首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 553 毫秒
1.

Key message

QTL were identified for root architectural traits in maize.

Abstract

Root architectural traits, including the number, length, orientation, and branching of the principal root classes, influence plant function by determining the spatial and temporal domains of soil exploration. To characterize phenotypic patterns and their genetic control, three recombinant inbred populations of maize were grown for 28 days in solid media in a greenhouse and evaluated for 21 root architectural traits, including length, number, diameter, and branching of seminal, primary and nodal roots, dry weight of embryonic and nodal systems, and diameter of the nodal root system. Significant phenotypic variation was observed for all traits. Strong correlations were observed among traits in the same root class, particularly for the length of the main root axis and the length of lateral roots. In a principal component analysis, relationships among traits differed slightly for the three families, though vectors grouped together for traits within a given root class, indicating opportunities for more efficient phenotyping. Allometric analysis showed that trajectories of growth for specific traits differ in the three populations. In total, 15 quantitative trait loci (QTL) were identified. QTL are reported for length in multiple root classes, diameter and number of seminal roots, and dry weight of the embryonic and nodal root systems. Phenotypic variation explained by individual QTL ranged from 0.44 % (number of seminal roots, NyH population) to 13.5 % (shoot dry weight, OhW population). Identification of QTL for root architectural traits may be useful for developing genotypes that are better suited to specific soil environments.  相似文献   

2.

Background

We investigated interacting effects of matric potential and soil strength on root elongation of maize and lupin, and relations between root elongation rates and the length of bare (hairless) root apex.

Methods

Root elongation rates and the length of bare root apex were determined for maize and lupin seedlings in sandy loam soil of various matric potentials (?0.01 to ?1.6 MPa) and bulk densities (0.9 to 1.5 Mg m?3).

Results

Root elongation rates slowed with both decreasing matric potential and increasing penetrometer resistance. Root elongation of maize slowed to 10 % of the unimpeded rate when penetrometer resistance increased to 2 MPa, whereas lupin elongated at about 40 % of the unimpeded rate. Maize root elongation rate was more sensitive to changes in matric potential in loosely packed soil (penetrometer resistances <1 MPa) than lupin. Despite these differing responses, root elongation rate of both species was linearly correlated with length of the bare root apex (r2 0.69 to 0.97).

Conclusion

Maize root elongation was more sensitive to changes in matric potential and mechanical impedance than lupin. Robust linear relationships between elongation rate and length of bare apex suggest good potential for estimating root elongation rates for excavated roots.  相似文献   

3.

Background and aims

Litter decomposition is a major process in the carbon (C) flow and nutrient cycling of terrestrial ecosystems, but the effects of litter type, microsite, and root diameter on decomposition are poorly understood.

Methods

Litterbags were used to examine the decomposition rate of leaf litter and roots at three soil depths (5, 10 and 20 cm) over a 470-day period in Pinus sylvestris plantations in northern China.

Results

Leaves and the finest roots decomposed more quickly at 5 cm depth and coarser roots (>1-mm) decomposed more quickly at 10 and 20 cm depth. Roots generally decomposed more quickly than leaf litter, except at 5 cm deep; leaves decomposed more quickly than the coarsest roots (>5-mm). Root decomposition was strongly influenced by root diameter. Leaves experienced net nitrogen (N) immobilization and coarse roots (>2-mm) experienced more N release than fine roots. Significant heterogeneity was seen in N release for fine-roots (<2-mm) with N immobilization occurring in smaller (0.5–2-mm) roots and N release in the finest roots (<0.5-mm).

Conclusions

Soil depth of litter placement significantly influenced the relative contribution of the decomposition of leaves and roots of different diameters to carbon and nutrient cycling.  相似文献   

4.

Background and aims

Accurate data on the standing crop, production, and turnover of fine roots is essential to our understanding of major terrestrial ecological processes. Minirhizotrons offer a unique opportunity to study the dynamic processes of root systems, but are susceptible to several measurement biases.

Methods

We use roots extracted from minirhizotron tube surfaces to calculate the depth of field of a minirhizotron image and present a model to correct for the underestimation of root diameters obscured by soil in minirhizotron images.

Results

Non-linear regression analysis resulted in an estimated depth of field of 0.78 mm for minirhizotron images. Unadjusted minirhizotron data underestimated root net primary production and fine root standing crop by 61 % when compared to adjusted data using our depth of field and root diameter corrections. Changes in depth of field accounted for >99 % of standing crop adjustments with root diameter corrections accounting for <1 %.

