首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aims

Biological soil crusts (BSCs), composed of mosses, lichens, liverworts and cyanobacteria, are a key component of arid and semi-arid ecosystems worldwide, and play key roles modulating several aspects of the nitrogen (N) cycle, such as N fixation and mineralization. While the performance of its constituent organisms largely depends on moisture and rainfall conditions, the influence of these environmental factors on N transformations under BSC soils has not been evaluated before.

Methods

The study was done using soils collected from areas devoid of vascular plants with and without lichen-dominated BSCs from a semi-arid Stipa tenacissima grassland. Soil samples were incubated under different temperature (T) and soil water content (SWC) conditions, and changes in microbial biomass-N, dissolved organic nitrogen (DON), amino acids, ammonium, nitrate and both inorganic N were monitored. To evaluate how BSCs modulate the resistance of the soil to changes in T and SWC, we estimated the Orwin and Wardle Resistance index.

Results

The different variables studied were more affected by changes in T than by variations in SWC at both BSC-dominated and bare ground soils. However, under BSCs, a change in the dominance of N processes from a net nitrification to a net ammonification was observed at the highest SWC, regardless of T.

Conclusions

Our results suggest that the N cycle is more resistant to changes in T in BSC-dominated than in bare ground areas. They also indicate that BSCs could play a key role in minimizing the likely impacts of climate change on the dynamics of N in semi-arid environments, given the prevalence and cover of these organisms worldwide.  相似文献   

2.
灌丛与生物土壤结皮镶嵌分布是温带荒漠常见的地表景观之一,二者的发育均显著影响了地表土壤养分的空间分布特征及循环过程。然而,灌丛和生物土壤结皮对荒漠土壤表层养分的影响存在怎样的差异,二者对养分变化的贡献度如何尚不清楚。因此,选择中国北方典型温带荒漠古尔班通古特沙漠为研究区,以荒漠中的优势灌丛膜果麻黄(Ephedra przewalskii)灌丛和生物土壤结皮发育高级阶段的藓类结皮的结皮层及结皮下层土壤为研究对象,采集不同微生境(裸露地、灌丛下)的裸沙与藓类结皮的土壤样品。为探究不同微生境下不同土层碳、氮、磷和钾养分变化特征,测定了不同土层土壤有机碳(SOC)、全氮(TN)、全磷(TP)、全钾(TK)、速效氮(AN)、速效磷(AP)和速效钾(AK)含量。结果表明:(1)相较于裸露地,灌丛显著提高了藓类结皮不同土层有机碳、全氮和全钾的含量和裸沙全磷的含量,降低了灌丛下藓类结皮土壤全磷的含量。(2)对于速效养分而言,与裸沙相比,裸露地藓类结皮覆盖降低了土壤速效氮含量,增加了速效磷和速效钾含量;而灌丛下藓类结皮覆盖提高了土壤速效氮和速效钾的含量,但降低了速效磷的含量。 (3) 相关性分析显示,在0-2 cm土壤中速效磷与速效氮呈现显著负相关,而在2-6 cm速效磷与速效氮呈现显著正相关(P<0.01)。(4)贡献度分析表明,土壤中灌丛效应对养分的贡献(42.54%)要远大于藓类结皮的贡献(2.43%),但二者交互作用却降低了除速效氮以外的其他土壤养分含量。综上,灌丛、藓类结皮覆盖和土层深度变化对土壤碳、氮、磷和钾养分均具有显著影响(P<0.05),但三者间的交互效应对养分的影响不显著(P>0.05)。相对于裸露地,灌丛与藓类结皮的覆盖均对表层土壤碳、氮、磷和钾养分具有促进作用,且随着土层深度的下降,土壤养分含量呈现显著的下降趋势(P<0.05)。因此,在荒漠生态系统中耐旱灌丛与生物土壤结皮这两个最重要的斑块单元联合调控了微尺度土壤养分的空间异质性变化。  相似文献   

