首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The planktonic ciliate populations of 20 Florida lakes ranging from oligotrophic to hypereutrophic were examined monthly for one year. Oligotrophic lakes displayed abundance peaks during fall mixis and biomass peaks in late winter and fall. Mesotrophic systems exhibited a spring-fall bimodality in ciliate abundance with a biomass maxima occurring during fall. Eutrophic/hypereutrophic lakes had pronounced abundance and biomass maxima during summer, with the large ciliates Plagiopyla nasuta and Paramecium trichium often contributing heavily to the midsummer biomass peak. Members of the Oligotrichida numerically dominated abundance and biomass peaks in oligotrophic lakes while the Scuticociliatida dominated the communities of higher trophic states. Total ciliate abundance and biomass were strongly correlated with chlorophyll a concentrations as were various ciliate taxonomic groups. The relationship between ciliate seasonal distribution in these subtropical lakes with lake thermal regimes and trophic state is discussed.  相似文献   

2.
SUMMARY 1. The planktonic ciliate communities of eleven organically coloured north and central Florida lakes representing a variety of trophic conditions were examined during 1979–80. The total abundance and biomass of ciliates were not significantly different from comparable clearwater lakes and only minor taxonomic replacements were noted at the order level.
2. Timing of population peaks of oligotrophic lakes was dissimilar to clearwater lakes of the same trophic state, but seasonality in meso-trophic and eutrophic lakes resembled patterns described for comparable clearwater lakes.
3. Various ciliate components were strongly correlated with chlorophyll a concentrations, but only moderately correlated to dominant phytoplankton groups. No significant correlations were found between ciliate components and bacterial abundance.
4. Myxotrophic taxa numerically dominated oligotrophic systems, particularly during midsummer, and accounted for a large percentage of the total ciliate biomass. Estimates of the ciliate contribution to total autotrophic biomass indicate that these zoochlorellae-bearing protozoa may account for much of the autotrophic biomass during midsummer periods in coloured lakes, and thus may lead to an overestimation of phytoplankton standing crops available to zooplankton grazers if chlorophyll a is used as a surrogate measure of algal biomass.  相似文献   

3.
Ciliated protozoa accounted for up to 50% of the mean daily zooplankton biomass in McCloud Lake, a small (5 ha), oligotrophic, acidic (pH 4.7) lake in north-central Florida. Food resources (algae and bacterioplankton) were limiting for crustacean and rotifer zooplankton during much of the year. Myxotrophic ciliates were a dominant component of the planktonic food web. Stentor niger , an uncommon species in the plankton of lakes, dominated the ciliate assemblage and usually comprised >90% of total ciliate biomass. Stentor niger always contained high densities of photosynthetic zoochlorellae and contributed an estimated 30% to the total autotrophic biomass.  相似文献   

4.
The role of ciliated protozoa in pelagic freshwater ecosystems   总被引:11,自引:0,他引:11  
The abundance and biomass of ciliates are both strongly related to lake trophic status as measured by chlorophylla concentrations. Taxonomic replacements occur with increasing eutrophication such that large-bodied forms (predominantly oligotrichs) are progressively replaced by smaller-bodied ciliates (mainly scuticociliates). Highly acidic lakes display a more pronounced dominance of large-bodied forms when contrasted with less acidic lakes of comparable trophy. Community structure of ciliate populations is determined largely by lake trophy with acidic oligotrophic systems being characterized by reduced diversity and species richness compared with hypereutrophic systems. The temporal and spatial distribution of small (< 100m) ciliate populations is ascribed to lake thermal regimes which provide localized concentrations of food resources. Likewise, in extremely productive lakes, very large (> 100m) meroplanktonic ciliates enter the water column during midsummer after the development of thermal stratification and associated profundal deoxygenation. Laboratory studies indicate that large zooplankton (crustaceans) are capable of utilizing ciliates as a food source, but there is little direct evidence from field studies documenting this trophic link. Ciliates can be voracious grazers of both bacterioplankton and phytoplankton, and each species has a distinct range of preferred particle size which is a function of both mouth size and morphology. Myxotrophic ciliates may be important components in some plankton communities, particularly during periods of nutrient limitation or after their displacement from the benthos of eutrophic lakes. Evidence regarding the importance of planktonic ciliated protozoa in nutrient regeneration and as intermediaries in energy flow is discussed.  相似文献   

