首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agrobacterium tumefaciens-mediated barley transformation   总被引:26,自引:2,他引:24  
Genetically transformed barley was produced by eco-cultivating immature embryo explants with Agrobacterium tumefaciens carrying a binary vector coding for chimaeric bacterial genes, bar and gus , and selecting for bialaphos-resistant cultures from which plants were regenerated. Integration of both genes was confirmed by gel blot hybridization analysis of DNA from the transformed plants and their progenies. From 1282 embryos, plants were recovered for 54 independently transformed lines, giving a transformation efficiency of 4.2%. Transgene numbers in the different lines ranged from single copy insertion to at least ten copies. Sixteen out of 18 plants grown to maturity were fully fertile. Both marker genes, bar and gus , were expressed and co-segregated in the T1 progeny plants. In the majority of cases, the genes showed Mendelian segregation predicted for transgene insertion at a single locus. In one family with multiple transgene insertions, molecular analysis of T1 and T2 plants suggested that the T-DNA had inserted at two unlinked loci.  相似文献   

2.
Maize streak virus-resistant transgenic maize: a first for Africa   总被引:1,自引:0,他引:1  
In this article, we report transgene-derived resistance in maize to the severe pathogen maize streak virus (MSV). The mutated MSV replication-associated protein gene that was used to transform maize showed stable expression to the fourth generation. Transgenic T2 and T3 plants displayed a significant delay in symptom development, a decrease in symptom severity and higher survival rates than non-transgenic plants after MSV challenge, as did a transgenic hybrid made by crossing T2 Hi-II with the widely grown, commercial, highly MSV-susceptible, white maize genotype WM3. To the best of our knowledge, this is the first maize to be developed with transgenic MSV resistance and the first all-African-produced genetically modified crop plant.  相似文献   

3.
Spike lavender ( Lavandula latifolia ) essential oil is widely used in the perfume, cosmetic, flavouring and pharmaceutical industries. Thus, modifications of yield and composition of this essential oil by genetic engineering should have important scientific and commercial applications. We generated transgenic spike lavender plants expressing the Arabidopsis thaliana HMG1 cDNA, encoding the catalytic domain of 3-hydroxy-3-methylglutaryl CoA reductase (HMGR1S), a key enzyme of the mevalonic acid (MVA) pathway. Transgenic T0 plants accumulated significantly more essential oil constituents as compared to controls (up to 2.1- and 1.8-fold in leaves and flowers, respectively). Enhanced expression of HMGR1S also increased the amount of the end-product sterols, β-sitosterol and stigmasterol (average differences of 1.8- and 1.9-fold, respectively), but did not affect the accumulation of carotenoids or chlorophylls. We also analysed T1 plants derived from self-pollinated seeds of T0 lines that flowered after growing for 2 years in the greenhouse. The increased levels of essential oil and sterols observed in the transgenic T0 plants were maintained in the progeny that inherited the HMG1 transgene. Our results demonstrate that genetic manipulation of the MVA pathway increases essential oil yield in spike lavender, suggesting a contribution for this cytosolic pathway to monoterpene and sesquiterpene biosynthesis in leaves and flowers of the species.  相似文献   

4.
In an attempt to further increase transgene expression levels in plants over and above the enhancement obtained with a 5′ untranslated leader intron, three different maize introns were inserted at three different positions within the coding sequence of the luciferase reporter gene. Constructs were transformed into maize (Black Mexican Sweet) cells and protoplasts, and their activity determined. Although all introns tested were correctly spliced, only one of them in a particular position was able to enhance gene expression. Correct splicing sites were used for intron removal and the quantity of luciferase mRNA produced did not differ significantly. These data indicate that both the position and the sequence of an intron have marked effects on expression levels, suggesting that nuclear processing of the pre-mRNA determines final expression levels through the structure of the mRNP.  相似文献   

