首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Long chain free fatty acids (FFA) exert, according to their actual concentration, different effects on the energy conserving system of mitochondria. Sub-micromolar concentrations of arachidonic acid (AA) rescue DeltapH-dependent depression of the proton pumping activity of the bc1 complex. This effect appears to be due to a direct interaction of AA with the proton-input mouth of the pump. At micromolar concentrations FFA increase the proton conductance of the inner membrane acting as protonophores. FFA can act as natural uncouplers, causing a mild uncoupling, which prevents reactive oxygen species production in the respiratory resting state. When Ca(2+)-loaded mitochondria are exposed to micromolar concentrations of FFA, the permeability of the inner membrane increases, resulting in matrix swelling, rupture of the outer membrane and release of intermembrane pro-apoptotic proteins. The characteristics of AA-induced swelling appear markedly different in mitochondria isolated from heart or liver. While in the latter it presents the canonical features of the classical permeability transition (PT), in heart mitochondria substantial differences are observed concerning CsA sensitivity, DeltaPsi dependence, reversibility by BSA and specificity for the activating divalent cation. In heart mitochondria, the AA-dependent increase of the inner membrane permeability is affected by ANT ligands such as adenine nucleotides and atractyloside. AA apparently causes a Ca2+-mediated conversion of ANT from a translocator to a channel system. Upon diamide treatment of heart mitochondria, the Ca2+/AA-induced CsA insensitive channel is converted into the classical PT pore. The relevance of these observations in terms of tissue-specific components of the putative PTP and heart ischemic and post-ischemic process is discussed.  相似文献   

2.
3.
The parameters of energy coupling of mitochondria isolated from the livers of hibernating and awakening gophers were studied. The ATP/ADP-antiporter inhibitor carboxyatractylate slowed down the respiration rate, increased delta psi and decreased the ionic conductivity of the inner mitochondrial membrane as measured by the rate of the delta psi decline after addition of cyanide (in the presence of oligomycin and EGTA). A similar effect was produced by BSA, carboxyatractylate being fairly ineffective in the presence of BSA. In hibernating gophers the maximal rate of the uncoupled respiration and the ionic conductivity of the inner mitochondrial membrane were markedly decreased as compared with awakening gophers. The data obtained suggest that in awakening animals fatty acids induce the uncoupling of oxidative phosphorylation by the ATP/ADP-antiporter, this process being simultaneous with the activation of the respiratory chain.  相似文献   

4.
Free fatty acids (FFA) are known to uncouple oxidative phosphorylation in mitochondria. However, their mechanism of action has not been elucidated as yet. In this study we have investigated in detail the patterns of uncoupling by the FFA oleate and palmitate in rat liver mitochondria and submitochondrial particles. The patterns of uncoupling by FFA were compared to uncoupling induced by the ionophores valinomycin (in the presence of K+) and gramicidin (in the presence of Na+) and the proton translocator carbonyl cyanide m-chlorophenylhydrazone (CCCP). The most striking difference in the pattern of uncoupling relates to the effect on the proton electrochemical potential gradient, delta mu H. Uncoupling by ionophores, particularly valinomycin, is associated with and most likely caused by a major reduction of delta mu H. In contrast, uncoupling by FFA is not associated with a significant reduction of delta mu H, indicating another mechanism of uncoupling. We suggest the use of the term decouplers for uncoupling agents such as FFA and general anesthetics that do not collapse the delta mu H [Rottenberg, H. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 3313-3317]. The protonophore CCCP and to some extent the ionophore gramicidin indicate a mixed mode of uncoupling since their effect on delta mu H is moderate when compared to that of valinomycin. Another distinguishing feature of uncouplers that collapse the delta mu H is their ability to stimulate ADP-stimulated respiration (state 3) further. Decouplers such as FFA and general anesthetics do not stimulate state 3 respiration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Studies with four benzoquinones, viz. juglone, embelin, maesaquinone and maesanin, on rat liver mitochondria oxidative phosphorylation have been carried out. Three of the benzoquinones are uncouplers in the order juglone greater than maesoquinone greater than embelin, while maesanin is an inhibitor of electron transport and oxidative phosphorylation.  相似文献   

