首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Several kynurenine analogues were synthesized and tested as inhibitors of the enzymes kynurenine hydroxylase and/or kynureninase with the aim of identifying new compounds able to inhibit the synthesis of quinolinic acid (an endogenous excitotoxin) and to increase that of kynurenic acid, an endogenous antagonist of ionotropic glutamate receptors. Among these analogues, we selected m -nitrobenzoylalanine (mNBA) as an inhibitor of kynurenine hydroxylase and o -methoxybenzoylalanine (oMBA) as an inhibitor of kynureninase. When administered to rats, mNBA was more potent than oMBA in increasing the content of kynurenine and of kynurenic acid in the brain, blood, liver, and kidney. This confirms that hydroxylation is the main pathway of kynurenine metabolism. Both mNBA and oMBA (50–400 mg/kg i.p.) increased the concentration of kynurenate in hippocampal extracellular spaces (as measured with a microdialysis technique) and, when simultaneously injected, their effects were additive. This biochemical effect was associated with a decrease in locomotor activity in rats and with a protection of audiogenic convulsions in DBA/2 mice. In conclusion, the results of the present experiments indicate the possibility of increasing the neosynthesis of kynurenic acid by inhibiting the enzymes that metabolize kynurenine to 3-hydroxykynurenine or to anthranilic acid. The increased synthesis of kynurenate is associated with behavioral effects such as sedation and protection from seizures, which suggests a functional antagonism of the excitatory amino acid receptors.  相似文献   

2.
Abstract: The incorporation of tritium label into quinolinic acid (QUIN), kynurenic acid (KYNA), and other kynurenine (KYN) pathway metabolites was studied in normal and QUIN-lesioned rat striata after a focal injection of [5-3H]KYN in vivo. The time course of metabolite accumulation was examined 15 min to 4 h after injection of [5-3H]KYN, and the concentration dependence of KYN metabolism was studied in rats killed 2 h after injection of 1.5–1,500 µ M [5-3H]KYN. Labeled QUIN, KYNA, 3-hydroxykynurenine (3-HK), 3-hydroxyanthranilic acid, and xanthurenic acid (XA) were recovered from the striatum in every experiment. Following injection of 15 µ M [5-3H]KYN, a lesion-induced increase in KYN metabolism was noted. Thus, the proportional recoveries of [3H]KYNA (5.0 vs. 1.8%), [3H]3-HK (20.9 vs. 4.5%), [3H]XA (1.5 vs. 0.4%), and [3H]QUIN (3.6 vs. 0.6%) were markedly elevated in the lesioned striatum. Increases in KYN metabolism in lesioned tissue were evident at all time points and KYN concentrations used. Lesion-induced increases of the activities of kynurenine-3-hydroxylase (3.6-fold), kynureninase (7.6-fold), kynurenine aminotransferase (1.8-fold), and 3-hydroxyanthranilic acid oxygenase (4.2-fold) likely contributed to the enhanced flux through the pathway in the lesioned striatum. These data provide evidence for the existence of a functional KYN pathway in the normal rat brain and for a substantial increase in flux after neuronal ablation. This method should be of value for in vivo studies of cerebral KYN pathway function and dysfunction.  相似文献   

3.
Recent evidence suggests that there may be overactivation of the N-methyl-D-aspartate (NMDA) subtype of excitatory amino acid receptors in Huntington's disease (HD). Tryptophan metabolism by the kynurenine pathway produces both quinolinic acid, an NMDA receptor agonist, and kynurenic acid, an NMDA receptor antagonist. In the present study, multiple components of the tyrosine and tryptophan metabolic pathways were quantified in postmortem putamen of 35 control and 30 HD patients, using HPLC with 16-sensor electrochemical detection. Consistent with previous reports in HD putamen, there were significant increases in 5-hydroxyindoleacetic acid, 5-hydroxytryptophan, and serotonin concentrations. Within the kynurenine pathway, the ratio of kynurenine to kynurenic acid was significantly (p less than 0.01) increased twofold in HD patients as compared with controls, consistent with reduced formation of kynurenic acid in HD. CSF concentrations of kynurenic acid were significantly reduced in HD patients as compared with controls and patients with other neurologic diseases. Because kynurenic acid is an endogenous inhibitor of excitatory neurotransmission and can block excitotoxic degeneration in vivo, a relative deficiency of this compound could directly contribute to neuronal degeneration in HD.  相似文献   