Conclusions

Our results represent the first effort to empirically derive depth of field for minirhizotron images. This work may explain the commonly reported underestimation of fine roots using minirhizotrons, and stands to improve the ability of researchers to accurately scale minirhizotron data to large soil volumes.  相似文献   

5.

Aims

Roots need to be in good contact with the soil to take up water and nutrients. However, when the soil dries and roots shrink, air-filled gaps form at the root-soil interface. Do gaps actually limit the root water uptake, or do they form after water flow in soil is already limiting?

Methods

Four white lupins were grown in cylinders of 20 cm height and 8 cm diameter. The dynamics of root and soil structure were recorded using X-ray CT at regular intervals during one drying/wetting cycle. Tensiometers were inserted at 5 and 18 cm depth to measure soil matric potential. Transpiration rate was monitored by continuously weighing the columns and gas exchange measurements.

Results

Transpiration started to decrease at soil matric potential ψ between ?5 kPa and ?10 kPa. Air-filled gaps appeared along tap roots between ψ?=??10 kPa and ψ?=??20 kPa. As ψ decreased below ?40 kPa, roots further shrank and gaps expanded to 0.1 to 0.35 mm. Gaps around lateral roots were smaller, but a higher resolution is required to estimate their size.

Conclusions

Gaps formed after the transpiration rate decreased. We conclude that gaps are not the cause but a consequence of reduced water availability for lupins.  相似文献   

6.

Aims

Radiata pine (Pinus radiata D. Don) plantations are widely used to control erosion in New Zealand. However, other species with similar growth but longer rotation lengths and ability to coppice may offer future alternatives to radiata pine. Comparing performance of alternative species to radiata thus becomes important if policy is to be developed to promote them.

Methods

The below-ground characteristics (roots) of young redwood (Sequoia sempervirens (D. Don) Endl.) trees from two established plantations in New Zealand were examined and compared with those of radiata pine, and selected poplar and New Zealand native species.

Results

Roots with diameters less than 10 mm comprised over 99 % of total root length in 3-yr-old trees and 98 % of total root length in 4-yr-old trees. For roots greater than 2 mm in diameter, total root length of young redwood trees was greater than that of young radiata pine, poplar and the best performing New Zealand native plant. Total root length at a given root collar diameter for young (1–4 year old) redwood trees was significantly greater than for radiata pine trees. Roots of redwoods were finer and more numerous than for radiata but the below-ground biomass for a given root collar diameter showed no statistical difference between the two species.

Conclusions

Redwood, because of its comparable growth rate and the production of many fine lateral roots, has the potential to become a keystone erosion-control species in New Zealand, especially on steep lands where there is an increased risk of post-harvest landsliding associated with moderate to severe rainstorm events.  相似文献   

7.

Background and aims

Forest management activities influences stand nutrient budgets, belowground carbon allocation and storage in the soil. A field experiment was carried out in Southern Ethiopia to investigate the effect of thinning on fine root dynamics and associated soil carbon accretion of 6-year old C. lusitanica stands.

Methods

Fine roots (≤2 mm in diameter) were sampled seasonally to a depth of 40 cm using sequential root coring method. Fine root biomass and necromass, vertical distribution, seasonal dynamics, annual turnover and soil carbon accretion were quantified.

Results

Fine root biomass and necromass showed vertical and temporal variations. More than 70 % of the fine root mass was concentrated in the top 20 cm soil depth. Fine root biomass showed significant seasonal variation with peaks at the end of the major rainy season and short rainy season. Thinning significantly increased fine root necromass, annual fine root production and turnover. Mean annual soil carbon accretion, through fine root necromass, in the thinned stand was 63 % higher than that in the un-thinned stand.

Conclusions

The temporal dynamics in fine roots is driven by the seasonality in precipitation. Thinning of C. lusitanica plantation would increase soil C accretion considerably through increased fine root necromass and turnover.  相似文献   

8.

Aims

Fine root is an important part of the forest carbon cycle. The growth of fine roots is usually affected by forest intervention. This study aims to investigate the fine root mass, production, and turnover in the disturbed forest.

Methods

The seasonal and vertical distributions of fine root (diameter ≤2 mm) were measured in a Chinese cork oak (Quercus variabilis Blume) forest. The biomass and necromass of roots with diameters ≤1 mm and 1-2 mm in 0-40 cm soil profiles were sampled by using a sequential soil coring method in the stands after clear cutting for 3 years, with the stands of the remaining intact trees as the control.