5.
Two lakes of contrasting trophic state in the central NorthIsland of New Zealand were sampled monthly for protozoan ciliatesand potential food resources. Oligotrichs dominated numbersin both lakes. Subdominants in oligotrophic Lake Taupo includedAskenasia, Pscudobalanion and Urotri-cha, and in eutrophic LakeOkaro Prorodon, Coleps, Urocentrum, Stentor and Spirostomumwere important. Biomass was dominated by large predatory ciliatesand Stentor in Lake Taupo, and Prorodon and Stentor in LakeOkaro. The importance of Prorodon and Stentor to ciliate biomassis unusual and has not been reported for northern hemispherelakes. Small ciliates (<20 µm) capable of consumingparticles <2 µm were a major component of the ciliatecommunity in Lake Taupo. Peaks in ciliate abundance occurredat the same time in both lakes: in autumn, at the beginningof mixis and in spring. Ciliates were vertically stratifiedduring mixis and stratification in both lakes. The effect wasmore pronounced during deoxygenation of the hypolimnion in LakeOkaro which excluded oligotrichs and introduced benthic ciliates.Ciliates were less abundant (mean 40001–1 in Lake Okaroand 9001–1 in Lake Taupo) than in comparable northerntemperate lakes. There was no correlation between the seasonaldistribution of ciliates and chlorophyll a, primarily causedby a winter peak in chlorophyll a dominated by large speciesof phytoplankton in Lake Taupo, at a time when ciliate numberswere low. The only consistent, significant correlations weretotal ciliate numbers and individual species of ciliates withbacterial concentrations in both lakes and with picophytoplanktonin Lake Taupo.  相似文献   

6.
    
Song Biyu 《Hydrobiologia》2000,434(1-3):151-163
Species composition, seasonal changes in abundance and biomass of planktonic protozooplankton (ciliates, heliozoans and testaceans), and dynamics of the dominant species were investigated over more than two years in two shallow mesotrophic lakes. The macrophyte-dominated lake Biandantang had more protozoan species than the algal lake Houhu, and the two lakes had significantly different protozoan abundance and biomass patterns, compositions and dominants. On annual average, ciliates formed 81.13%, 91.10%, heliozoans 0.20%, 3.49%, and testaceans 18.67%, 5.42% of total protozoan biomass; the protozoans, in turn, formed 49.77%, 49.48% of total zooplankton biomass in lake Biandantang and Lake Houhu, respectively. With respect to ciliates, naked oligotrichs and Peritrichida (mainly 40–80 m in size) dominated the abundance and Peritrichida dominated the biomass in Lake Biandantang, while Scuticociliatida (mainly smaller than 30 m ) dominated the abundance and tintinnids dominated the biomass in Lake Houhu.  相似文献   

7.
Song Biyu 《Hydrobiologia》2000,427(1):143-153
The species richness and seasonal development of planktonic ciliates were studied and compared in two shallow mesotrophic lakes, one covered with dense submerged macrophytes, the other macrophyte poor. Considerable differences in ciliate species composition, dominant taxa, abundance and biomass were observed. Ciliates were much more species rich in the macrophyte-rich lake, while they were more abundant numerically in the macrophyte-poor lake. Altogether, 96 species, included in 53 genera, 14 orders were identified. Among them, 80 species (included in 45 genera, 14 orders) observed from the macrophyte-rich lake, against 49 species (36 genera, 12 orders) were from the macrophyte-poor lake. In the macrophyte-rich lake, the mean abundance and biomass were 13.5 cells ml-1 and 547.10 g l-1 f.w.; abundance and biomass were higher in spring and winter; naked oligotrichs dominated total ciliate abundance and Peritrichida dominated the biomass. In the macrophyte-poor lake, ciliate mean abundance and biomass were 35.5 cells ml-1 and 953.39 g l-1 f.w.; abundances peaked in autumn; Scuticociliates dominated the abundance and Tintinnids dominated the biomass. Possible causes for the observed differences are discussed.  相似文献   

8.
Composition and seasonal dynamics of phytoplankton, bacteria,and zooplankton (including heterotrophic flagellates, ciliates,rotifers and crustaceans) were studied in 55 lakes in NorthernGermany with different trophic status, ranging from mesotrophicto hypertrophic. Mean abundance and biomass of all groups increasedsignificantly with trophic level of the lake, but bacteria andmetazooplankton showed only a weak correlation and a slightincrease with chlorophyll concentration. Composition of phytoplanktonshowed a dominance of cyanobacteria in hypertrophic lakes, whereasthe importance of chrysophytes and dinophytes decreased withan increase in trophic status. Protozoans (heterotrophic flagellatesand ciliates) made up 24% (mesotrophic lakes) to 42% (hypertrophiclakes) of total zooplankton biomass on average, and were dominatedby ciliates (62–80% of protozoan biomass). Seasonally,protozoans can build up to 60% of zooplankton biomass in spring,when heterotrophic flagellates can contribute  相似文献   

