首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FetA, formerly designated FrpB, an iron-regulated, 76-kDa neisserial outer membrane protein, shows sequence homology to the TonB-dependent family of receptors that transport iron into gram-negative bacteria. Although FetA is commonly expressed by most neisserial strains and is a potential vaccine candidate for both Neisseria gonorrhoeae and Neisseria meningitidis, its function in cell physiology was previously undefined. We now report that FetA functions as an enterobactin receptor. N. gonorrhoeae FA1090 utilized ferric enterobactin as the sole iron source when supplied with ferric enterobactin at approximately 10 microM, but growth stimulation was abolished when an omega (Omega) cassette was inserted within fetA or when tonB was insertionally interrupted. FA1090 FetA specifically bound 59Fe-enterobactin, with a Kd of approximately 5 microM. Monoclonal antibodies raised against the Escherichia coli enterobactin receptor, FepA, recognized FetA in Western blots, and amino acid sequence comparisons revealed that residues previously implicated in ferric enterobactin binding by FepA were partially conserved in FetA. An open reading frame downstream of fetA, designated fetB, predicted a protein with sequence similarity to the family of periplasmic binding proteins necessary for transporting siderophores through the periplasmic space of gram-negative bacteria. An Omega insertion within fetB abolished ferric enterobactin utilization without causing a loss of ferric enterobactin binding. These data show that FetA is a functional homolog of FepA that binds ferric enterobactin and may be part of a system responsible for transporting the siderophore into the cell.  相似文献   

2.
Neisseria gonorrhoeae has evolved a repertoire of iron acquisition systems that facilitate essential iron uptake in the human host. Acquisition of iron requires both the energy-harnessing cytoplasmic membrane protein, TonB, as well as specific outer membrane TonB-dependent transporters (TdTs.) Survival within host epithelial cells is important to the pathogenesis of gonococcal disease and may contribute to the persistence of infection. However, the mechanisms by which gonococci acquire iron within this intracellular niche are not currently understood. In this study, we investigated the survival of gonococcal strain FA1090 within ME180 human cervical epithelial cells with respect to high affinity iron acquisition. Intracellular survival was dependent upon iron supplied by the host cell. TonB was expressed in the host cell environment and this protein was critical to gonococcal intracellular survival. Furthermore, expression of the characterized outer membrane transporters TbpA, FetA and LbpA and putative transporters TdfG, TdfH and TdfJ were not necessary for intracellular survival. Conversely, intracellular survival was dependent on expression of the putative transporter, TdfF. Expression of TdfF was detected in the presence of epithelial cell culture media containing fetal bovine serum. Expression was further modulated by iron availability. To our knowledge, this study is the first to demonstrate the specific requirement for a single iron transporter in the survival of a bacterial pathogen within host epithelial cells.  相似文献   

3.
Following the introduction of effective protein-polysaccharide conjugate vaccines against capsular group C meningococcal disease in Europe, meningococci of capsular group B remain a major cause of death and can result in debilitating sequelae. The outer membrane proteins PorA and FetA have previously been shown to induce bactericidal antibodies in humans. Despite considerable antigenic variation among PorA and FetA OMPs in meningococci, systematic molecular epidemiological studies revealed this variation is highly structured so that a limited repertoire of antigenic types is congruent with the hyperinvasive meningococcal lineages that have caused most of the meningococcal disease in Europe in recent decades. Here we describe the development of a prototype vaccine against capsular group B meningococcal infection based on a N. meningitidis isolate genetically engineered to have constitutive expression of the outer membrane protein FetA. Deoxycholate outer membrane vesicles (dOMVs) extracted from cells cultivated in modified Frantz medium contained 21.8% PorA protein, 7.7% FetA protein and 0.03 μg LPS per μg protein (3%). The antibody response to the vaccine was tested in three mouse strains and the toxicological profile of the vaccine was tested in New Zealand white rabbits. Administration of the vaccine, MenPF-1, when given by intramuscular injection on 4 occasions over a 9 week period, was well tolerated in rabbits up to 50 μg/dose, with no evidence of systemic toxicity. These data indicated that the MenPF-1 vaccine had a toxicological profile suitable for testing in a phase I clinical trial.  相似文献   