Results

The fine root biomass (FRB) and fine root necromass (FRN) varied during the growing season and reached their peak in August. Lower FRB and higher FRN were found in the clear cutting stands. The ratio between FRN and FRB increased after forest clear cutting compared with the control and was the highest in June. The root mass with diameter ≤1 mm was affected proportionately more than that of diameter 1-2 mm root. Clear cutting reduced FRB and increased FRN of roots both ≤1 mm and 1-2 mm in diameter along the soil depths. Compared with the control, the annual fine root production and the average turnover rate decreased by 30.7 % and 20.7 %, respectively, after clear cutting for 3 years. The decline of canopy cover contributed to the dramatic fluctuation of soil temperature and moisture from April to October. With redundancy discriminate analysis (RDA) analysis, the first axis was explained by soil temperature (positive) and moisture (negative) in the control stands. Aboveground stand structure, including canopy cover, sprout height, and basal area, influenced FRB and FRN primarily after forest clear cutting.

Conclusions

This study suggested that the reduction of fine root biomass, production, and turnover rate can be attributed to the complex changes that occur after forest intervention, including canopy damage, increased soil temperature, and degressive soil moisture.  相似文献   

9.

Key message

The root shape and the angle between roots play an important role to prevent windthrow occurrence.

Abstract

Partial cutting is frequently applied to increase the volume growth of residual stems. However, the opening of the forest increases the wind speed within the site, and consequently, the risk of windthrow. In the case of black spruce, uprooted trees are normally characterized by a lifting of the root plate. This research was conducted to compare the root systems of standing and uprooted black spruces, after commercial thinning, by looking at root architecture, volume and radial growth. For this purpose, data from a pool of 18 standing and 18 uprooted trees from three study areas were analyzed. The distribution of roots around the stump was compared between both types of trees, standing and uprooted. The radial growth was measured at 30 cm in the stem, 10 cm and 60 cm in the roots. The shape (I and T-beam) and volume were recorded for each root system. The structure of the roots was also mapped to obtain a spatial overview of the angle between roots. The root shape (at 10 and 60 cm) and the angle between roots combined with the diameter of the stem at stump height seem to determine the vulnerability of black spruce to windthrow. Uprooted trees developed fewer roots, with a large sector around the stump without lateral roots which suggests its major implication in the resistance to windthrow.  相似文献   

10.

Background and Aims

We developed a method for processing roots from soil cores and monoliths in the laboratory to reduce the time and cost devoted to separating roots from debris and improve the accuracy of root variable estimates. The method was tested on soil cores from a California oak savanna, with roots from trees, Quercus douglasii, and annual grasses.

Methods

In the randomized sampling method, one isolates the sample fraction consisting of roots and organic debris?<?= 1 cm in length, and randomizes it through immersion in water and vigorous mixing. Sub-samples from the mixture are then used to estimate the percentage of roots in this fraction, thereby enabling an estimate of total sample biomass.

Results

We found that root biomass estimates, determined through the randomization method, differed from total root biomass established by meticulously picking every root from a sample with an error of 3.0 % +/? 0.6 %?s.e.

Conclusions

This method greatly reduces the time and resources required for root processing from soil cores and monoliths, and improves the accuracy of root variable estimates compared to standard methods. This gives researchers the ability to increase sample frequency and reduce the error associated with studying roots at the landscape and plant scales.  相似文献   

11.
Mechanical interactions between neighbouring roots during pullout tests   总被引:1,自引:0,他引:1  

Background and Aims

The quantification of root reinforcement function is important for landscape managers and engineers. The estimation of root mechanical reinforcement is often based on models that do not consider the potential interaction between neighbouring roots. Root-soil mechanical interactions related to the root spacing and bundle geometry remain unclear including potential effects on the reliability of the current models. The objective of this study is to quantify the mechanical interactions among neighbouring roots or roots networks using modelling approaches and pullout laboratory experiments.

Methods

Based on simple geometrical characterization of individual root geometry, we calculated dissipation patterns of frictional root-soil interfacial stresses in radial and longitudinal directions. Considering simple superposition of shear stresses within the soil matrix, we quantified characteristic root densities at which the radial mechanical interactions influence global pullout behaviour of the root bundle both for branched and unbranched roots. Laboratory pullout tests on root bundles were carried out at root spacings of 15, 35 and 105 mm. In addition, we tested effects of non-parallel (crossing) root bundle geometry.