4.
It has been suggested (Ueda, T., Otsuka, H. and Goda, K. (1978) J. Biochem. 84, 687–696) that direct cleavage of kynurenine, catalysed by kynureninase, followed by microsomal hydroxylation of the resultant anthranilic acid, may provide an alternative to the established pathway of kynurenine metabolism that involves direct hydroxylation followed by cleavage to 3-hydroxyanthranilic acid. To test this suggestion, anthranilic acid was administered to rats; there was no increase in either the concentration of nicotinamide nucleotides in the liver or the urinary excretion of N1-methyl nicotinamide. However, injection of either kynurenine or 3-hydroxyanthranilic acid did increase the concentration of nicotinamide nucleotides in the liver. The kinetics of kynurenine hydroxylase (Km = 1.8±0.6·10?5 mol/l) and kynureninase (Km = 2.5±0.8·10?4 mol/l, liver steady-state kynurenine = 4.9±0.9 μmol/kg) are such that the preferred route of kynurenine metabolism is probably by way of hydroxylation rather than cleavage.  相似文献   

5.
Abstract: Delayed increases in the levels of an endogenous N-methyl-D-aspartate receptor agonist, quinolinic acid (QUIN), have been demonstrated following transient ischemia in the gerbil and were postulated to be secondary to induction of indoleamine-2,3-dioxygenase (IDO) and other enzymes of the L-tryptophan-kynurenine pathway. In the present study, proportional increases in IDO activity and QUIN concentrations were found 4 days after 10 min of cerebral ischemia, with both responses in hippocampus > striatum > cerebral cortex > thalamus. These increases paralleled the severity of local brain injury and inflammation. IDO activity and QUIN concentrations were unchanged in the cerebellum of postischemic gerbils, which is consistent with the preservation of blood flow and resultant absence of pathology in this region. Blood QUIN and L-kynurenine concentrations were not affected by ischemia. Brain tissue QUIN levels at 4 days postischemia exceeded blood concentrations, minimizing a role for breakdown of the blood–brain barrier. Marked increases in the activity of kynureninase, kynurenine 3-hydroxylase, and 3-hydroxyanthranilate-3,4-dioxygenase were also detected in hippocampus but not in cerebellum on day 4 of recirculation. In vivo synthesis of [13C6]QUIN was demonstrated, using mass spectrometry, in hippocampus but not in cerebellum of 4-day postischemic animals 1 h after intracisternal administration of L-[13C6]tryptophan. However, accumulation of QUIN was demonstrated in both cerebellum and hippocampus of control gerbils following an intracisternal injection of 3-hydroxyanthranilic acid, which verifies the availability of precursor to both regions when administered intracisternally. Notably, although IDO activity and QUIN concentrations were unchanged in the cerebellum of ischemic gerbils, both IDO activity and QUIN content were increased in cerebellum to approximately the same degree as in hippocampus, striatum, cerebral cortex, and thalamus 24 h after immune stimulation by systemic pokeweed mitogen administration, demonstrating that the cerebellum can increase IDO activity and QUIN content in response to immune activation. No changes in kynurenic acid concentrations in either hippocampus, cerebellum, or cerebrospinal fluid were observed in the postischemic gerbils compared with controls, in accordance with the unaffected activity of kynurenine aminotransferase activity. Collectively, these results support roles for IDO, kynureninase, kynurenine 3-hydroxylase, and 3-hydroxyanthranilate-3,4-dioxygenase in accelerating the conversion of L-tryptophan and other substrates to QUIN in damaged brain regions following transient cerebral ischemia. Immunocytochemical results demonstrated the presence of macrophage infiltrates in hippocampus and other brain regions that parallel the extent of these biochemical changes. We hypothesize that increased kynurenine pathway metabolism after ischemia reflects the presence of macrophages and other reactive cell populations at sites of brain injury.  相似文献   