3.
Potassium nutrition of crops under varied regimes of nitrogen supply   总被引:9,自引:0,他引:9  
Biological soil crusts (BSCs) greatly influence the N cycle of semi-arid ecosystems, as some organisms forming them are able to fix atmospheric N. However, BSCs are not always taken into account when studying biotic controls on N cycling and transformations. Our main objective was to understand how BSCs modulate the availability of N in a semi-arid Mediterranean ecosystem dominated by the tussock grass Stipa tenacissima. We selected the six most frequent soil cover types in the study area: S. tenacissima tussocks (ST), Retama sphaerocarpa shrubs (RS), and open areas with very low (BS), low (LC) medium (MC) and high (HC) cover of well developed and lichen-dominated BSCs. The temporal dynamics of available N dynamics followed changes in soil moisture. Available NH 4 + -N did not differ between microsites, while available NO 3 - -N was substantially higher in the RS than in any other microsite. No significant differences in the amount of available NO 3 - -N were found between ST and BS microsites, but these microsites had more NO 3 - -N than those dominated by BSCs (LC, MC and HC). Our results suggest that BSCs may be inhibiting nitrification, and highlight the importance of this biotic community as a modulator of the availability of N in semi-arid ecosystems.  相似文献   

4.

Aims

Changes in temperature and precipitation are expected to influence ecosystem processes worldwide. Despite their globally large extent, few studies to date have examined the effects of climate change in desert ecosystems, where biological soil crusts are key nutrient cycling components. The goal of this work was to assess how increased temperature and frequency of summertime precipitation affect the contributions of crust organisms to soil processes.

Methods

With a combination of experimental 2°C warming and altered summer precipitation frequency applied over 2?years, we measured soil nutrient cycling and the structure and function of crust communities.

Results

We saw no change in crust cover, composition, or other measures of crust function in response to 2°C warming and no effects on any measure of soil chemistry. In contrast, crust cover and function responded to increased frequency of summer precipitation, shifting from moss to cyanobacteria-dominated crusts; however, in the short timeframe we measured, there was no accompanying change in soil chemistry. Total bacterial and fungal biomass was also reduced in watered plots, while the activity of two enzymes increased, indicating a functional change in the microbial community.

Conclusions

Taken together, our results highlight the limited effects of warming alone on biological soil crust communities and soil chemistry, but demonstrate the substantially larger effects of altered summertime precipitation.  相似文献   

5.
黄土丘陵区生物土壤结皮表面糙度特征及影响因素   总被引:1,自引:0,他引:1  
地表糙度是影响地表径流和侵蚀过程的重要属性.生物结皮在干旱半干旱区广泛分布,是地表糙度的影响因子之一.本文采用链条法测定了黄土丘陵区不同发育阶段生物结皮表面糙度特征,分析了不同发育阶段生物结皮表面糙度对坡向、土壤含水量和冻融作用的响应及其与各理化性质的相关性,初步探索了生物结皮对地表糙度的影响及其相关因素.结果表明: 生物结皮显著改变地表糙度,随着生物结皮从藻结皮向藓结皮演替,其糙度先降低后增加,生物结皮发育形成10年以后,其表面糙度基本趋于稳定;研究区早期形成的藻结皮表面糙度较裸土降低47.0%,深色藻结皮(藓类盖度<20%)较裸土降低20.4%,混生结皮(藓类盖度为20%~60%)和苔藓结皮(藓类盖度>70%)表面糙度与深色藻结皮基本一致;坡向对发育10年以上的生物结皮表面糙度的影响不显著;土壤含水量影响地表糙度特征.研究区浅色藻结皮表面糙度随水分变化较为剧烈;随着生物结皮发育,深色藻结皮、混生结皮和苔藓结皮表面糙度随水分的变化趋于平缓.冻融增加了生物结皮表面糙度.浅色藻结皮经两次冻融后表面糙度增加29.7%;深色藻结皮、混生结皮和藓结皮表面糙度的影响需经过反复冻融才有所体现.生物结皮表面糙度与藓结皮盖度呈显著正相关(P<0.1).  相似文献   

