首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
In Hevea brasiliensis, laticifers produce and accumulate rubber particles. Despite observation using histochemical methods, development stage structure and structures with ceasing functions have rarely been described. Spectral confocal laser scanning microscopy with Nile red staining simplifies laticifer structure observation in tangential sections while enhancing the resolution. Laticifer and ray images were extracted from unmixed images and used to monitor changes during growth. A laticifer network structure developed from increased anastomoses between adjoining laticifers outside of the conducting phloem, but because of increased radial division and growth of rays, the network structure ruptured and disintegrated. We also investigated immunohistochemical localization of two rubber particle-associated proteins in the laticifers: small rubber particle protein (SRPP) and rubber elongation factor (REF). Mature bark test results show that SRPP is localized only in the laticifer layers in the conducting phloem; REF is localized in all laticifer layers. Because SRPP plays a positive role in rubber biosynthesis, results show that the rubber biosynthesis capability of laticifers is concentrated where rays and the sieve tube actively transport metabolites.  相似文献   

2.
Thick mats of cellular remains from Eocene brown coal deposits of the Geiseltal near Halle, DDR, were determined to be fossil nonarticulated laticifers. Nuclear magnetic resonance analyses of intact strands showed they consisted of eis-1,4-configuration rubber representing the polymerized isoprenoid contents of individual laticifers. Only remains of laticifers are present; other cells are absent as a result of biodegradation. The long laticifers, often with a surrounding cell wall, retained a tubular shape during their preservation. The isoprenoid content, which filled the entire lumen, possessed a cribriform structural character. The interstices within the rubber represent areas of former protoplasm of the cell. Various configurations in the protoplasm molded by the rubber during the initial phase of fossilization appear as negative images of former nuclei, organelles, and possibly membrane surfaces. The laticifer axes possess branches of several configurations comparable in morphology to those in branched, nonarticulated laticifers in extant plants. Acetone extracts of the rubber contents analyzed by gas-liquid chromatography identified the presence of several hydrocarbons which form a characteristic profile for the laticifer. It is suggested that the distinctive cellular micromorphology, rubber configuration, and hydrocarbon profile of these laticifers can be employed as markers in comparative studies with extant plants to identify the generic or species origin of these laticifers.  相似文献   

3.
Summary Asclepias speciosa Torr, has latex-containing cells known as nonarticulated laticifers. In stem sections of this species, we have analyzed the cell walls of nonarticulated laticifers and surrounding cells with various stains, lectins, and monoclonal antibodies. These analyses revealed that laticifer walls are rich in (1→4) β-D-glucans and pectin polymers. Immunolocalization of pectic epitopes with the antihomogalacturonan antibodies JIM5 and JIM7 produced distinct labeling patterns. JIM7 labeled all cells including laticifers, while JIM5 only labeled mature epidermal cells and xylem elements. Two antibodies, LM5 and LM6, which recognize rhamnogalacturonan I epitopes distinctly labeled laticifer walls. LM6, which binds to a (l→5) α-arabinan epitope, labeled laticifer walls more intensely than walls of other cells. LM5, which recognizes a (1→4) β-D-galac-tan epitope, did not label laticifer segments at the shoot apex but labeled more mature portions of laticifers. Also the LM5 antibody did not label cells at the shoot apical meristem, but as cells grew and matured the LM5 epitope was expressed in all cells. LM2, a monoclonal antibody that binds to β-D-glucuronic acid residues in arabinogalactan proteins, did not label laticifers but specifically labeled sieve tubes. Sieve tubes were also specifically labeled byRicinus communis agglutinin, a lectin that binds to terminal β-D-galactosyl residues. Taken together, the analyses conducted showed that laticifer walls have distinctive cytochemical properties and that these properties change along the length of laticifers. In addition, this study revealed differences in the expression of pectin and arabinogalactan protein epitopes during shoot development or among different cell types.  相似文献   

4.
Serpe MD  Muir AJ  Driouich A 《Planta》2002,215(3):357-370
Nonarticulated laticifers are latex-containing cells that elongate indefinitely and grow intrusively between the walls of meristematic cells. To identify biochemical mechanisms involved in the growth of nonarticulated laticifers, we have analyzed the distribution of various polysaccharides and proteoglycans in walls of meristematic cells in contact with laticifers, nonadjacent to laticifers, and in laticifer walls. In the shoot apex of Asclepias speciosa, the levels of callose and a (1-->4)-beta-galactan epitope are lower in meristematic walls in contact with laticifers than in nonadjacent walls. In contrast, we did not detect a decline in xyloglucan, homogalacturonan, and arabinogalactan-protein epitopes upon contact of meristematic cells with laticifers. Laticifer elongation is also associated with the development of a homogalacturonan-rich middle lamella between laticifers and their neighboring cells. Furthermore, laticifers lay down walls that differ from those of their surrounding cells. This is particularly evident for epitopes in rhamnogalacturonan I. A (1-->5)-alpha-arabinan epitope in this pectin is more abundant in laticifers than meristematic cells, while the opposite is observed for a (1-->4)-beta-galactan epitope. Also, different cell wall components exhibit distinct distribution patterns within laticifer walls. The (1-->5)-alpha-arabinan epitope is distributed throughout the laticifer walls while certain homogalacturonan and arabinogalactan-protein epitopes are preferentially located in particular regions of laticifer walls. Taken together, our results indicate that laticifer penetration causes changes in the walls of meristematic cells and that there are differences in wall composition within laticifer walls and between laticifers and their surrounding cells.  相似文献   