6.
To evaluate the potential contribution of circulating kynurenines to brain kynurenine pools, the rates of cerebral uptake and mechanisms of blood-brain barrier transport were determined for several kynurenine metabolites of tryptophan, including L-kynurenine (L-KYN), 3-hydroxykynurenine (3-HKYN), 3-hydroxyanthranilic acid (3-HANA), anthranilic acid (ANA), kynurenic acid (KYNA), and quinolinic acid (QUIN), in pentobarbital-anesthetized rats using an in situ brain perfusion technique. L-KYN was found to be taken up into brain at a significant rate [permeability-surface area product (PA) = 2-3 x 10(-3) ml/s/g] by the large neutral amino acid carrier (L-system) of the blood-brain barrier. Best-fit estimates of the Vmax and Km of saturable L-KYN transfer equalled 4.5 x 10(-4) mumol/s/g and 0.16 mumol/ml, respectively. The same carrier may also mediate the brain uptake of 3-HKYN as D,L-3-HKYN competitively inhibited the brain transfer of the large neutral amino acid L-leucine. For the other metabolites, uptake appeared mediated by passive diffusion. This occurred at a significant rate for ANA (PA, 0.7-1.6 x 10(-3) ml/s/g), and at far lower rates (PA, 2-7 x 10(-5) ml/s/g) for 3-HANA, KYNA, and QUIN. Transfer for KYNA, 3-HANA, and ANA also appeared to be limited by plasma protein binding. The results demonstrate the saturable transfer of L-KYN across the blood-brain barrier and suggest that circulating L-KYN, 3-HKYN, and ANA may each contribute significantly to respective cerebral pools. In contrast, QUIN, KYNA, and 3-HANA cross the blood-brain barrier poorly, and therefore are not expected to contribute significantly to brain pools under normal conditions.  相似文献   

7.
Inhibition of kynurenine 3-hydroxylase suppresses quinolinic acid synthesis and, therefore, shunts all kynurenine metabolism toward kynurenic acid (KYNA) formation. This may be a pertinent antiexcitotoxic strategy because quinolinic acid is an agonist of NMDA receptors, whereas kynurenic acid antagonises all ionotropic glutamate receptors with preferential affinity for the NMDA receptor glycine site. We have examined whether the kynurenine 3-hydroxylase inhibitor Ro 61-8048 increases extracellular (KYNA) sufficiently to control excessive NMDA receptor function. Microdialysis probes incorporating an electrode were implanted into the striatum of anaesthetised rats, repeated NMDA stimuli were applied through the probe, and the resulting depolarisation was recorded. Changes in extracellular KYNA were assessed by HPLC analysis of consecutive dialysate samples. Ro 61-8048 (42 or 100 mg/kg) markedly increased the dialysate levels of KYNA. The maximum increase (from 3.0 +/- 1.0 to 31.0 +/- 6.0 nM; means +/- SEM, n = 6) was observed 4 h after administration of 100 mg/kg Ro 61-8048, but the magnitude of the NMDA-induced depolarisations was not reduced. A separate study suggested that extracellular KYNA would need to be increased further by two orders of magnitude to become effective in this preparation. These results challenge the notion that kynurenine 3-hydroxylase inhibition may be neuroprotective, primarily through accumulation of KYNA and subsequent attenuation of NMDA receptor function.  相似文献   

8.
9.
The use of o-methoxybenzoylalanine, a selective kynureninase inhibitor, has been proposed with the aim of reducing brain synthesis of quinolinic acid, an excitotoxic tryptophan metabolite. In liver homogenates, however, this compound caused unexpected accumulation of 3-hydroxyanthranilic acid, the product of kynureninase activity and the precursor of quinolinic acid. To explain this observation, we investigated the interaction(s) of o-methoxybenzoylalanine with 3-hydroxyanthranilic acid dioxygenase, the enzyme responsible for quinolinic acid formation. When the purified enzyme or partially purified cytosol preparations were used, o-methoxybenzoylalanine did not affect 3-hydroxyanthranilic acid dioxygenase activity. However, a significant reduction of this enzymatic activity did occur when o-methoxybenzoylalanine was tested in the presence of mitochondria. It is interesting that addition of purified mitochondria to 3-hydroxyanthranilic acid dioxygenase preparations reduced the enzymatic activity and the synthesis of quinolinic acid. In vivo, administration of o-methoxybenzoylalanine significantly reduced quinolinic acid synthesis and content in both blood and brain of mice. Our results suggest that mitochondrial protein(s) interact(s) with soluble 3-hydroxyanthranilic acid dioxygenase and cause(s) modifications in the enzyme resulting in a decrease in its activity. These modifications also allow the enzyme to interact with o-methoxybenzoylalanine, thus leading to a further reduction in quinolinic acid synthesis.  相似文献   