6.
生物土壤结皮对荒漠土壤线虫群落的影响   总被引:1,自引:0,他引:1  
刘艳梅  李新荣  赵昕  张鹏  回嵘 《生态学报》2013,33(9):2816-2824
在干旱的沙漠生态系统中,生物土壤结皮对于沙丘的固定和土壤生物的维持起着相当重要的作用.土壤线虫能敏感的指示土壤的恢复程度,是衡量沙区生态恢复与健康的重要生物学属性,而目前关于生物土壤结皮与土壤线虫的关系研究很少.为探明生物土壤结皮对土壤线虫的影响,以腾格里沙漠东南缘的人工植被固沙区藻结皮和藓类结皮覆盖的沙丘土壤为研究对象,根据固沙年限的不同将样地分为4个不同的区进行采样(1956、1964、1981和1991年固沙区),以流沙区作为对照;同时,在不同季度(4、7、9和12月)分别采集腾格里沙漠东南缘的人工植被固沙区藻结皮和藓类结皮覆盖下不同土层(0-10、10-20和20-30 cm)的沙丘土壤,以沙坡头地区的红卫天然植被区为对照,分析生物土壤结皮下土壤线虫的时空变化.采用改良的Baermann漏斗法进行分离线虫,用光学显微镜鉴定并统计.研究表明:1956、1964、1981和1991年人工植被固沙区的藻结皮和藓类结皮均可显著提高其下土壤线虫多度、属的丰富度、Shannon-Weaver多样性指数、富集指数和结构指数(P<0.05),这可能是因为生物土壤结皮的存在为土壤线虫提供了重要的食物来源和适宜的生存环境;固沙年限与结皮下土壤线虫多度、属的丰富度、Shannon-Weaver多样性指数、富集指数和结构指数存在显著的正相关关系(P<0.05),这说明固沙年限越久,越有利于土壤线虫的生存和繁衍;结皮类型显著影响土壤线虫群落,相对于藻结皮而言,藓类结皮下土壤线虫多度与属的丰富度更高(P<0.05),这说明演替后期的藓类结皮比演替早期的藻结皮更有利于土壤线虫的生存和繁衍.此外,藻结皮和藓类结皮均可显著增加其下0-10、10-20和20-30 cm土层线虫多度和属的丰富度(P<0.05),但随着土壤深度的增加,这种影响逐渐减弱,表明生物土壤结皮更有利于表层土壤线虫的生存;而且,随着季节的变化,藻结皮和藓类结皮下土壤线虫多度基本表现为秋季>夏季>春季>冬季,这些反映了生物土壤结皮的生物量、盖度和种类组成随着季节变化而变化.因此,腾格里沙漠东南缘的人工植被固沙区生物土壤结皮的存在与演替有利于土壤线虫的生存和繁衍,增加了线虫数量、种类和多样性,这指示了生物土壤结皮有利于该区土壤及其相应生态系统的恢复.  相似文献   

7.
Biological soil crusts (BSCs) are an important source of organic carbon, and affect a range of ecosystem functions in arid and semiarid environments. Yet the impact of grazing disturbance on crust properties and soil CO2 efflux remain poorly studied, particularly in African ecosystems. The effects of burial under wind-blown sand, disaggregation and removal of BSCs on seasonal variations in soil CO2 efflux, soil organic carbon, chlorophyll a and scytonemin were investigated at two sites in the Kalahari of southern Botswana. Field experiments were employed to isolate CO2 efflux originating from BSCs in order to estimate the C exchange within the crust. Organic carbon was not evenly distributed through the soil profile but concentrated in the BSC. Soil CO2 efflux was higher in Kalahari Sand than in calcrete soils, but rates varied significantly with seasonal changes in moisture and temperature. BSCs at both sites were a small net sink of C to the soil. Soil CO2 efflux was significantly higher in sand soils where the BSC was removed, and on calcrete where the BSC was buried under sand. The BSC removal and burial under sand also significantly reduced chlorophyll a, organic carbon and scytonemin. Disaggregation of the soil crust, however, led to increases in chlorophyll a and organic carbon. The data confirm the importance of BSCs for C cycling in drylands and indicate intensive grazing, which destroys BSCs through trampling and burial, will adversely affect C sequestration and storage. Managed grazing, where soil surfaces are only lightly disturbed, would help maintain a positive carbon balance in African drylands.  相似文献   

8.

Background

Soil response and rehabilitation after wildfires are affected by natural environmental factors such as seasonality, and other time-dependent changes, such as vegetation recovery (e.g., % soil cover). These changes affect soil microbial-community activity. During summer 2006, almost 1,200 hectares (ha) of coniferous forest in northern Israel, including Byria Forest, burned.

Methods

Soil samples were collected seasonally from severely burned and unburned areas, on a time scale of 7?days to 4?years after wildfire. Chemical and microbial parameters of the forest soil system were examined.