6.
7.
In liver mitochondria fatty acids act as protonophoric uncouplers mainly with participation of internal membrane protein carriers — ADP/ATP and aspartate/glutamate antiporters. In this study the values of recoupling effects of carboxyatractylate and glutamate (or aspartate) were used to assess the degree of participation of ADP/ATP and aspartate/glutamate antiporters in uncoupling activity of fatty acids. These values were determined from the ability of these recoupling agents to suppress the respiration stimulated by fatty acids and to raise the membrane potential reduced by fatty acids. Increase in palmitic and lauric acid concentration was shown to increase the degree of participation of ADP/ATP antiporter and to decrease the degree of participation of aspartate/glutamate antiporter in uncoupling to the same extent. These data suggest that fatty acids are not only inducers of uncoupling of oxidative phosphorylation, but that they also act the regulators of this process. The linear dependence of carboxyatractylate and glutamate recoupling effects ratio on palmitic and lauric acids concentration was established. Comparison of the effects of fatty acids (palmitic, myristic, lauric, capric, and caprylic having 16, 14, 12, 10, and 8 carbon atoms, respectively) has shown that, as the hydrophobicity of fatty acids decreases, the effectiveness decreases to a greater degree than the respective values of their specific uncoupling activity. The action of fatty acids as regulators of uncoupling is supposed to consist of activation of transport of their anions from the internal to the external monolayer of the internal membrane with participation of ADP/ATP antiporter and, at the same time, in inhibition of this process with the participation of aspartate/glutamate antiporter.  相似文献   

8.
9.
Carboxyatractylate inhibits the uncoupling effect of free fatty acids   总被引:2,自引:0,他引:2  
The ATP/ADP-antiporter inhibitors and ADP decrease the palmitate-induced stimulation of the mitochondrial respiration in the controlled state. The degree of inhibition decreases in the order: carboxyatractylate greater than bongkrekic acid, palmitoyl-CoA, ADP greater than atractylate. GDP is ineffective. The inhibiting concentration of carboxyatractylate coincides with this arresting the state 3 respiration. Carboxyatractylate inhibition decreases when the palmitate concentration increases. Stimulation of controlled respiration by FCCP or gramicidin D at any concentration of these uncouplers is carboxyatractylate-resistant, whereas that by low concentrations of DNP is partially suppressed by carboxyatractylate. These data together with observations that palmitate does not increase H+ conductance in bilayer phospholipid membranes and in cytochrome oxidase-asolectin proteoliposomes indicate that the ATP/ADP-antiporter is somehow involved in the uncoupling by low concentrations of fatty acids (or DNP), whereas that by FCCP and gramicidin D is due to their effect on the phospholipid bilayer. It is suggested that the antiporter facilitates translocation of palmitate anion across the mitochondrial membrane.  相似文献   

10.
Intermyofibrillar mitochondria from skeletal muscle (m. gastrocnemius) and liver mitochondria were isolated from cold-acclimated (4 degrees C) or control (30 degrees C) 4-week old ducklings. The respiratory rate of isolated mitochondria, with Na-succinate as substrate, was followed polarographically at 25 degrees C in order to determine the basal respiratory rate, the rate of respiration in the presence of free fatty acids (FFA) (Na-palmitate), and the fully uncoupled rate, after addition of FCCP. The basal respiration (which in liver mitochondria was unaffected by acclimation to cold) was higher (+53%) in intermyofibrillar mitochondria from cold-acclimated ducklings than from controls, and the maximal FCCP-stimulated respiration was also increased (+98%) by acclimation to cold. FFA-stimulated respiration increased as a function of FFA concentration in both types of mitochondria. The increase in respiration due to FFA was about double in intermyofibrillar mitochondria from cold-acclimated ducklings than that of controls, but in liver mitochondria there was no increase due to cold. The membrane potential was estimated by the dye safranine in the absence or in the presence of FFA in the incubation medium. There were no significant differences in the basal membrane potential in the two groups and the addition of FFA led to the same depolarization in both groups. The significance of these alterations for acclimation to cold is discussed.  相似文献   