5.
The multinucleate condition in the non-articulated laticifers of embryos of Euphorbia marginata arises as a result of mitosis. Successive stages of mitosis in the nuclei of the laticifer appear in the form of a wave. No sequence of mitotic stages has been noticed in the neighboring longitudinal tiers of cells. This difference in the mitotic pattern in the laticifer and other parenchymatous cells of the embryo suggests that the synthesis of factor(s) responsible for triggering mitosis occurs within the laticifer and does not diffuse to the surrounding cells. The mitotic waves originate distally from the meristems, either in the cotyledonary or hypocotyl portion of the laticifer, and move uni- or bidirectionally along its longitudinal axis. The mitotic stimulus does not start simultaneously in all the laticifers. The variable velocity of the mitotic substance results in aphasic mitotic waves in laticifers of the same embryo. Mitotic aberrations have not been observed in the dividing nuclei of the laticifer. A chromosome estimation made from a polar view of metaphase does not suggest polyploidization in the observed laticifers.  相似文献   

6.
In E. marginata 12 nonarticulated laticifer initials arise in the cotyledonary node of the young embryo during the early heart stage. The initials arise progressively in the developing embryo, the first laticifers differentiating simultaneously with or shortly before the elements of the pro-cambium. The laticifers occupy a position lateral to the six procambial strands which are formed in the embryo. Upon subsequent growth each laticifer becomes vacuolated and nuclear division unaccompanied by cytokinesis results in the formation of a coenocytic protoplast. The enlarging laticifer produces several branches, one growing into the cotyledon, another growing down along the hypocotyl penetrating toward the root meristem, and one or several growing along intercellular spaces of adjacent cells. No fusion of these branches with one another or adjoining parenchyma cells was observed.  相似文献   

7.
8.
Laticifer differentiation of Hevea brasiliensis was investigatedby application of lanolin containing jasmonic acid (JA) or otherchemicals to the surface of young stems in epicormic shoots.The young stems had primary laticifers and no secondary laticifers.When applied to extending young stems, JA led to a significantincrease in primary laticifer number but did not induce secondarylaticifer differentiation. Secondary laticifer differentiationand a less significant increase in primary laticifer numberwere caused by JA application to the extended young stems. Theinduction of the secondary laticifers was dependent on the concentrationof JA applied. Cambium cell division leading to the formationof secondary phloem was not accelerated by JA treatment. Treatedbark tissues showed no visible changes except for the additionallaticifers, which were normal in ultrastructure. The secondarylaticifers were also induced by the application of linolenicacid, a precursor of JA biosynthesis. Abscisic acid, ethephonand salicylic acid had no detectable effect on laticifer differentiation.Copyright 2000 Annals of Botany Company Hevea brasiliensis, laticifer differentiation, jasmonic acid, linolenic acid, vascular cambium.  相似文献   

9.
Laticifers of Ficus caricaL. are of the branched, non-articulatedtype. They occur in the cortex and pith of the plant axis andpenetrate leaves and inflorescences. Observations were madeon laticifers located in shoot apices. Growing regions of laticifers undergo a sequence of ultrastructuralchanges. These are: (a) a pronounced increase in the vacuolarspace which divides the cytoplasm into separated masses; (b)a development of numerous vesicular structures in the cytoplasm.The vesicular structures are released into the vacuolar space.The whole process is accompanied by disintegration of cytoplasm.Apparently isolated masses of cytoplasm occur in the luminaof laticifer tips in sections taken from dormant apices. Itis assumed that these masses have a role in the initiation ofnew laticifer regions in the next growing season. Ficus caricaL., laticifers, ultrastructure, development differentiation  相似文献   