Results

Results obtained show that increase in total soluble nitrogen (TSN) in burned areas may limit microbial activity during the first year after wildfire. Two years after wildfire, soil TSN levels in burned areas decreased to unburned levels after plant growth, allowing the microbial community to proliferate.

Conclusions

Wildfire had a significant impact on TSN, soil moisture (SM), and microbial nitrogen (MBN) compared to seasonality. These parameters are recommended for monitoring post-fire soil state. The direct effect of wildfire on soil constituents at the study site was stronger during the first 2–4?years. Indirect changes due to vegetation cover could have a longer effect on burned soil systems and should be further examined.  相似文献   

9.

Aims

A commonly accepted challenge when visualising plant roots in X-ray micro Computed Tomography (μCT) images is the similar X-ray attenuation of plant roots and soil phases. Soil moisture content remains a recognised, yet currently uncharacterised source of segmentation error. This work sought to quantify the effect of soil moisture content on the ability to segment roots from soil in μCT images.

Methods

Rice (Oryza sativa) plants grown in contrasting soils (loamy sand and clay loam) were μCT scanned daily for nine days whilst drying from saturation. Root volumes were segmented from μCT images and compared with volumes derived by root washing.

Results

At saturation the overlapping attenuation values of root material, water-filled soil pores and soil organic matter significantly hindered segmentation. However, in dry soil (ca. six days of drying post-saturation) the air-filled pores increased image noise adjacent to roots and impeded accurate visualisation of root material. The root volume was most accurately segmented at field capacity.

Conclusions

Root volumes can be accurately segmented from μCT images of undisturbed soil without compromising the growth requirements of the plant providing soil moisture content is kept at field capacity. We propose all future studies in this area should consider the error associated with scanning at different soil moisture contents.  相似文献   

10.

Background and aims

In Mediterranean steppes, Stipa tenacissima tussocks facilitate the establishment of vascular plants. We hypothesized that this effect may partially reflect the indirect interaction between Stipa tenacissima, biological soil crusts (BSC), and seeds.

Methods

We explored the relationship between BSC composition and soil surface conditions (surface roughness and hydrophobicity by using the water drop penetration time test), and seed germination and seedling rooting in a S. tenacissima steppe in southeastern Spain. We explored the causal factors of seed germination at two spatial scales and used SADIE index to represents the soil surface heterogeneity.

Results

Microsites strongly differed in BSC composition and soil surface conditions. Germination of two key species, Pistacia lentiscus and Brachypodium retusum, was not affected by BSC type. In contrast, rooting was lower on soil from open areas covered by BSC than on soil from open areas dominated by bare soil and soil collected under the tussocks. The effect was similar in both species. Lichens were probably responsible for the decrease in rooting.

Conclusions

Our results suggest that lichen cover and the cover of bare soil and mosses may hamper and facilitate rooting, respectively. By affecting seedling rooting, BSC may contribute to the facilitative effect of Stipa tenacissima.  相似文献   

11.

Background and aims

Through recruitment, plants establish in novel environments. Recruitment also is the stage where plants undergo the highest mortality. We investigate the recruitment niche for Microstegium vimineum, an annual grass from East Asia spreading throughout eastern North American forests.

Methods

Current observational and greenhouse research indicates that M. vimineum recruitment may be inhibited by leaf litter and promoted by soil moisture; we use field studies to experimentally test how these factors influence M. vimineum germination, seedling survival and reproduction. Specifically, we introduce M. vimineum seeds into forest microhabitats with experimentally varied levels of soil moisture and leaf litter.

Results

Soil moisture increases M. vimineum germination regardless of leaf litter thickness and ameliorates seedling mortality in deep leaf litter. Seed production per m2 increases with watering, reflecting higher germination and survival, whereas per capita seed production increases with leaf litter thickness, reflecting density-dependent limits on seed production.

Conclusions

The interactive effects of varied levels of soil moisture and leaf litter thickness on key M. vimineum life history stages highlight the need to consider multiple drivers, such as rainfall and local forest disturbance, when assessing how soil properties influence the establishment of invasive plants.  相似文献   

12.