9.
The aim of this study was to examine whether littoral nematode community patterns are shaped by lake trophic state. It was hypothesized that trophic level is associated negatively with the proportion of omnivores and positively with the percentages of bacterial feeders, but not at all with the diversity, abundance, and biomass of freshwater nematodes. Sediment samples were taken at littoral sites of eight southern Swedish lakes of different trophy in spring and autumn 2007. Trophic level was found to strongly influence species richness, as oligotrophic and mesotrophic lakes supported the greatest species numbers, whereas nematode abundance, biomass, and Shannon index were unaffected. Furthermore, our results indicated effects on the nematode community’s trophic structure, with a larger proportion of predatory nematodes in oligotrophic and mesotrophic lakes but no differences in the other feeding types (bacteria, algae and suction feeders, omnivorous species). Multivariate analysis indicated a shift in species compositions along the threshold from mesotrophic to eutrophic conditions, with the presence of Tobrilus gracilis, Monhystera paludicola, Brevitobrilus stefanskii, and Ethmolaimus pratensis related to the latter. Nematode communities in oligotrophic and mesotrophic lakes were characterized by a similar species composition, with pronounced occurrences of Eumonhystera longicaudatula, Semitobrilus cf. pellucidus, Prodesmodora circulata, and Rhabdolaimus terrestris. Overall, the results suggested that lake trophic state is a major factor structuring littoral nematode communities, although intra-lake variations might be of importance as well.  相似文献   

10.
In a survey of eight lake systems located in north-central Florida, total zooplankton abundance showed a strong positive correlation (r2=0.87, a=0.01) with trophic state. Zooplankton abundance averaged 1.0 × 105 organisms · m–2 in oligotrophic systems and up to 8.2 × 105 organisms · m–2 in the eutrophic systems. Seasonal variations in total abundance were greatest in the eutrophic lakes where rotifers dominated and periodically produced sharp population peaks (approaching 2.0 × 106· m–2). In contrast, the more oligotrophic systems had relatively stable levels of total abundance and were dominated by copepods. Diversities of the major taxa in the lakes were variable with one to three species of copepods, zero to four species of cladocera, and two to seven species of rotifers dominant at any one time. Planktonic cladoceran communities were often composed of only one or two species. Low cladocera diversity in these subtropical systems was suggestive of increased predation pressure on this group of crustaceans. A comparison of the total crustacean abundance in the Florida systems to those of some of the Great Lakes indicated that lower standing crops of crustacean zooplankton in the Florida lakes may be a response to both predation and temperature.Contribution Number 043, Marine Science Programs Laboratory, Dauphin Island, Alabama, U.S.A.Contribution Number 043, Marine Science Programs Laboratory, Dauphin Island, Alabama, U.S.A.  相似文献   

11.
Hoyer  Mark V.  Canfield  Daniel E. 《Hydrobiologia》1994,279(1):107-119
Data from 46 Florida lakes were used to examine relationships between bird abundance (numbers and biomass) and species richness, and lake trophic status, lake morphology and aquatic macrophyte abundance. Average annual bird numbers ranged from 7 to 800 birds km–2 and bird biomass ranged from 1 to 465 kg km–2. Total species richness ranged from 1 to 30 species per lake. Annual average bird numbers and biomass were positively correlated to lake trophic status as assessed by total phosphorus (r = 0.61), total nitrogen (r = 0.60) and chlorophyll a (r = 0.56) concentrations. Species richness was positively correlated to lake area (r = 0.86) and trophic status (r = 0.64 for total phosphorus concentrations). The percentage of the total annual phosphorus load contributed to 14 Florida lakes by bird populations was low averaging 2.4%. Bird populations using Florida lakes, therefore, do not significantly impact the trophic status of the lakes under natural situations, but lake trophic status is a major factor influencing bird abundance and species richness on lakes. Bird abundance and species richness were not significantly correlated to other lake morphology or aquatic macrophyte parameters after the effects of lake area and trophic status were accounted for using stepwise multiple regression. The lack of significant relations between annual average bird abundance and species richness and macrophyte abundance seems to be related to changes in bird species composition. Bird abundance and species richness remain relatively stable as macrophyte abundance increases, but birds that use open-water habitats (e.g., double-crested cormorant, Phalacrocorax auritus) are replaced by species that use macrophyte communities (e.g., ring-necked duck, Aythya collaris).  相似文献   