5.
Administration of 17β-oestradiol (E2) to rainbow trout, in the form of hydrogenated coconut oil implants produced a stable, long-term elevation in plasma E2 levels. The elevation was doserelated (over the range 1–10mg kg-1 body weight) both 4 and 8 weeks after implantation. Dose-related increases were also observed with respect to liver weight-body weight ratios and plasma protein levels. Plasma T3 and total calcium levels were depressed and elevated, respectively, by E2 treatment but the responses were not linearly related to the dose of E2 administered; there was no significant effect of E2 on plasma T4 levels.
E2 induced a shift in the binding of T3 to plasma proteins, with T3 binding to smaller molecular weight proteins; neither T4 nor T3 bound to vitellogenin which was present at high levels in the plasma of E2-treated fish.  相似文献   

6.
Experiments were conducted under greenhouse conditions to investigate the effects of enhanced UV-B radiation (280 to 320 nm) on height, fresh and dry weights, leaf chlorophyll and carotenoids, CO2 uptake rates, and Hill activity in soybean ( Glycine max L. cv. Bragg). Plants were exposed for 6 h continuously from midmorning to midafternoon each day to UV-B radiation which was provided by Westinghouse FS-40 sun lamps filtered with 0.127-mm cellulose acetate film (UV-B enhanced) or 0.127-mm Mylar S film (UV-B Mylar control). Three different UV-B enhanced radiation levels were tested: 1.09 (treatment T1), 1.36 (treatment T2), and 1.83 (treatment T3) UV-B sun equivalent units (UV-Bsec) where 1 UV-Bsec= 15.98 mW·m−2 of solar UV-B obtained by applying EXP -[(α-265)/21]2, a weighting function that simulates the DNA absorption spectrum, to the UV-B lamp systems. These UV-B levels correspond to a calculated decrease in stratospheric ozone content of 6%, 21%, and 36% for treatment T1, T2, and T3, respectively.
Daily exposure of soybean plants to UV-B radiation significantly decreased height, fresh and dry weights, leaf chlorophyll and carotenoid contents, and CO2 uptake rates. Leaf pigment extracted in 80% acetone from UV-B-treated soybean plants showed considerable increase in absorption in the wavelength region of 330 to 400 nm with increased UV-B radiation levels. Chloroplast preparations from leaves of T2 and T3 plants showed significant reductions in Hill reaction measurements.  相似文献   

7.
The production of biodegradable polymers in transgenic plants is an important challenge in plant biotechnology; nevertheless, it is often accompanied by reduced plant fitness. In order to decrease the phenotypic abnormalities caused by cytosolic production of the biodegradable polymer cyanophycin, and to increase polymer accumulation, four translocation pathway signal sequences for import into chloroplasts were individually fused to the coding region of the cyanophycin synthetase gene ( cph ATe) of Thermosynechococcus elongatus BP-1, resulting in the constructs pRieske- cph ATe, pCP24- cph ATe, pFNR- cph ATe and pPsbY- cph ATe. These constructs were expressed in Nicotiana tabacum var. Petit Havana SRI under the control of the constitutive cauliflower mosaic virus (CaMV) 35S promoter. Three of the four constructs led to polymer production. However, only the construct pPsbY- cph ATe led to cyanophycin accumulation exclusively in chloroplasts. In plants transformed with the pCP24- cph ATe and pFNR- cph ATe constructs, water-soluble and water-insoluble forms of cyanophycin were only located in the cytoplasm, which resulted in phenotypic changes similar to those observed in plants transformed with constructs lacking a targeting sequence. The plants transformed with pPsbY- cph ATe produced predominantly the water-insoluble form of cyanophycin. The polymer accumulated to up to 1.7% of dry matter in primary (T0) transformants. Specific T2 plants produced 6.8% of dry weight as cyanophycin, which is more than five-fold higher than the previously published value. Although all lines tested were fertile, the progeny of the highest cyanophycin-producing line showed reduced seed production compared with control plants.  相似文献   