Background and Aims

Mediterranean forests are vulnerable to numerous threats including wildfires due to a combination of climatic factors and increased urbanization. In addition, increased temperatures and summer drought lead to increased risk of forest fires as a result of climate change. This may have important consequences for C dynamics and balance in these ecosystems. Soil respiration was measured over 2 successive years in Holm oak (Quercus ilex subsp. ballota; Qi); Pyrenean Oak (Quercus pyrenaica Willd; Qp); and Scots pine (Pinus sylvestris L.; Ps) forest stands located in the area surrounding Madrid (Spain), to assess the long term effects of wildfires on C efflux from the soil, soil properties, and the role of soil temperature and soil moisture in the variation of soil respiration.

Methods

Soil respiration, soil temperature, soil moisture, fine root mass, microbial biomass, biological and chemical soil parameters were compared between non burned (NB) and burned sites (B).

Results

The annual C losses through soil respiration from NB sites in Qi, Qp and Ps were 790, 1010, 1380 gCm?2?yr?1, respectively, with the B sites emitting 43 %, 22 % and 11 % less in Qi, Qp and Ps respectively. Soil microclimate changed with higher soil temperature and lower soil moisture in B sites after fire. Exchangeable cations and the pH also decreased. The total SOC stocks were not significantly altered, but 6–8 years after wildfires, there was still measurably lower fine root and microbial biomass, while SOC quality changed, indicated by lower the C/N ratio and the labile carbon and a relative increase in refractory SOC forms, which resulted in lower Q10 values.

Conclusions

We found long term effects of wildfires on the physical, chemical and biological soil characteristics, which in turn affected soil respiration. The response of soil respiration to temperature was controlled by moisture and changed with ecosystem type, season, and between B and NB sites. Lower post-burn Q10 integrated the loss of roots and microbial biomass, change in SOC quality and a decrease in soil moisture.  相似文献   

13.
腾格里沙漠东南缘生物土壤结皮的固氮潜力   总被引:2,自引:0,他引:2  
以腾格里沙漠东南缘广泛分布的3类典型生物土壤结皮(藻类结皮、地衣结皮和藓类结皮)为研究对象,在野外环境下连续一年(2010年6月至2011年5月)测定了不同类型结皮的固氮潜力、季节变化,及其对环境因子的响应特征.结果表明:整个试验期间,藻类、地衣和藓类结皮的固氮活性分别为14~133、20~101和4~28 mol·m-2·h-1,差异显著,这种差异主要是由结皮种类组成的差异所致.3类结皮固氮活性对环境因子的响应特征基本一致.3类结皮固氮活性与降水量关系不显著,但与试验前3天小于3 mm的降水量均呈显著的正相关关系,说明该地区3类结皮在3 mm降水条件下即可达到最大固氮速率.3类结皮固氮活性与试验期温度均呈显著的二次函数关系,随气温升高均呈先上升后下降的趋势,藻类和地衣结皮的固氮活性在超过30 ℃后即迅速下降,而藓类结皮的固氮活性在超过25 ℃后即开始下降,说明不同类型结皮具有不同的固氮适宜温度区间.3类结皮固氮活性的季节变化均表现为秋季>春季>夏季>冬季,夏季高温和冬季低温抑制了结皮固氮酶活性,而春末秋初适宜的水热条件促进了其固氮活性的提高,结皮固氮活性的季节变化主要受水热因子的共同调控.温带荒漠区生物土壤结皮在湿润条件下全年均具有固氮能力,环境因子对其氮固定的控制作用层次分明,水分是影响其固氮速率和持续时间的关键因子,在水分和碳源充足的条件下,温度则是制约其固氮能力的主要因子.  相似文献   

14.
生物土壤结皮在干旱区氮素地球化学循环中具有重要作用,研究不同生物土壤结皮下不同形态氮素含量的变化,解析生物土壤结皮对土壤养分影响过程和范围,有助于进一步理解生物土壤结皮的生态功能。本研究以古尔班通古特沙漠藻-地衣混生结皮和藓类结皮两种生物土壤结皮为研究对象,以裸沙为对照,测定生物土壤结皮层和0—100 cm内8个土层全氮、无机氮、可溶性有机氮、游离态氨基酸氮、微生物生物量氮等氮库含量,和土壤脲酶、硝酸盐还原态酶、亮氨酸氨基肽酶等土壤胞外酶活性。结果表明:1)结皮层各形态氮素含量和各土壤酶活性显著高于其下层土壤,结皮层和结皮下各层土壤氮库整体上表现为藓类结皮>藻-地衣混生结皮>裸沙;土壤氮库各形态氮素含量和土壤酶活性在垂直分布上均呈现先显著下降(0—20 cm)后稳定(20—100 cm)的趋势;在20—30 cm土层,除裸沙的无机氮、铵态氮以及藻-地衣混生结皮的硝态氮外,其余速效氮(无机氮、硝态氮、铵态氮)含量具有增加的特点。2)土壤各氮库含量与全磷、有机碳、电导率、土壤脲酶和亮氨酸氨基肽酶活性呈正相关,与pH、土壤含水率呈负相关。3)利用氮循环相关指标建立土壤氮循环多功能...  相似文献   

15.