10.
The production of the neuroinhibitory and neuroprotective metabolite kynurenic acid (KYNA) was investigated in rat brain by examining its biosynthetic enzyme, kynurenine aminotransferase (KAT). By using physiological (low micromolar) concentrations of the substrate L-kynurenine (KYN) and by determining the irreversible conversion of [3H]KYN to [3H]KYNA as a measure of KAT activity, a novel, simple, and sensitive assay was developed which permitted the detailed characterization of the enzyme. Only a single protein, which under routine assay conditions showed approximately equal activity with 2-oxoglutarate and pyruvate as the aminoacceptor, was found in rat brain. The enzyme was distributed heterogeneously between the nine brain regions studied, with the KAT-rich olfactory bulb displaying approximately five times higher activity than the cerebellum, the area with lowest KAT activity. In subcellular fractionation studies, the majority of KAT was recovered in mitochondria. In contrast to many known aminotransferases, partially purified KAT was shown to be highly substrate-specific. Thus, of the amino acids tested, only alpha-aminoadipate and tryptophan displayed moderate competition with KYN. Notably, 3-hydroxykynurenine, reportedly a very good substrate of KAT, competed rather poorly with KYN as well. Aminooxyacetic acid, a nonspecific transaminase inhibitor, blocked KAT activity with an apparent Ki of 5 microM. Kinetic analyses with partially purified rat brain KAT revealed a Km of 17 microM for KYN with 1 mM 2-oxoglutarate, but a much higher Km (910 microM) with 1 mM pyruvate. Km values for 2-oxoglutarate and pyruvate were 150 and 160 microM, respectively. The cellular localization of KAT was examined in striatal homogenates obtained from rats 7 days after an intrastriatal injection of quinolinate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
An isocratic reversed-phase high-performance liquid chromatographic method for the simultaneous determination of tryptophan and four metabolites of the kynurenine pathway (kynurenine, 3-hydroxykynurenine, kynurenic acid and 3-hydroxyanthranilic acid) in human serum is described. This new method, which uses both isocratic elution and two on-line connected programmable ultraviolet and spectrofluorimetric detectors, allows the determination of these metabolites, in the physiological ranges, with satisfying specificity and sensitivity within 30 min.  相似文献   

12.
Kynurenine 3-monooxygenase (KMO), a pivotal enzyme in the kynurenine pathway (KP) of tryptophan degradation, has been suggested to play a major role in physiological and pathological events involving bioactive KP metabolites. To explore this role in greater detail, we generated mice with a targeted genetic disruption of Kmo and present here the first biochemical and neurochemical characterization of these mutant animals. Kmo−/− mice lacked KMO activity but showed no obvious abnormalities in the activity of four additional KP enzymes tested. As expected, Kmo−/− mice showed substantial reductions in the levels of its enzymatic product, 3-hydroxykynurenine, in liver, brain, and plasma. Compared with wild-type animals, the levels of the downstream metabolite quinolinic acid were also greatly decreased in liver and plasma of the mutant mice but surprisingly were only slightly reduced (by ∼20%) in the brain. The levels of three other KP metabolites: kynurenine, kynurenic acid, and anthranilic acid, were substantially, but differentially, elevated in the liver, brain, and plasma of Kmo−/− mice, whereas the liver and brain content of the major end product of the enzymatic cascade, NAD+, did not differ between Kmo−/− and wild-type animals. When assessed by in vivo microdialysis, extracellular kynurenic acid levels were found to be significantly elevated in the brains of Kmo−/− mice. Taken together, these results provide further evidence that KMO plays a key regulatory role in the KP and indicate that Kmo−/− mice will be useful for studying tissue-specific functions of individual KP metabolites in health and disease.  相似文献   

