones was studied during 2 days in organ culture. A control level of uptake was established using a defined culture medium, P-6. Addition of inorganic pyrophosphate (PPi) to this medium caused a marked increase in calcium uptake into areas of matrix which normally calcify in vivo. The maximal 45Ca uptake, greater than 4-fold, was achieved with 4 μg of P per milliliter of PPi and was partially heat-inhibitable. Since the matrix vesicles are known to be rich in inorganic pyrophosphatase, it is proposed that mineralization is promoted in vesicles by the enzymatic hydrolysis of pyrophosphate. The membrane-bounded matrix vesicles appear to provide the necessary enzymes and environment to concentrate calcium and phosphate for initiating crystal formation.  相似文献   

15.
A major cellular event in vascular calcification is the phenotypic transformation of vascular smooth muscle cells (VSMCs) into osteoblast‐like cells. After demonstrating that lanthanum chloride (LaCl3) suppresses hydrogen peroxide‐enhanced calcification in rat calcifying vascular cells (CVCs), here we report its effect on the osteoblastic differentiation of rat VSMCs, a process leading to the formation of CVCs. Cells were isolated from aortic media of male SD rats, and passages between three and eight were cultured in Dulbeccol's Modified Eagle's Medium (DMEM) containing 10% fetal bovine serum (FBS) and 10 mM β‐glycerophosphate (β‐GP) in the presence or absence of LaCl3. Exposure of cells to LaCl3 suppressed the β‐GP‐induced elevations in calcium deposition, alkaline phosphatase (ALP) activity, and Cbfa1/Runx2 expression, as well as the concomitant loss of SM α‐actin. Furthermore, LaCl3 activated the phosphorylation of extracellular signal‐regulated kinase (ERK) and c‐Jun N‐terminal kinase (JNK), and the blockage of either pathway with a specific inhibitor abolished the effects of LaCl3. In addition, pretreatment of the cells with pertussis toxin (PTx), an inhibitor of G protein‐mediated signaling pathway, repealed all the changes induced by LaCl3. These findings demonstrate that LaCl3 suppresses the β‐GP‐induced osteoblastic differentiation and calcification in rat VSMCs, and its effect is mediated by the activation of both ERK and JNK MAPK pathways via PTx‐sensitive G proteins. J. Cell. Biochem. 108: 1184–1191, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Embryos of the sea urchin, Hemicentrotus pulcherrimus, kept in sea water containing the calcium antagonists, diltiazem and verapamil, or an anion transport inhibitor, 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene (DIDS), during a developmental period between the mesenchyme blastula and the pluteus corresponding stage, became abnormal plutei with poorly developed arms and quite small spicules. Treatment with ethacrynic acid and furosemide, inhibitors of chloride transport, during the same period of development yielded quasi-normal plutei with poor spicules and somewhat developed arms. In late gastrulae, the inhibitory effects of these calcium antagonists and DIDS on the uptake of 45Ca2+ in whole embryos were as strong as those on 45Ca deposition in spicules, whereas the effects of chloride transport inhibitors on calcium deposition in the spicules were markedly stronger than on its uptake in whole embryos. Electrosilent uptake of Ca2+ seems to be established mainly by coupled influx of chloride in the cells which mediate spicule calcification, and by concomitant influx of anions in the other cells. In swimming blastulae, 45Ca2+ uptake was inhibited by calcium antagonists and DIDS, but not by chloride transport inhibitors. Ca2+ uptake probably becomes coupled with chloride influx only in embryos in which spicule calcification occurs.  相似文献   

17.
采用同位素标记前体体外掺入技术和透射电镜观察方法从DNA. RNA及蛋白质水平上进行了甲硝哒唑对脆弱类杆菌作用机理研究。实验表明:甲硝哒唑几乎能完全抑制~3H-TdR掺入脆弱类杆菌,对~3H-亮氨酸的掺入也具明显的抑制作用,未观察到对RNA合成的影响。透射电镜下观察到,随着甲硝哒唑浓度增加,菌体形态发生明显的改变。  相似文献   