Aims

To assess the effects of atmospheric N deposition on the C budget of an alpine meadow ecosystem on the Qinghai–Tibetan Plateau, it is necessary to explore the responses of soil-atmosphere carbon dioxide (CO2) exchange to N addition.

Methods

Based on a multi-form, low-level N addition experiment, soil CO2 effluxes were monitored weekly using the static chamber and gas chromatograph technique. Soil variables and aboveground biomass were measured monthly to examine the key driving factors of soil CO2 efflux.

Results

The results showed that low-level N input tended to decrease soil moisture, whereas medium-level N input maintained soil moisture. Three-year N additions slightly increased soil inorganic N pools, especially the soil NH 4 + -N pool. N applications significantly increased aboveground biomass and soil CO2 efflux; moreover, this effect was more significant from NH 4 + -N than from NO 3 ? -N fertilizer. In addition, the soil CO2 efflux was mainly driven by soil temperature, followed by aboveground biomass and NH 4 + -N pool.

Conclusions

These results suggest that chronic atmospheric N deposition will stimulate soil CO2 efflux in the alpine meadow on the Qinghai–Tibetan Plateau by increasing available N content and promoting plant growth.  相似文献   

16.

Background and Aims

Global change will likely express itself in southwestern United States arid lands through changes in amounts and timing of precipitation in response to elevated CO2 concentrations. In addition, increased nitrogen (N) deposition may occur due to increased urban development. This study addressed the effects of water and N availability on C allocation in arid land soil-plant systems.

Methods

Columns filled with Mojave Desert topsoil containing Larrea tridentata seedlings with two treatment levels each of N and soil moisture were labeled by exposure to 13C-enriched CO2.

Results

Increased soil moisture increased plant biomass, total 13C uptake, 13C levels in leaves, soil organic matter, and soil respiration, decreased relative C allocation to stems but increased allocation to soil organic matter. Increased soil N availability increased N uptake but decreased C allocation to soil respiration presumably due to decreased substrate supply for microbes. There was no detectable label in carbonate C, suggesting that this pool does not significantly contribute to ecosystem C fluxes.

Conclusions

Our study indicates that increased water availability causes increased C uptake with increased C allocation to soil organic matter in Larrea tridentata-dominated communities while increased N deposition will have a minimal impact on C sequestration.  相似文献   

17.

Background and Aims

Seed bank persistence plays a highly relevant role for population dynamics. The impact of interacting environmental factors on seed longevity has only scarcely been investigated. We aimed to analyse the effects of varied soil substrate type and moisture on soil seed survival.

Methods

Seeds of three Rumex species native to different habitats were buried in pots placed in open-air basins. The factors substrate (sand, loam, mud), water table depth (WTD; high, intermediate, low), time, and their interactions were investigated. Viability was tested after 6, 12, and 18 months.

Results

Seeds of R. acetosella (dry habitat) were short-term persistent with highest survival in low WTD on sand. Survival in R. acetosa (moist habitat) was very strongly reduced after 6 months with highest survival under wet conditions. R. maritimus (wet habitat) had overall long-term seed survival, where ‘substrate type’ had the strongest impact. Significant interactions of ‘substrate type’ and WTD were detected.

Conclusions

Seed bank longevity is not a fixed species trait, but varies with environmental factors. Soil moisture, substrate type and their interactions have different effects on the studied species. Persistence-classifications ought to consider the impact of environmental factors.  相似文献   

18.

Aims

The importance of soil properties as determinants of tree vitality and Phytophthora cinnamomi root infections was analysed.