8.
Brachypodium distachyon is a promising model system for the structural and functional genomics of temperate grasses because of its physical, genetic and genome attributes. The sequencing of the inbred line Bd21 ( http://www.brachypodium.org ) started in 2007. However, a transformation method remains to be developed for the community standard line Bd21. In this article, a facile, efficient and rapid transformation system for Bd21 is described using Agrobacterium -mediated transformation of compact embryogenic calli (CEC) derived from immature embryos. Key features of this system include: (i) the use of the green fluorescent protein (GFP) associated with hygromycin selection for rapid identification of transgenic calli and plants; (ii) the desiccation of CEC after inoculation with Agrobacterium ; (iii) the utilization of Bd21 plants regenerated from tissue culture as a source of immature embryos; (iv) the control of the duration of the selection process; and (v) the supplementation of culture media with CuSO4 prior to and during the regeneration of transgenic plants. Approximately 17% of CEC produced transgenic plants, enabling the generation of hundreds of T-DNA insertion lines per experiment. GFP expression was observed in primary transformed Bd21 plants (T0) and their progeny (T1). The Mendelian inheritance of the transgenes was confirmed. An adaptor-anchor strategy was developed for efficient retrieval of flanking sequence tags (FSTs) of T-DNA inserts, and the resulting sequences are available in public databases. The production of T-DNA insertion lines and the retrieval of associated FSTs reported here for the reference inbred line Bd21 will facilitate large-scale functional genomics research in this model system.  相似文献   

9.
Arginine decarboxylase (ADC; EC 4.1.1.19) is a key enzyme in one of the two possible ways to synthesize putrescine (Put) in plants. In previous work ( Masgrau et al. 1997 ), we observed an altered phenotype (growth inhibition, leaf chlorosis and necrosis) in tobacco transgenic plants ( Nicotiana tabacum L. var. Wisconsin-38) containing the oat ADC cDNA under the control of a tetracycline inducible promoter, the severity of which was correlated with Put content. Now we have analysed the T2 generation of a selected transgenic line (line 52), which in previous generations was characterized by presenting a moderate increase in ADC activity and polyamine levels, but no phenotype alterations. Studying two selected individuals, one with a high expression level of the transgene and the other with a moderate expression level, we demonstrate that only the one with increased polyamine content displays the altered (toxic) phenotype. The possible causes of toxicity have been analysed. The results suggest that either Put or its oxidation products, via diamine oxidase (DAO; EC 1.4.3.6), are the responsible factors for the deleterious effects observed in the transgenic plants.  相似文献   

10.
Grapevine fanleaf virus (GFLV) is one of the most destructive pathogens of grapevine. In this study, we generated monoclonal antibodies binding specifically to the coat protein of GFLV. Antibody FL3, which bound most strongly to GFLV and showed cross-reactivity to Arabis mosaic virus (ArMV), was used to construct the single-chain antibody fragment scFvGFLVcp-55. To evaluate the potential of this single-chain variable fragment (scFv) to confer antibody-mediated virus resistance, transgenic Nicotiana benthamiana plants were generated in which the scFv accumulated in the cytosol. Recombinant protein levels of up to 0.1% total soluble protein were achieved. The T1 and T2 progenies conferred partial or complete protection against GFLV on challenge with the viral pathogen. The resistance to GFLV in transgenic plants was strictly related to scFvGFLVcp-55 accumulation levels, confirming that the antibody fragment was functional in planta and responsible for the GFLV resistance. In addition, transgenic plants conferring complete protection to GFLV showed substantially enhanced tolerance to ArMV. We demonstrate the first step towards the control of grapevine fanleaf degeneration, as scFvGFLVcp-55 could be an ideal candidate for mediating nepovirus resistance.  相似文献   

11.
Juvenile steelhead trout, Salmo gairdneri injected with thyroxine (T4) near the time of seaward migration exhibited a significantly lower migration tendency than untreated controls of fish injected with saline, thiourea, or a combination of T4 and thiourea. Fish injected with thiourea alone or in combination with T4 prior to the time of maximum migration tendency showed enhanced migration over untreated and saline injected controls and those injected with T4 alone. Injections of T4 or a combination of T4 and thiourea elevated plasma T4 and tri-iodothyronine (T3) concentrations, while injection of thiourea alone depressed thyroid hormone levels relative to saline-injected controls. Plasma concentrations of T3 and T4 returned to control levels within 10 days in all groups. We suggest that thyroid hormones are antagonistic to mechanisms underlying seaward migration of steelhead trout and that these antagonistic effects must be overcome before migration tendency is expressed.  相似文献   