11.
12.
13.
The respiration rate of liver mitochondria in the course of succinate oxidation depends on temperature in the presence of palmitate more strongly than in its absence (in state 4). In the Arrhenius plot, the temperature dependence of the palmitate-induced stimulation of respiration has a bend at 22°C which is characterized by transition of the activation energy from 120 to 60 kJ/mol. However, a similar dependence of respiration in state 4 is linear over the whole temperature range and corresponds to the activation energy of 17 kJ/mol. Phosphate partially inhibits the uncoupling effect of palmitate. This effect of phosphate is increased on decrease in temperature. In the presence of phosphate the temperature dependence in the Arrhenius plot also has a bend at 22°C, and the activation energy increases from 128 to 208 kJ/mol in the range from 13 to 22°C and from 56 to 67 kJ/mol in the range from 22 to 37°C. Mersalyl (10 nmol/mg protein), an inhibitor of the phosphate carrier, similarly to phosphate, suppresses the uncoupling effect of laurate, and the effects of mersalyl and phosphate are not additive. The recoupling effects of phosphate and mersalyl seem to show involvement of the phosphate carrier in the uncoupling effect of fatty acids in liver mitochondria. Possible mechanisms of involvement of the phosphate carrier in the uncoupling effect of fatty acids are discussed.  相似文献   

14.
A structure-activity relationship study on the uncoupling of alkyl acyldithiocarbazates was carried out. Greater activity was observed with increasing alkyl chain length, the optimum being C9. A further increase in alkyl chain length caused a decrease in the activity. Thione-thiol tautomeric forms with a dissociable proton were found to be of primary importance for the uncoupling and the role of the acyl group was auxiliary.The reactivity of the SH group of alkyl acyldithiocarbazates with an SH-reagent was very low. These compounds facilitated the valinomycin-induced swelling of non-respiring mitochondria and non-sonicated lecithin liposomes in isotonic potassium acetate solution.  相似文献   

15.
The effect of ethanol on the uncoupling activity of palmitate and recoupling activities of carboxyatractylate and glutamate was studied in liver mitochondria at various Mg2+ concentrations and medium pH values (7.0, 7.4, and 7.8). Ethanol taken at concentration of 0.25 M had no effect on the uncoupling activity of palmitic acid in the presence of 2 mM MgCl2 and decreased the recoupling effects of carboxyatractylate and glutamate added to mitochondria either just before or after the fatty acid. However, ethanol did not modify the overall recoupling effect of carboxyatractylate and glutamate taken in combination. The effect of ethanol decreased as medium pH was decreased to 7.0. Elevated concentration of Mg2+ (up to 8 mM) inhibits the uncoupling effect of palmitate. Ethanol eliminates substantially the recoupling effect of Mg2+ under these conditions, but does not influence the recoupling effects of carboxyatractylate and glutamate. It is inferred that ADP/ATP and aspartate/glutamate antiporters are involved in uncoupling function as single uncoupling complex with the common fatty acid pool. Fatty acid molecules gain the ability to migrate under the action of ethanol: from ADP/ATP antiporter to aspartate/glutamate antiporter on addition of carboxyatractylate and in opposite direction on addition of glutamate. Possible mechanisms of fatty acid translocation from one transporter to another are discussed.  相似文献   