10.
Tan D  Sun X  Zhang J 《Plant cell reports》2011,30(6):1117-1124
Laticifers are highly specialized cells present in over 20 plant families. They are well defined in planta. In vitro development of laticifers was also observed in some plants, but uncertain in the callus cultures of rubber tree, one of the most economically important latex producing plants. In the present study, we provide evidence that laticifer cells present in the callus cultures of rubber tree by histochemical and immunohistochemical studies. They present in the callus mainly as separate non-elongated form, a novel morphology different from the morphology of laticifer cells in planta, excluding their origin from explants. The occurring frequency of laticifer cells in the callus was genotype-dependent and negatively correlated with the somatic embryogenetic ability, suggesting that the presence of laticifer cells in the callus inhibit somatic embryogenesis in tissue culture of rubber tree. The genotypes PR107, RRIM600, Reyan8-79, and Reyan7-33-97 with lower embryogenetic ability compared to Haiken 2 had more laticifer cells, and laticifer clusters were only observed in these genotypes.  相似文献   

11.
12.
The development and structure of the laticifers in several species of the section Subhydrochylus of the genus Mammillaria (Cactaceae) were examined. These laticifers were found to be similar to those of the section Mammillaria in that both types develop from the complete lysis of several rows of parenchyma cells, and both types consist of long, branching, tubular lumens which are lined by epithelia. The laticifers of the section Subhydrochylus differ from those of the section Mammillaria in that those of the former are more irregular in shape, lumen development, and epithelium form. Also, the Subhydrochylus laticifers occur only as a single ring in the outermost cortex and tubercle bases, whereas those of section Mammillaria can be found in pith, medullary rays, cortex and throughout the tubercles. Because the structure of the laticifers in the section Mammillaria is much more regular and orderly, it is postulated that they are the derived type and that the laticifers of the section Subhydrochylus more closely resemble the ancestral condition. Two species, M. elegans and M. tegelbergiana, were found to be intermediate in nature, having characteristics of both types of laticifer systems. Solista pectinata was found to have laticifers similar to those in section Subhydrochylus.  相似文献   

13.
The protoplast of the non-articulated branched laticifer in the embryo and seedling of Asclepias syriaca L. was studied at the ultrastructural level and was found to differ from that of adjacent cell types. Embryonal laticifers possess numerous vesicles with electron-dense contents, but lack a large organized central vacuole. Plastids have few lamellae, possess phytoferritin, and accumulate small amounts of starch. Other organelles and membrane systems are similar to those in other cells. After germination, laticifers develop numerous elongated vacuoles by dilation of endoplasmic reticulum. Nuclei in laticifers within the hypocotyl of seedlings are highly lobed and possess dilated perinuclear spaces. Plastids and other organelles are similar to those observed in the protoplast of laticifers in the embryo. The latex or rubber component of the laticifer is not apparent in mature embryos of 72-hr seedlings.  相似文献   

14.
为了解夹竹桃科(Apocynaceae)植物乳汁管的发生发育,对爱之蔓(Ceropegia woodii)和百万心(Dischidia ruscifolia)营养器官中的分泌结构进行了显微观察。结果表明,爱之蔓和百万心营养器官中均有无节分枝乳汁管的分布,茎皮层中的乳汁管大部分具有明显的分枝,叶中乳汁管具明显分枝,分布与走向多与叶脉维管组织平行。另外,爱之蔓营养器官中的分泌结构除乳汁管外,还有分泌腔。这为夹竹桃科植物的系统分类研究提供了解剖学依据。  相似文献   

15.
FINERAN  B. A. 《Annals of botany》1983,52(3):279-293
Differentiation of non-articulated laticifers in poinsettia(Euphorbia pulcherrima Willd.) was studied ultra-structurally.Growing laticifers show: (1) a multinucleate apical region containingabundant ribosomes but few other differentiated organelles and(2) a sub-apical zone where the cytoplasm is dominated by vacuolesof diverse morphology with latex particles. These particlesappear first within narrow tubular vacuoles developed especiallyin the peripheral cytoplasm. During vacuolation of the laticifer,portions of cytoplasm, including some of the nuclei, becomeisolated by the enlarging and fusing vacuoles; eventually thesebecome lysed, except the latex particles which remain in thecentral vacuole. During differentiation of a laticifer branch,the cytoplasm contains the usual organelles, including a fewmicrobodies and coated vesicles. The plastids that lie withinthe peripheral cytoplasm differentiate into amyloplasts witha single elongated starch grain. Towards the end of differentiationthe cytoplasm becomes restricted to a thin parietal layer, withthe remaining organelles reduced or degenerate, surroundinga central vacuole filled with latex particles. Euphorbia pulcherrima Willd, poinsettia, ultrastructure, differentiation, laticifers  相似文献   