12.
13.
Pollen- and seed-mediated transgene flow is a concern in plant biotechnology. We report here a highly efficient 'genetically modified (GM)-gene-deletor' system to remove all functional transgenes from pollen, seed or both. With the three pollen- and/or seed-specific gene promoters tested, the phage CRE/ loxP or yeast FLP/ FRT system alone was inefficient in excising transgenes from tobacco pollen and/or seed, with no transgenic event having 100% efficiency. When loxP-FRT fusion sequences were used as recognition sites, simultaneous expression of both FLP and CRE reduced the average excision efficiency, but the expression of FLP or CRE alone increased the average excision efficiency, with many transgenic events being 100% efficient based on more than 25 000 T1 progeny examined per event. The 'GM-gene-deletor' reported here may be used to produce 'non-transgenic' pollen and/or seed from transgenic plants and to provide a bioconfinement tool for transgenic crops and perennials, with special applicability towards vegetatively propagated plants and trees.  相似文献   

14.
The concentrations of thyroxine (T4) and triiodothyronine (T3) in the blood plasma of rainbow trout ( Salmo gairdneri Richardson) at intervals throughout the year have been measured by a chemically specific gas-liquid chromatographic (GLC) method. Mean hormone levels showed a seasonal variation, maximal levels of both hormones occurring in winter and minimal concentrations in mid summer. An apparent secondary maximum in mean T4 and T3 concentrations was observed in spring. (T4)/(T3) ratios have been found to be highest in winter and lowest in summer. A radioimmunoassay procedure, validated by GLC analyses, revealed the presence of a diurnal rhythm in serum T4 levels of trout sampled in September and in April.  相似文献   

15.
A chemically specific analysis for plasma thyroid hormones has been used to disclose a seasonal bimodality in the concentrations of thyroxine (T4) and triiodothyronine (T3) in the plaice; maxima in both hormone levels occur in winter and in summer. The ratio of T4 concentrations to T3 varies seasonally being at a minimum in summer. A highly significant correlation of T4 plasma levels with the landings per unit fishing effort for the same area has been observed.  相似文献   

16.
Abstract: The direct influence of l -3,3',5-triiodothyronine (T3) on the development of 2',3'-cyclic nucleotide 3'-phosphohydrolase (EC 3.1.4.37, CNPase) is demonstrated by using an in vitro culture system of dissociated embryonic mouse brain cells. Serum from a thyroidectomized calf, which contained low levels of T3 (31 ng/100 ml), and thyroxine, T4 (<1 μg/ml), was used in the culture medium in place of normal calf serum (T3, 103 ng/100 ml; T4, 5.7 μg/ml) to render the culture responsive to exogenously added T3. The lower levels of enzyme activity observed in the presence of such a deficient medium could be restored to normal values by T3 supplementation. Half-maximal effect was obtained with 2.5 ± 10−9 m -T3. Three days of hormone treatment resulted in the maximal stimulation of CNPase. T4 was less effective in inducing CNPase activity and the inactive analog of the hormone, reverse T3 (3,3',5'-T3) was ineffective. The morphological appearance of the cells was characterized by deformed (smaller size and less in number) reaggregates in the cultures, lacking hormone.  相似文献   

17.
Serum thyroid hormone levels were determined in adult Atlantic salmon ( Salmo salar ) of both sexes caught in the ocean and at a sequence of locations on their return migration to spawn. Tri-iodothyronine (T3) levels were greatest in fish caught in coastal or estuarine waters or in a river near head-of-tide. T3 levels were lower in fish caught in rivers throughout the angling season and lowest in those captured entering a tributary near spawning. Thyroxine (T4) levels were lowest in immature fish captured in the ocean in winter but raised in fish captured in spring; many of the latter group showed endocrine evidence of their becoming sexually mature. T4 levels were greatest in fish captured in coastal waters and progressively lower in fish captured in an estuary, near head-of-tide and in rivers. T4 levels in fish captured at tributary entry near spawning exceeded those in fish caught in rivers earlier in the year. In general, these data support the hypothesis that motor activity level in migrant fish is a determinant of thyroid status.  相似文献   