16.
S Luvisetto  G F Azzone 《Biochemistry》1989,28(3):1100-1108
Addition of gramicidin D to liver mitochondria, incubated in low- or high-salt media, results in stimulation of respiration in the absence or presence of depression of delta muH, respectively. Gramicidin D concentrations 2 orders of magnitude higher are required in the low-salt media with full uncoupling at 1 nmol of gramicidin.mg-1. The stimulation of respiration is not accompanied by increased passive proton influx in low-salt media. In high-salt media, the extent of respiratory stimulation and the extent of delta muH depression differ according to the nature and concentration of cation. The flow-force relationship is very steep when gramicidin D induced uncoupling occurs in low-salt media and much less steep in high-salt media. A multiplicity of flow-force relationship, respiratory rate vs delta muH, is obtained, the slope of which depends on the nature and concentration of cation, and which can be reproduced by computer simulation by introducing a variable extent of proton cycling either in the membrane or in the pump. The apparent proton conductance, as analyzed in the relationship of Je/delta muH vs delta muH, increases in the so-called ohmic and nonohmic regions according to whether gramicidin D is added in high-salt or low-salt media, respectively. Titration with antimycin of the respiratory control ratio (RCR) in gramicidin D treated mitochondria leads to a depression of the RCR in high-salt but not in low-salt media. The view is discussed that in low-salt media the gramicidin D induced uncoupling is due to a cycling of protons within a proton domain operationally located at or near the proton pump.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
P Sch?nfeld 《FEBS letters》1992,303(2-3):190-192
The action of such membrane-permeant cations as tetraphenyl phosphonium and dibenzyldimethyl ammonium upon fatty acid-uncoupled respiration has been studied with oligomycin-inhibited rat liver mitochondria. Both cations enhance fatty acid-stimulated respiration. This synergistic effect is explained by a facilitated permeation of the fatty acid anion across the inner membrane due to an ion-pair complex. It is concluded that fatty acid uncoupling in rat liver mitochondria is limited by fatty acid anion permeation.  相似文献   

18.
The effect of fatty acids and mitochondria-targeted lipophilic cations (SkQ1, SkQ3, MitoQ, and C12TPP) on tightly-coupled mitochondria from yeasts Dipodascus (Endomyces) magnusii and Yarrowia lipolytica was investigated. Micromolar concentrations of saturated and unsaturated fatty acids were found to decrease the membrane potential, which was recovered almost totally by ATP and BSA. At low, micromolar concentrations, mitochondria-targeted lipophilic cations are “relatively weak, mild uncouplers”, at higher concentrations they inhibit respiration in state 3, and at much higher concentrations they induce swelling of mitochondria, possibly due to their prooxidant and detergent action. At very low, not uncoupling concentrations, mitochondria-targeted lipophilic cations profoundly promote (potentiate) the uncoupling effect of fatty acids. It is conceivable that the observed uncoupling effect of lipophilic cations can be, at least partially, due to their interactions with the endogenous pool of fatty acids.  相似文献   

19.
Polyunsaturated fatty acid (PUFA) peroxidation is initiated by hydrogen atom abstraction at bis-allylic sites and sets in motion a chain reaction that generates multiple toxic products associated with numerous disorders. Replacement of bis-allylic hydrogens of PUFAs with deuterium atoms (D-PUFAs), termed site-specific isotope reinforcement, inhibits PUFA peroxidation and confers cell protection against oxidative stress. We demonstrate that structurally diverse deuterated PUFAs similarly protect against oxidative stress-induced injury in both yeast and mammalian (myoblast H9C2) cells. Cell protection occurs specifically at the lipid peroxidation step, as the formation of isoprostanes, immediate products of lipid peroxidation, is drastically suppressed by D-PUFAs. Mitochondrial bioenergetics function is a likely downstream target of oxidative stress and a subject of protection by D-PUFAs. Pretreatment of cells with D-PUFAs is shown to prevent inhibition of maximal uncoupler-stimulated respiration as well as increased mitochondrial uncoupling, in response to oxidative stress induced by agents with diverse mechanisms of action, including t-butylhydroperoxide, ethacrynic acid, or ferrous iron. Analysis of structure–activity relationships of PUFAs harboring deuterium at distinct sites suggests that there may be a mechanism supplementary to the kinetic isotope effect of deuterium abstraction off the bis-allylic sites that accounts for the protection rendered by deuteration of PUFAs. Paradoxically, PUFAs with partially deuterated bis-allylic positions that retain vulnerable hydrogen atoms (e.g., monodeuterated 11-D1-Lin) protect in a manner similar to that of PUFAs with completely deuterated bis-allylic positions (e.g., 11,11-D2-Lin). Moreover, inclusion of just a fraction of deuterated PUFAs (20–50%) in the total pool of PUFAs preserves mitochondrial respiratory function and confers cell protection. The results indicate that the therapeutic potential of D-PUFAs may derive from the preservation of mitochondrial function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号