16.
Although the laticifers of several species of Mammillaria can technically be classified as being of the articulated type, they differ significantly from all other reported articulated laticifers. They are derived from cells which differentiate only in older tissues, never in meristematic or young regions. The development involves the complete lysis of masses of cells, not just the perforation or resorption of the end walls in a single file of cells. At maturity, the laticifer lumen is lined with a one-to-several layered epithelium which may be quite thick. The laticifers increase in diameter with age, apparently by the lysis of the inner epithelial cells. Laticifers occur in the pith, cortex and tubercles of the vegetative body but were not observed in the roots, flower parts or in seedlings up to eight months old. Seven species were studied, all of which have “milky sap.” and the laticifers of each were virtually identical to the laticifers of the others.  相似文献   

17.
Laticifers of Papaver bracteatum Lindl., population Arya II, seedlings were examined by electron microscopy. Laticifers were first differentiated in procambium of the radicle associated with phloem about 72 hr after seeds were sown. Proliferation of membrane-bound vesicles of apparent endoplasmic reticulum origin distinguished laticifers from adjacent cells. Vesicles developed electron-dense caps from the internal condensation of small particles. Laticifer initials possessed the usual complement of organelles that became obscured in mature cells by the large, closely packed vesicles. Plastids contained an electron-dense, membrane-bound inclusion, but never developed lamellae or starch grains. Articulation and anastomoses between laticifer elements resulted from gradual removal of wall materials by both cells on opposite sides of the common walls at a perforation site. Differentiation of the laticifer initials and the micromorphology of the protoplast of P. bracteatum is similar to that reported for P. somniferum.  相似文献   

18.
Summary A method is described for the cytochemical localization of pectinase activity at the ultrastructural level. The procedure involves the use of Benedict's reagent to form an electron-dense copper precipitate when reacted with reducing sugars liberated from exogenously supplied pectin. Using this technique, pectinase activity was examined in the nonarticulated, branched laticifers ofNerium oleander. Electron opaque crystalline deposits indicating the presence of pectolytic enzymes were identified in laticifer central vacuoles. Smaller amounts of reaction product were distributed along the middle lamella between laticifers and adjacent cells. This report represents the first direct evidence for the involvement of pectinase in intrusive growth of nonarticulated laticifers.  相似文献   

19.
At present, the lysosome pathway (LP) and proteasome pathway (PP) are known as major clearance systems in eukaryotic cells. The laticifer, a secretory tissue, degrades some cytoplasm during development. In this study, we investigated the distribution of LP and PP in non‐articulated laticifers of Euphorbia helioscopia L. Electron microscopy revealed that, plastids, mitochondria and some cyotsol were degraded in the late development laticifers, where there were numerous vesicles originated from dicytosomes. Accordingly, some key proteins in LP and PP were detected in E. helioscopia latex using isobaric tags for relative and absolute quantitation (iTRAQ) proteomics. Further immunohistochemistry analysis revealed that the clathrin heavy chain (CHC) belonging to LP and the ubiquitin‐mediated proteasome degradation increases gradually as the laticifer develops. Immuno‐electron microscopy revealed that the cysteine protease, CHC and AP‐2 complex subunit beta‐1 belonging to LP were mainly distributed in vesicles deriving from dicytosomes, which we called lysosome‐like vesicles. Ubiquitin was widely distributed in the cytosol, and proteasome activity was significantly reduced when various concentrations of the inhibitor MG132 were added to the latex total protein. We hypothesize that LP and PP are distributed in E. helioscopia laticifers; and it was speculated that LP and PP might be involved in the degradation of organelles and some cytoplasmic matrix in E. helioscopia laticifers.  相似文献   

20.
Laticifers are highly specialized living plant cells which produce and contain latex. Occurrence of latex was used to establish morphological affinities (i) between Liabeae and other Asteracean tribes, (ii) among the Liabean genera, and (iii) in order to obtain phylogenies within Liabeae. However, structures and types of latex-producing tissues in this tribe have not yet been studied anatomically. In the present paper latex-producing structures of aerial parts in species of Microliabum, Munnozia, and Paranephelius (Liabeae), from open areas in mid-elevation Andean forests and in Andean high-elevation habitats, were studied. In all the analyzed species, latex secretion was easily observed in stem and leaf blade hand sections. Laticifers accompanied vascular tissues in all the cases, throughout stems and leaves, and they were of the articulated anastomosed type, at least in fully developed stages. Laticifers were found facing both, the xylem and the phloem, except for Paranephelius stems, in which they occur merely next to the phloem. Leaf laticifers form a reticulum accompanying the vein system. The type of latex-producing tissue shared by Microliabum and Munnozia could be a character shared by common ancestry whereas the laticifer system of Paranephelius stems could represent an evolutionary novelty for this genus. The laticifer type described in this study in aerial parts of Liabeae may allow establishing morphological affinities with tribes Cichorieae and Arctoteae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号