12.
Eutrophication of Lake Neuchâtel indicated by the oligochaete communities   总被引:2,自引:2,他引:0  
Claude Lang 《Hydrobiologia》1989,174(1):57-65
Lake Neuchâtel (Switzerland), oligotrophic until 1950, was meso-eutrophic in 1980. The relative abundance in worm communities of Peloscolex velutinus and Stylodrilus heringianus was used to monitor the trophic state of the lake. In 1980, the median relative abundance of these oligotrophic species was 9% in the whole of Lake Neuchâtel compared with 70% in oligotrophic lakes, 35% in mesotrophic lakes, and 0% in eutrophic lakes. The scarcity of oligotrophic species in the deepest area (153 m) characterized better the meso-eutrophic state of Lake Neuchâtel than oxygen concentrations which never descended below 6 mg·1-1. Location of the area within the lake from where worms were sampled was of critical importance to assess the trophic state: some areas reflected the past rather than the present state of the lake.  相似文献   

13.
Packroff  Gabriele 《Hydrobiologia》2000,433(1-3):157-166
The planktonic protozoa, especially ciliates, were analysed in five mining lakes of various pH and acidity values in the Lusatian and mid-German mining area. Heliozoa were the main protozoan component in the very low pH (<2.9) lakes. In the lakes with pH >2.9, the ciliate community consisted of Hypotrichida, Prostomatida and Peritrichida. The species diversity of the ciliate community was reduced and typical representatives of plankton ciliates were lacking. During periods when populations were at their peak, the cell numbers and biomass of ciliates were comparable to those neutral lakes, reaching maximum values of 30 000 cells l–1 and 0.3 mg l–1. Cell numbers and biomass peaks appeared without a clear seasonal pattern but in some cases a correlation to phytoplankton dynamics was recognizable.  相似文献   

14.
The planktonic community of 20 melt ponds on the McMurdo Ice Shelf was investigated to determine taxa abundance and diversity and the controlling environmental variables. Grazing rates were measured using fluorescent beads to examine trophic interactions between ciliates, bacteria and phytoplankton. The melt ponds contained a surprisingly varied planktonic community with relatively high abundance compared with Antarctic continental lakes. There was a clear distinction between small, productive ponds dominated by bactivorous small ciliates, hymenostomes and heterotrophic cryptophytes and the larger, less productive ponds where these taxa were less abundant. The benthic mats of cyanobacteria and diatoms were potentially a source of food for some ciliate species but the majority were bacterivores. The lack of large herbivorous ciliates, the heterotrophic capabilities of cryptophytes and the broad ecological tolerances contributed to a planktonic community dominated by cryptophytes.  相似文献   

15.
The ciliate communities and their food sources were investigatedin the anoxic hypolimnia of three lakes with differing waterchemistry. Bacterial biomass and, as a result, the biomass ofbactenvorous ciliates were correlated with lake trophy. Additionally,high sulfate and sulfide concentrations led to high bacterialbiomass of sulfate reducers and anaerobic phototrophic and heterotrophicbacteria, which in turn sustained large ciliate populations.The anaerobic ciliate communities of the lakes shared many characteristics.They were comprised of the same or closely related species;this was attributed to a low diversity of food sources. Ciliateto prey biomass ratios were 1.2–3.8% which is consistentwith a low theoretical growth efficiency of anaerobic metabolism.Grazing pressure on anaerobic ciliates by metazoa was insignificant.In all three lakes, ciliate populations showed distinct verticalnon-random distribution patterns which were often correlatedwith the distribution of the corresponding food sources. Itis suggested that the microbial communities in anoxic waterbodies are largely influenced by few common environmental conditionsand are therefore often inhabited by similarly structured ciliatecommunities.  相似文献   

16.
Although large-bodied cladocerans such asDaphnia can reduce algal biomass significantly in temperate lakes if freed from fish predation, the applicability of such biomanipulation techniques for eutrophication management in the subtropics and tropics has been examined only recently. Subtropical cladoceran assemblages differ from those of temperate lakes by their low species richness, early summer gameogenesis, and greatly reduced body size. Eutrophic Florida lakes are dominated by pump-filter feeding fish rather than by size selective planktivores as a temperate lakes. Cladocerans in Florida lakes can increase in abundance significantly if freed from fish but fail to have an impact on algal biomass or composition. The greatest potential for using biomanipulation to manage phytoplankton-dominated lakes in the subtropics and tropics lies with phytophagous fish. Future research should concentrate on defining the role of individual fish taxa on phytoplankton composition and community structure, nutrient cycling, and planktonic productivity before embarking on whole lake manipulation projects.  相似文献   