Results

We found no significant statistical differences in root pullout force for the different root spacing in parallel alignment of roots. Branches increase pullout force by 1.5 times. Moreover, the mean displacement at the pullout peak-force was 7.2 % of length for unbranched roots and about 4.1 % of length for branched roots. The model shows its potential comparing it with empirical results concerning the holes leaved by roots, according with the branch pattern.

Conclusion

The study quantifies the influence of root spacing and arrangement geometry within a root bundle on its mechanical behaviour. The assumption of “non-interacting” neighbouring roots in root reinforcement methods is no longer valid for root spacing less than 15 mm and root reinforcement methods. Moreover crossing roots shown a statistical difference. This information is important for improved understanding root reinforcement mechanisms in steep hill slope and the interplay between anchoring /failure and root bundle pullout vs root breakage.  相似文献   

12.

Background and aims

Plant phenology is a sensitive indicator of plant response to climate change. Observations of phenological events belowground for most ecosystems are difficult to obtain and very little is known about the relationship between tree shoot and root phenology. We examined the influence of environmental factors on fine root production and mortality in relation with shoot phenology in hybrid walnut trees (Juglans sp.) growing in three different climates (oceanic, continental and Mediterranean) along a latitudinal gradient in France.

Methods

Eight rhizotrons were installed at each site for 21 months to monitor tree root dynamics. Root elongation rate (RER), root initiation quantity (RIQ) and root mortality quantity (RMQ) were recorded frequently using a scanner and time-lapse camera. Leaf phenology and stem radial growth were also measured. Fine roots were classified by topological order and 0–1 mm, 1–2 mm and 2–5 mm diameter classes and fine root longevity and risk of mortality were calculated during different periods over the year.

Results

Root growth was not synchronous with leaf phenology in any climate or either year, but was synchronous with stem growth during the late growing season. A distinct bimodal pattern of root growth was observed during the aerial growing season. Mean RER was driven by soil temperature measured in the month preceding root growth in the oceanic climate site only. However, mean RER was significantly correlated with mean soil water potential measured in the month preceding root growth at both Mediterranean (positive relationship) and oceanic (negative relationship) sites. Mean RIQ was significantly higher at both continental and Mediterranean sites compared to the oceanic site. Soil temperature was a driver of mean RIQ during the late growing season at continental and Mediterranean sites only. Mean RMQ increased significantly with decreasing soil water potential during the late aerial growing season at the continental site only. Mean root longevity at the continental site was significantly greater than for roots at the oceanic and Mediterranean sites. Roots in the 0–1 mm and 1–2 mm diameter classes lived for significantly shorter periods compared to those in the 2–5 mm diameter class. First order roots (i.e. the primary or parents roots) lived longer than lateral branch roots at the Mediterranean site only and first order roots in the 0–1 mm diameter class had 44.5% less risk of mortality than that of lateral roots for the same class of diameter.

Conclusions

We conclude that factors driving root RER were not the same between climates. Soil temperature was the best predictor of root initiation at continental and Mediterranean sites only, but drivers of root mortality remained largely undetermined.
  相似文献   

13.

Aims

We examine how root system demography and morphology are affected by air warming and multiple, simultaneous climate change drivers.

Methods

Using minirhizotrons, we studied root growth, morphology, median longevity, risk of mortality and standing root pool in the upper soil horizon of a temperate grassland ecosystem for 3 years. Grassland monoliths were subjected to four climate treatments in a replicated additive design: control (C); elevated temperature (T); combined T and summer precipitation reduction (TD); combined TD and elevated atmospheric CO2 (TDCO2).

Results

Air warming (C vs T) and the combined climate change treatment (C vs TDCO2) had a positive effect on root growth rate and standing root pool. However, root responses to climate treatment varied depending on diameter size class. For fine roots (≤ 0.1 mm), new root length and mortality increased under warming but decreased in response to elevated CO2 (TD vs TDCO2); for coarse roots (> 0.2 mm), length and mortality increased under both elevated CO2 and combined climate change drivers.

Conclusions

Our data suggest that the standing roots pool in our grassland system may increase under future climatic conditions. Contrasted behaviour of fine and coarse roots may correspond to differential root activity of these extreme diameter classes in future climate.  相似文献   

14.