13.
Abstract: Several pieces of evidence suggest a major role for brain macrophages in the overproduction of neuroactive kynurenines, including quinolinic acid, in brain inflammatory conditions. In the present work, the regulation of kynurenine pathway enzymes by interferon-γ (IFN-γ) was studied in immortalized murine macrophages (MT2) and microglial (N11) cells. In both cell lines, IFN-γ induced the expression of indoleamine 2,3-dioxygenase (IDO) activity. Whereas tumor necrosis factor-α did not affect enzyme induction by IFN-γ, lipopolysaccharide modulated IDO activity differently in the two IFN-γ-activated cell lines, causing a reduction of IDO expression in MT2 cells and an enhancement of IDO activity in N11 cells. Kynurenine aminotransferase, kynurenine 3-hydroxylase, and 3-hydroxyanthranilic acid dioxygenase appeared to be constitutively expressed in both cell lines. Kynurenine 3-hydroxylase activity was stimulated by IFN-γ. It was notable that basal kynureninase activity was much higher in MT2 macrophages than in N11 microglial cells. In addition, IFN-γ markedly stimulated the activity of this enzyme only in MT2 cells. IFN-γ-treated MT2 cells, but not N11 cells, were able to produce detectable amounts of radiolabeled 3-hydroxyanthranilic acid quinolinic acids from l -[5-3H]tryptophan. These results support the notion that activated invading macrophages may constitute one of the major sources of cerebral quinolinic acid during inflammation.  相似文献   

14.
Abnormalities in the kynurenine pathway may play a role in Huntington's disease (HD). In this study, tryptophan depletion and loading were used to investigate changes in blood kynurenine pathway metabolites, as well as markers of inflammation and oxidative stress in HD patients and healthy controls. Results showed that the kynurenine : tryptophan ratio was greater in HD than controls in the baseline state and after tryptophan depletion, indicating increased indoleamine dioxygenase activity in HD. Evidence for persistent inflammation in HD was provided by elevated baseline levels of C-reactive protein, neopterin and lipid peroxidation products compared with controls. The kynurenate : kynurenine ratio suggested lower kynurenine aminotransferase activity in patients and the higher levels of kynurenine in patients at baseline, after depletion and loading, do not result in any differences in kynurenic acid levels, providing no supportive evidence for a compensatory neuroprotective role for kynurenic acid. Quinolinic acid showed wide variations in blood levels. The lipid peroxidation data indicate a high level of oxidative stress in HD patients many years after disease onset. Levels of the free radical generators 3-hydroxykynurenine and 3-hydroxyanthranilic acid were decreased in HD patients, and hence did not appear to contribute to the oxidative stress. It is concluded that patients with HD exhibit abnormal handling of tryptophan metabolism and increased oxidative stress, and that these factors could contribute to ongoing brain dysfunction.  相似文献   

15.
Tryptophan (Trp) is an essential amino acid which metabolises via the kynurenine pathway to generate a number of bioactive substances referred to as kynurenines. Among those are 3-hydroxykynurenine (3-HKyn) and quinolinic acid, which are neurotoxic, as well as kynurenic acid (Kyna) and xanthurenic acid (XA), which, similarly to nicotinamide (NAm), show neuroprotective and anti-depressive effects. Routine exercise is known to modulate Trp metabolism in skeletal muscle and is thus believed to reduce the risk of depressive states in humans and laboratory animals. Analogously, it was hypothesised that exercise can influence Trp metabolism in horses as well. The aim of this study was to evaluate the influence of two different types of exercise on Trp metabolism in horses of the same breed. A total of 32 purebred Arabian horses were involved in the study. The 22 three-year-old racehorses were subjected to short-time intense exercise. Ten other horses were made to perform endurance competitions at a distance of 80 km. Blood samples were collected at rest and following the end of the exercise period. Plasma concentrations of Trp, kynurenine (Kyn), Kyna, 3-HKyn, XA and NAm were determined using Ultra-High Performance Liquid Chromatography-Electrospray Ionisation-Tandem Mass Spectrometry. Short-time intense exercise led to an increase in plasma concentrations of Kyn, Kyna and XA. The endurance effort induced an increase in Kyna and a decrease in Trp and NAm levels. Both types of exercise, short-time intensive exercise and endurance exercise induced an increase in Trp metabolites, especially Kyna, and did not induce an increase in Trp level. Thus, from a pathophysiological perspective of the kynurenine pathway’s influence on mental state, both types of exercise induced beneficial effects in horses.  相似文献   