Methods

The study comprised 96 declining stands in western Spain, where declining and non-declining holm oak (Quercus ilex L.) trees were sampled. Soil properties (soil depth, Ah horizon thickness, texture, pH, redox potential, soil bulk density and N-NH4 + and N-NO3 ? concentrations) and P. cinnamomi infections were assessed.

Results

Tree mortality rates increased with low soil bulk densities, which were also associated with more P. cinnamomi-infected trees. Occurrence of infected trees was higher in fine textured soils and in thick Ah horizons. Fine textured soils favoured trees, but with the presence of P. cinnamomi their health status deteriorated. Soil under declining trees had higher N-NO3 ?/N-NH4 + ratio values than under non-declining trees. Additional soil properties changes associated to grazing were not related to decline and P. cinnamomi infections.

Conclusions

The implications of P. cinnamomi in holm oak decline and the influence of soil properties as contributors to pathogen activity were demonstrated. Fine soil textures and thick Ah horizons, usually favourable for vigour and vitality of trees growing in the Mediterranean climate, were shown to be disadvantageous soil properties if P. cinnamomi was present. Fine soil textures and thick Ah horizons are frequently related with higher levels of soil moisture, which increase the inoculum of the pathogen and favours root infection. Grazing does not seem to be directly linked to Q. ilex health status or P. cinnamomi root rot.  相似文献   

19.

Background and aims

The warming of the planet in recent decades has caused rapid, widespread permafrost degradation on the Qinghai–Tibet Plateau. These changes may significantly affect soil moisture content and nutrient supply, thereby affecting ecosystem structure and function. This study aimed to describe the dynamic changes in thaw depth, assess the relationship between thaw depth and soil moisture content, and analyze the changes in species composition and water-use efficiency in response to permafrost degradation.

Methods

We surveyed species composition, thaw depth, ground temperature, soil moisture, nutrient content, and foliar stable carbon isotope compositions to gain insights into the response of alpine grassland ecosystems to permafrost degradation on the Qinghai-Tibet Plateau.

Results

Moisture content of the surface layer decreased with increasing thaw depth. The correlation between thaw depth and surface soil moisture content was strongest in June and decreased in July and August. The strongest correlation occurred at a depth of 20 cm to 30 cm. The dominant species shifted from Cyperaceae in alpine meadow to mesoxerophytes in alpine steppe before finally shifting to xerophytes in alpine desert steppe. Thaw depth correlation was significantly negative with organic C content (r?=??0.49, P?<?0.05) and with total N content (r?=??0.62, P?<?0.01). The leaf δ13C of Carex moorcroftii increased with increasing thaw depth and followed a linear relationship (R 2?=?0.85, P?=?0.008).

Conclusions

Permafrost degradation decreases surface soil moisture and soil nutrient supply capacity. Increasing permafrost degradation decreases the number of plant families and species, with hygrophytes and mesophytes gradually replaced by mesoxerophytes and xerophytes. The water-use efficiency of plants improved in response to increasing water stress as surface layers dried during permafrost degradation. Permafrost on the Qinghai–Tibetan Plateau is expected to further degrade as global warming worsens. Therefore, more attention should be dedicated to the response of alpine ecosystems during permafrost degradation.  相似文献   

20.

Background

Extracellular polymeric matrix (EPM) is a complex component of the organo-mineral assemblages created by biological soil crusts (BSCs). Mainly of polysaccharidic origin, it embeds soil and sediments and provides key benefits to the crust community. Services provided include: sediment cohesion and resistance to erosion, moisture provision, protection from external harmful factors, as well as support to plant establishment and growth. EPM is the product of BSC microbial community, and it is constituted by exopolysaccharides (EPS) associated to other substances, organized in a three-dimensional structure having different levels of gelation, and degrees of condensation.

Scope

This review aims at focusing scientific attention, for the first time, on the characteristics and the roles of three operationally defined EPM fractions, one water soluble, one more adherent to cells and sediments, and one firmly attached to microbial cells. The latest results obtained by analyzing EPM of natural and induced (i.e, the result of cyanobacteria inoculation) BSCs are outlined, and the optimized extraction methodology is described in details.

Conclusions

The review underlines the complexity of investigating the characteristics and the role of microbial EPS, and its supra-structure (EPM), in natural conditions (as opposed to cultures in laboratory conditions), where the matrix is subjected to continuous microbial rearrangement due to biosynthetic, self- and cross-feeding processes, and where microbial activity affected by environmental parameters.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号