18.
The successful use of transgenic plants depends on the strong and stable expression of the heterologous genes. In this study, three introns (PSK7-i1 and PSK7-i3 from Petunia and UBQ10-i1 from Arabidopsis) were tested for their ability to enhance the tapetum-specific expression of a split barnase transgene. We also analyzed the effects of introducing multiple copies of flexible peptide linkers that bridged the fusion domains of the assembled protein. The barnase fragments were assembled into a functional cytotoxin via intein-mediated trans-splicing, thus leading to male sterility through pollen ablation. A total of 14 constructs carrying different combinations of introns and peptide linkers were transformed into wheat plants. The resulting populations (between 41 and 301 independent plants for each construct) were assayed for trait formation. Depending on which construct was used, there was an increase of up to fivefold in the proportion of plants exhibiting male sterility compared to the populations harboring unmodified constructs. Furthermore, the average barnase copy number in the plants displaying male sterility could be reduced. The metabolic profiles of male-sterile transgenic plants and non-transgenic plants were compared using gas chromatography–mass spectrometry. The profiles generated from leaf tissues displayed no differences, thus corroborating the anther specificity of barnase expression. The technical advances achieved in this study may be a valuable contribution for future improvement of transgenic crop systems.  相似文献   

19.
The aim of this study was to evaluate how physiological processes of potted Pinus halepensis plants, grown under controlled conditions, were affected by ozone (O3) and/or water stress, integrating the gas exchange and biochemical data with fluorescence OJIP polyphasic transient data. Plants submitted to only water stress (T1) and with ozone (T3) showed a strong decrease in stomatal conductance and gas exchange, coinciding with a reduction of maximum yield of photochemistry ( φ po) and very negative values of leaf water potential. Simultaneously, a great increase of both PSII antenna size, indicated by absorption per reaction centre, and electron transport per reaction centre were found. The reduction of photosynthesis in the O3-treated plants (T2) by a slowing down of the Calvin cycle was supported by the increase of related fluorescence parameters such as relative variable fluorescence, heat de-excitation constant, energy de-excitation by spillover, and the decrease of φ po. We suggest an antagonistic effect between the two stresses to explain the delayed ozone-induced decrease of stomatal conductance values for T3 with respect to T1 plants, by an alteration of the physiological mechanisms of stomatal opening, which involve the increase of intra-cellular free-calcium induced by ABA under co-occurring water shortage. We emphasise the importance of considering the intensity of the individual stress factor in studies concerning the interaction of stresses.  相似文献   

20.
Transgenic plants of Nicotiana tabacum overexpressing a gibberellin (GA) 20-oxidase cDNA ( CcGA20ox1 ) from citrus, under the control of the 35S promoter, were taller (up to twice) and had larger inflorescences and longer flower peduncles than those of control plants. Hypocotyls of transgenic seedlings were also longer (up to 4 times), and neither the seedlings nor the growing plants elongated further after application of GA3. Hypocotyl and stem lengths were reduced by application of paclobutrazol, and this inhibition was reversed by exogenous GA3. The ectopic overexpression of CcGA20ox1 enhanced the non-13-hydroxylation pathway of GA biosynthesis leading to GA4, apparently at the expense of the early-13-hydroxylation pathway. The level of GA4 (the active GA from the non-13-hydroxylation pathway) in the shoot of transgenic plants was 3–4 times higher than in control plants, whereas that of GA1, formed via the early-13-hydroxylation pathway (the main GA biosynthesis pathway in tobacco), decreased or was not affected. GA4 applied to the culture medium or to the expanding leaves was found to be at least equally active as GA1 on stimulating hypocotyl and stem elongation of tobacco plants. The results suggest that the tall phenotype of tobacco transgenic plants was due to their higher content of GA4, and that the GA response was saturated by the presence of the transgene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号