16.
The kynurenine pathway (KP) is the principal route of L-tryptophan (TRP) catabolism leading to the production of kynurenine (KYN), the neuroprotectants, kynurenic acid (KYNA) and picolinic acid (PIC), the excitotoxin, quinolinic acid (QUIN) and the essential pyridine nucleotide, nicotinamide adenine dinucleotide (NAD+). The enzymes indoleamine 2,3-dioxygenase-1 (IDO-1), indoleamine 2,3-dioxygenase-2 (IDO-2) and tryptophan 2,3-dioxygenase (TDO-2) initiate the first step of the KP. IDO-1 and TDO-2 induction in tumors are crucial mechanisms implicated to play pivotal roles in suppressing anti-tumor immunity. Here, we report the first comprehensive characterisation of the KP in 1) cultured human glioma cells and 2) plasma from patients with glioblastoma (GBM). Our data revealed that interferon-gamma (IFN-γ) stimulation significantly potentiated the expression of the KP enzymes, IDO-1 IDO-2, kynureninase (KYNU), kynurenine hydroxylase (KMO) and significantly down-regulated 2-amino-3-carboxymuconate semialdehyde decarboxylase (ACMSD) and kynurenine aminotransferase-I (KAT-I) expression in cultured human glioma cells. This significantly increased KP activity but significantly lowered the KYNA/KYN neuroprotective ratio in human cultured glioma cells. KP activation (KYN/TRP) was significantly higher, whereas the concentrations of the neuroreactive KP metabolites TRP, KYNA, QUIN and PIC and the KYNA/KYN ratio were significantly lower in GBM patient plasma (n = 18) compared to controls. These results provide further evidence for the involvement of the KP in glioma pathophysiology and highlight a potential role of KP products as novel and highly attractive therapeutic targets to evaluate for the treatment of brain tumors, aimed at restoring anti-tumor immunity and reducing the capacity for malignant cells to produce NAD+, which is necessary for energy production and DNA repair.  相似文献   

17.
The dinoflagellate Lingulodinium polyedrum (syn. Gonyaulax polyedra) was used as a model organism for studying the effects of high and low physiological oxidative stress on the formation of kynurenic and xanthurenic acids from kynurenine and 3-hydroxykynurenine. Cell were incubated with the precursors and exposed to light (high physiological stress due to photosynthetically formed oxidants) or kept in darkness (low stress). In cultures of less than 0.5 ml cell volume/l of medium, cells took up approximately one half of 0.1 mM extracellular kynurenine within 18 h. The amino acid was partially converted to kynurenic acid, most of which was released to the medium; however, intracellular concentrations of the product were by approximately 10-fold higher than extracellular levels. Rates of kynurenic acid release exceeded by far those explained by kynurenine and tryptophan aminotransferase activities, the latter representing an additional source of kynurenic acid formation via indole-3-pyruvic acid. Light enhanced the release of kynurenic acid by approximately 4-fold; these rates were further increased by exposure to continuous light. Diurnal rhythmicity of kynurenic acid release was clearly exogenous and did not match with the circadian pattern of kynurenine or tryptophan aminotransferase activities; no rhythm was detected in constant darkness. Similar findings were obtained on turnover of 3-hydroxykynurenine to xanthurenic acid and release of the product to the medium. However, light/dark differences were relatively smaller, and additional products were formed, according to HPLC data obtained with electrochemical detection. Results are most easily explained on the basis of a recently discovered pathway of kynurenic acid formation from kynurenine, involving either non-enzymatic oxidation by H(2)O(2) or, at higher rates, enzymatic catalysis by hemoperoxidase. A corresponding mechanism may exist for the hydroxylated analogue.  相似文献   