Background

The periodontal ligament (PDL) plays a key role in alveolar bone remodeling and resorption during tooth movements. The prediction of tooth mobility under functional dental loads requires a deep understanding of the mechanical behavior of the PDL, which is a critical issue in dental biomechanics. This study was aimed to examine the mechanical behavior of the PDL of the maxillary central and lateral incisors from human. The experimental results can contribute to developing an accurate constitutive model of the human PDL in orthodontics.

Methods

The samples of human incisors were cut into three slices. Uniaxial tensile tests were conducted under different loading rates. The transverse sections (cervical, middle and apex) normal to the longitudinal axis of the root of the tooth were used in the uniaxial tensile tests. Based on a bilinear simplification of the stress–strain relations, the elastic modulus of the PDL was calculated. The values of the elastic modulus in different regions were compared to explore the factors that influence the mechanical behavior of the periodontal ligament.

Results

The obtained stress–strain curves of the human PDL were characterized by a bilinear model with two moduli (E1 and E2) for quantifying the elastic behavior of the PDL from the central and lateral incisors. Statistically significant differences of the elastic modulus were observed in the cases of 1, 3, and 5 N loading levels for the different teeth (central and lateral incisors). The results showed that the mechanical property of the human incisors’ PDLs is dependent on the location of PDL (ANOVA, P?=?0.022, P?<?0.05). The elastic moduli at the middle planes were greater than at the cervical and apical planes. However, at the cervical, middle, and apical planes, the elastic moduli of the mesial and distal site were not significantly different (ANOVA, P?=?0.804, P?>?0.05).

Conclusions

The values of elastic modulus were determined in the range between 0.607 and 4.274 MPa under loads ranging from 1 to 5 N. The elastic behavior of the PDL is influenced by the loading rate, tooth type, root level, and individual variation.
  相似文献   

15.

Background and aims

Growth and distribution of fine roots closely depend on soil resource availability and affect soil C distribution in return. Understanding of relationships between fine root distribution and soil C can help to predict the contribution of fine root turnover to soil C accumulation.

Methods

A study was conducted in a subtropical Cunninghamia lanceolata plantation to assess the fine root mass density (FRMD), fine root C density (FRCD) of different fine root groups as well as their relations with soil C.

Results

The FRMD and FRCD of short-lived roots, dead roots and herb roots peaked in the 0–10 cm soil layer and decreased with soil depth, while FRMD, FRCD of long-lived roots peaked in the 10–20 cm soil layer. Soil C was positively related to FRMD and FRCD of total fine roots (across all three soil layers), dead roots (0–10 cm) and herb roots (10–20 cm) as well as FRCD of short-lived roots (20–40 cm) (P <0.05).

Conclusions

Soil C was mainly affected by herb roots in upper soil layers and by woody plant roots in deeper soil layers.  相似文献   

16.

Aim

We studied the vertical and lateral root distribution of tree species from three genera (Populus spp. - poplar, Picea spp. - spruce, Salix spp. - willow) that were planted in temperate windbreaks and assessed the effects of soil texture on root density.

Methods

Root distribution to depths of up to 1 m was assessed using the trench-profile method at different distances from the tree rows (2, 6 and 9 m) in 18 mature (average age, 25 years-old) windbreak-sites that were located on light- or heavy-textured agricultural soils in southeastern Québec, Canada. Roots were classified into three diameter classes: fine (<1 mm), medium-size (1–5 mm), and coarse (>5 mm).

Results

Tree fine-root density in poplar and willow windbreaks was higher than in spruce windbreaks at 2 m from the tree row. Root densities were higher in light compared to heavy soils, but these differences were specific to poplar and spruce. Across species groups and soil types, 67 % of the roots occurred in the uppermost 30 cm. In this soil zone, different soil fertility variables (pH, clay content, CEC) were negatively correlated with root density. Densities of spruce and willow roots at 6 m from the tree row were much lower (and often unobserved) than that of poplar. At 9 m, low root densities were observed at only two sites.

Conclusions

We conclude that tree identity and soil type are important drivers of root distribution in temperate agroforestry systems. These results may have important implications for the management of tree competition in agroforestry systems and several ecosystem services that are provided by roots, including C-sequestration, erosion control and water infiltration.  相似文献   

17.

Background and aims

Root decomposition studies have rarely considered the heterogeneity within a fine-root system. Here, we investigated fine root (< 0.5 and 0.5–2 mm in diameter) decomposition and accompanying nutrient dynamics of two temperate tree species—Betula costata Trautv and Pinus koraiensis Sieb. et Zucc.