18.
骨形态发生蛋白9(bone morphogenetic protein 9,BMP9)具有很强的诱导间充质干细胞定向成骨分化的能力.但对于其所涉及的相关分子机理了解并不深入.利用BMP9重组腺病毒感染间充质干细胞,Western blot检测ERK1/2激酶的磷酸化,ERK1/2的特异性抑制剂PD98059阻断ERK1/2活性,或以RNA干扰抑制ERK1/2表达,通过体外细胞实验和体内动物实验,初步分析和揭示ERK1/2对于BMP9诱导的间充质干细胞成骨分化的调控作用及其可能机制.结果发现:BMP9可以促进ERK1/2激酶的磷酸化,ERK1/2抑制剂PD98059可增强由BMP9诱导的碱性磷酸酶(alkaline phosphatase,ALP)活性、骨桥蛋白(osteopontin,OPN)表达和钙盐沉积,并促进由BMP9诱导的Runx2基因的表达和转录活性,以及Smad经典途径的活化;而RNA干扰导致ERK1/2基因沉默同样也可进一步促进BMP9诱导的ALP活性和钙盐沉积,并促进BMP9诱导的间充质干细胞在裸鼠皮下异位成骨.因此,BMP9可以促进ERK1/2蛋白激酶的活化,而阻断ERK1/2蛋白激酶可进一步增强BMP9诱导的成骨分化,ERK1/2极可能对于BMP9诱导的间充质干细胞成骨分化起着负向调控作用.  相似文献   

19.
Zheng HZ  An GS  Nie SH  Tang CS  Liu NK  Wang SH 《生理学报》1998,50(4):379-384
培养的家兔胸主动脉血管平滑肌细胞(VSMC)分别以内皮素(ET-1)、一氧化氮(NO)前体L-Arg和NO供体SIN-1刺激,或用ET-1+L-Arg、ET-1+SIN-1联合刺激,测VSMC^3H-TdR掺入、丝裂素活化蛋白激酶(MAPK)活性及蛋白激酶C(PKC)活性的改变,以研究NO抑制ET-1促VSMC增殖作用的信号转导途径。结果表明:(1)ET-1 10^-8mol/L单独刺激,^3H-  相似文献   

20.
The process of vascular calcification shares many similarities with that of physiological skeletal mineralization, and involves the deposition of hydroxyapatite crystals in arteries. However, the cellular mechanisms responsible have yet to be fully explained. Bone morphogenetic protein (BMP‐9) has been shown to exert direct effects on both bone development and vascular function. In the present study, we have investigated the role of BMP‐9 in vascular smooth muscle cell (VSMC) calcification. Vessel calcification in chronic kidney disease (CKD) begins pre‐dialysis, with factors specific to the dialysis milieu triggering accelerated calcification. Intriguingly, BMP‐9 was markedly elevated in serum from CKD children on dialysis. Furthermore, in vitro studies revealed that BMP‐9 treatment causes a significant increase in VSMC calcium content, alkaline phosphatase (ALP) activity and mRNA expression of osteogenic markers. BMP‐9‐induced calcium deposition was significantly reduced following treatment with the ALP inhibitor 2,5‐Dimethoxy‐N‐(quinolin‐3‐yl) benzenesulfonamide confirming the mediatory role of ALP in this process. The inhibition of ALK1 signalling using a soluble chimeric protein significantly reduced calcium deposition and ALP activity, confirming that BMP‐9 is a physiological ALK1 ligand. Signal transduction studies revealed that BMP‐9 induced Smad2, Smad3 and Smad1/5/8 phosphorylation. As these Smad proteins directly bind to Smad4 to activate target genes, siRNA studies were subsequently undertaken to examine the functional role of Smad4 in VSMC calcification. Smad4‐siRNA transfection induced a significant reduction in ALP activity and calcium deposition. These novel data demonstrate that BMP‐9 induces VSMC osteogenic differentiation and calcification via ALK1, Smad and ALP dependent mechanisms. This may identify new potential therapeutic strategies for clinical intervention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号