18.
It has been shown recently that the L-kynurenine metabolite kynurenic acid lowers the efficacy of mitochondria ATP synthesis by significantly increasing state IV, and reducing respiratory control index and ADP/oxygen ratio of glutamate/malate-consuming heart mitochondria. In the present study we investigated the effect of L-tryptophan (1.25 microM to 5 mM) and other metabolites of L-kynurenine as 3-hydroxykynurenine (1.25 microM to 2.5 mM), anthranilic acid (1.25 microM to 5 mM) and 3-hydroxyanthranilic acid (1.25 microM to 5 mM) on the heart mitochondria function. Mitochondria were incubated with saturating concentrations of respiratory substrates glutamate/malate (5 mM), succinate (10 mM) or NADH (1 mM) in the presence or absence of L-tryptophan metabolites. Among tested substances, 3-hydroxykynurenine, 3-hydroxyanthranilic acid and anthranilic acid but not tryptophan affected the respiratory parameters dose-dependently, however at a high concentration, of a micro molar range. 3-Hydroxykynurenine and 3-hydroxyanthranilic acid lowered respiratory control index and ADP/oxygen ratio in the presence of glutamate/malate and succinate but not with NADH. While, anthranilic acid reduced state III oxygen consumption rate and lowered the respiratory control index only of glutamate/malate-consuming heart mitochondria. Co-application of anthranilic acid and kynurenic acid (125 or 625 microM each) to glutamate/malate-consuming heart mitochondria caused a non-additive deterioration of the respiratory parameters determined predominantly by kynurenic acid. Accumulated data indicate that within L-tryptophan metabolites kynurenic acid is the most effective, followed by anthranilic acid, 3-hydroxykynurenine, 3-hydroxyanthranilic acid to influence the respiratory parameters of heart mitochondria. Present data allow to speculate that changes of kynurenic acid and/or anthranilic acid formation in heart tissue mitochondria due to fluctuation of L-kynurenine metabolism may be of functional importance for cardiovascular processes. On the other hand, beside the effect of 3-hydroxyanthranilic acid and 3-hydroxykynurenine on respiratory parameters, their oxidative reactivity may contribute to impairment of mitochondria function, too.  相似文献   

19.
In the mammalian brain, kynurenine aminotransferase II (KAT II) and kynurenine 3-monooxygenase (KMO), key enzymes of the kynurenine pathway (KP) of tryptophan degradation, form the neuroactive metabolites kynurenic acid (KYNA) and 3-hydroxykynurenine (3-HK), respectively. Although physically segregated, both enzymes use the pivotal KP metabolite l -kynurenine as a substrate. We studied the functional consequences of this cellular compartmentalization in vivo using two specific tools, the KAT II inhibitor BFF 122 and the KMO inhibitor UPF 648. The acute effects of selective KAT II or KMO inhibition were studied using a radiotracing method in which the de novo synthesis of KYNA, and of 3-HK and its downstream metabolite quinolinic acid (QUIN), is monitored following an intrastriatal injection of 3H-kynurenine. In naïve rats, intrastriatal BFF 122 decreased newly formed KYNA by 66%, without influencing 3-HK or QUIN production. Conversely, UPF 648 reduced 3-HK synthesis (by 64%) without affecting KYNA formation. Similar, selective effects of KAT II and KMO inhibition were observed when the inhibitors were applied acutely together with the excitotoxin QUIN, which impairs local KP metabolism. Somewhat different effects of KMO (but not KAT II) inhibition were obtained in rats that had received an intrastriatal QUIN injection 7 days earlier. In these neuron-depleted striata, UPF 648 not only decreased both 3-HK and QUIN production (by 77% and 66%, respectively) but also moderately raised KYNA synthesis (by 27%). These results indicate a remarkable functional segregation of the two pathway branches in the brain, boding well for the development of selective KAT II or KMO inhibitors for cognitive enhancement and neuroprotection, respectively.  相似文献   

20.
Cerebral malaria (CM) can be a fatal manifestation of Plasmodium falciparum infection. In this study, two different approaches were used to examine the role of indoleamine 2,3-dioxygenase-1 (IDO-1) and its metabolites in the development of murine CM. Mice genetically deficient in IDO-1 were not protected against CM, but partial protection was observed in C57BL/6 mice treated with Ro 61-8048, an inhibitor of kynurenine-3-hydroxylase. This protection was associated with suppressed levels of picolinic acid (PA) within the brain, but not with changes in the levels of kynurenic acid (KA) or quinolinic acid (QA). These data suggest that although IDO-1 is not directly involved in the pathogenesis of CM in C57BL/6 mice, the production of the kynurenine pathway metabolite PA may contribute to the development of murine CM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号