17.
The quantitative importance of ciliates, foraminifers, and amoebae was investigated in marine, brackish, and freshwater sediments from 15 littoral stations. Total protozoan communities were usually dominated by ciliates in term of abundance, while amoebae often dominated in terms of biomass. Applying the biomass‐metabolic rate equation, ciliates, amoebae, and foraminifera were estimated to contribute 66% of the total abundance and 33% of the biomass, but up to 55% of the combined metabolic rate to the micro‐ and meiobenthos in the 15 sediments. Statistical analyses using ciliate data demonstrated: (1) species composition and community structures represented significant differences between freshwater and marine/brackish sediments, and subsequently between temperate and arctic sampling sites; (2) the occurrence of dominant ciliates and their allocation to feeding types indicated that herbivory was the most common feeding strategy in these sediments; (3) multivariate analyses showed all of the tested environmental factors (temperature, salinity, silt/clay, carbon, nitrogen, and chlorophyll a) to be important to varying degrees, but especially the combination of salinity, temperature, and silt/clay. Multiple factor effects or comprehensive influences might be important in regulating the distribution of protozoa in sediments. The importance of protozoa in sediment systems and the potential ecological significance of cysts are discussed.  相似文献   

18.
Top-down control of lower trophic levels, e.g., bacteria, has been suggested to increase along aquatic productivity gradients. The response by the bacterial community may be to become more predation resistant in highly productive environments. To test this hypothesis, samples were taken from 20 aquatic systems along a productivity gradient (dissolved organic carbon from 7 to 71 mg/L), during late summer. The results showed that the biomass of bacteria, phytoplankton, and ciliates increased along the gradient (r2 = 0.532, 0.426, and 0.758, P < 0.01, respectively). However, the organisms did not increase equally, and the ratio of protozoan to bacterial biomass showed a 100-fold increase along the gradient. Ciliates dominated the protozoan biomass in the more nutrient-rich waters. The edibility of colony-forming bacteria was tested using a ciliate predator, Tetrahymena pyriformis. Bacterial edibility was found to decrease with increases in nutrient richness and ciliate biomass in the aquatic systems (r2 = 0.358, P < 0.01; r2 = 0.242, P < 0.05, respectively). Quantile regression analysis indicated that the selection pressures on edible bacteria were increasing along the productivity gradient. Thus, inedible forms of bacteria were selected for in the transition from oligotrophic to eutrophic conditions. Isolated bacteria were distributed among the alpha-, beta-, and gamma- Proteobacteria and the Actinobacteria and Firmicutes taxa. We conclude that bacterial predation resistance increases in nutrient-rich waters with high protozoan predation.  相似文献   

19.
Temperate shallow meso- to eutrophic lakes can exist in one of two alternative states with contrasting foodwebs, referred to as the clear-water and the turbid state. We describe the planktonic ciliate communities of such lakes based on a survey of 66 northwestern European lakes. Ciliates were enumerated and identified to species level according to the quantitative protargol staining technique. Ciliate biomass was on average twice as high in the turbid than in the clear-water lakes. The ciliate communities were dominated by oligotrichs and protostomatids, and no differences in functional composition or α-diversity could be detected between turbid and clear-water lakes, although β-diversity tended to be higher in the latter. At the species level, however, community structure strongly differed between turbid and clear-water lakes, and several indicator species could be identified for the different lake categories. Variation partitioning showed that nutrient status did not explain ciliate community structure independent of the alternative states, while lake area was identified as an additional structuring factor for the ciliate communities. These results stress the importance of the ecosystem structure in shaping ciliate communities in temperate shallow lakes and suggest that nutrient status has little direct effect on ciliate community structure in such lakes.  相似文献   

20.
The biomass and production of the most important zooplankton species were followed for two years in three lakes of varying trophic status in the Lake Washington watershed. Cladocerans and copepods were of equal importance in the biomass of lakes Findley and Chester Morse (both oligotrophic), whereas, copepods were the main biomass component in Lake Sammamish (mesotrophic). Cladocerans dominated production in lakes Sammamish and Chester Morse, while in Findley Lake their productive role, like that of biomass, was equal to that of the copepods. Rotifers contributed a relatively small biomass and production.Data from this study supported Hillbricht-Ilkowska's postulate that the energy transfer efficiency between the primary and secondary trophic levels decreases with increasing trophic state. Energy transfer efficiencies for the lakes of this study expressed as a two year mean of the ratio-secondary: primary production, were as follows: Findley Lake-0.13; Chester Morse Lake-0.08; and Lake Sammanish-0.04.On the other hand, the hypothesis of Patalas that the secondary productivity: biomass ratio (P/B) tended to increase in proportion to the productivity of a lake, could not be supported. Lake Sammamish, the most productive of the lakes studied, had a P/B ratio of 0.03 while lakes Findley and Chester Morse had P/B ratios of 0.04.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号