Methods

Both litterbag and intact-core techniques were used to examine decomposition dynamic and nutrient release of the two size class roots over a 498-day period. Moreover, we examined differences between the two approaches.

Results

The very fine roots (< 0.5 mm) with an initially lower C:N ratio, decomposed more slowly than 0.5–2 mm roots of both tree species. The differences in mass loss between size classes were smaller when using the intact-core technique compared with litterbag technique. In contrast to root biomass loss, net N release was much higher in the fine roots (< 0.5 mm). All fine roots initially released N (0–75 days), but immobilized N to varying extent in the following days (75–498 days) during decomposition.

Conclusions

Our results suggest that the slow decomposition rate of very fine roots (< 0.5 mm) may be determined by their high concentration of acid-unhydrolyzable structural components. Additionally, the heterogeneity within a bulk fine-root system could lead to differences in their contribution to soil in terms of carbon and nitrogen dynamics.  相似文献   

18.

Aim

This study presents a micrometre-scale map of the elemental distribution within roots and surrounding sediment of Halimione portulacoides of a contaminated salt marsh in the Tagus estuary.

Methods

Microprobe particle induced X-ray emission analysis was performed in sediment slices containing roots with tubular rhizoconcretions attached to host sediments.

Results

Strong concentration gradients were found particularly in the inner part of rhizoconcretions adjacent to the root wall. Local enrichment was observed in sediment interstices with Fe precipitates and other associated elements. A maximum of 55 % of Fe was measured near the concretion–root interface, with a decrease to <5 % in the host sediment. Maximum concentrations of P (3 %), As (1,200 μg g?1) and Zn (3,000 μg g?1) were registered in concretions, one order of magnitude above the values of the host sediment. The elemental concentration profiles across roots showed that the epidermis was an efficient selective barrier to the entrance of elements. Fe and As were retained in the epidermis. The highest Cu and Zn concentrations were also observed in the epidermis. However, the concentrations of Mn, Cu and Zn increased in the inner root.

Conclusions

As and Fe were mostly retained in the concretion, whereas P, Mn, Cu and Zn were mobilised by the root.  相似文献   

19.

Aims

The mechanisms of belowground competition are not well understood. Addressing literature reports on competition-induced changes in tree fine root morphology, we conducted a growth experiment with tree saplings to investigate competition effects on important root morphological and functional traits in a root order-focused analysis.

Methods

European beech and European ash saplings were grown for 34 months in containers under greenhouse conditions in monoculture (2 conspecific plants), in mixture (1 beech and 1 ash) or as single plants. The root system was fractionated according to root orders and eight morphological and functional properties were determined.

Results

Root order was the most influential factor affecting the fine root traits (except for root diameter and δ13C); a significant species identity effect was found for root diameter, tissue density, N concentration and δ13C. Ash fine roots were thicker, but had lower tissue densities, contained more N and had systematically higher δ13C values than beech roots. The competition treatments had no significant effect on morphological root traits but altered δ13C in the 2nd root order.

Conclusion

Neither intra- nor interspecific root competition affected fine root morphology significantly suggesting that competition-induced root modification may not be a universal phenomenon in temperate trees.  相似文献   

20.

Aims

Aimed to understand how soil water was depleted by deep roots, the effects of drip irrigation and stand age on the deep root distribution, rooting depth, and soil water profile dynamics were investigated in a jujube (Ziziphus jujube Mill. CV. Lizao) plantation.

Methods

A soil coring method with a LuoYang shovel was used for sampling until no more roots were found.

Results

It showed that the maximum fine rooting depth (<2 mm in diameter) increased with stand age and it extended deep into the soil rapidly during the first 4 years, but more slowly in the subsequent 4 years. The maximum rooting depth reached 5 m in a 9-year-old jujube plantation, but it stabilized and did not increase thereafter. However, it was 10 m in a 12-year-old jujube plantation that lacked irrigation.

Conclusions

We found that the application of 33.3 mm of irrigation water (equivalent to 7 % of the local annual precipitation) could halve the maximum rooting depth, thereby reducing deep soil water depletion. Our results showed that a low-volume water supply reduced the maximum rooting depth in jujube and prevented the depletion of the deep soil water. Appropriate drip irrigation is an effective water management strategy for sustainable artificial forest development in semiarid regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号