4.
Invasive meningococcal disease causes over 3500 cases each year in Europe, with particularly high incidence among young children. Among serogroup B meningococci, which cause most of the cases, high diversity in the outer membrane proteins (OMPs) is observed in endemic situations; however, comprehensive molecular epidemiological data are available for the diversity and distribution of the OMPs PorA and FetA and these can be used to rationally design a vaccine with high coverage of the case isolates. The aim of this study was to determine whether outer membrane vesicles (OMVs) derived from an isolate with constitutive FetA expression (MenPF-1 vaccine) could be used to induce antibodies against both the PorA and FetA antigens. The immunogenicity of various dose levels and number of doses was evaluated in mice and rabbits, and IgG antibody responses tested against OMVs and recombinant PorA and FetA proteins. A panel of four isogenic mutants was generated and used to evaluate the relative ability of the vaccine to induce serum bactericidal activity (SBA) against FetA and PorA. Sera from mice were tested in SBA against the four target strains. Results demonstrated that the MenPF-1 OMVs were immunogenic against PorA and FetA in both animal models. Furthermore, the murine antibodies induced were bactericidal against isogenic mutant strains, suggesting that antibodies to both PorA and FetA were functional. The data presented indicate that the MenPF-1 vaccine is a suitable formulation for presenting PorA and FetA OMPs in order to induce bactericidal antibodies, and that proceeding to a Phase I clinical trial with this vaccine candidate is justified.  相似文献   

5.
Although several reports demonstrated that accumulation of excess lipid in adipose tissue produces defects in adipocyte which leads to the disruption of energy homeostasis causing severe metabolic problems, underlying mechanism of this event remains yet unclear. Here we demonstrate that FetuinA (FetA) plays a critical role in the impairment of two metabolic sensors, SIRT1 and AMPK, in inflamed adipocytes of high fat diet (HFD) mice. A linear increase in adipocyte hypertrophy from 10 to 16 week was in tandem with the increase in FetA and that coincided with SIRT1 cleavage and decrease in pAMPK which adversely affects PGC1α activation. Knock down (KD) of FetA gene in HFD mice could significantly improve this situation indicating FetA's contribution in the damage of energy sensors in inflamed adipocyte. However, FetA effect was not direct, it was mediated through TNF-α which again is dependent on FetA as FetA augments TNF-α expression. FetA being an upstream regulator of TNF-α, its suppression prevented TNF-α mediated Caspase-1 activation and cleavage of SIRT1. FetA induced inactivation of PGC1α due to SIRT1 cleavage decreased PPARϒ, adiponectin, NRF1 and Tfam expression. All these together caused a significant fall in mitochondrial biogenesis and bioenergetics that disrupted energy homeostasis resulting loss of insulin sensitivity. Taken together, our findings revealed a new dimension of FetA, it not only induced inflammation in adipocyte but also acts as an upstream regulator of SIRT1 cleavage and AMPK activation. Intervention of FetA may be worthwhile to prevent metabolic imbalance that causes insulin resistance and type 2 diabetes.  相似文献   

6.
AIMS: To study the role of the indigenous yeast flora in traditional Irish cider fermentations. METHODS AND RESULTS: Wallerstein laboratory nutrient agar supplemented with biotin, ferric ammonium citrate, calcium carbonate and ethanol was employed together with PCR-restriction fragment length polymorphism analysis of the region spanning the internal transcribed spacers (ITS1 and ITS2) and the 5.8S rRNA gene in the identification of indigenous yeasts at the species level, from traditional Irish cider fermentations. By combining the molecular approach and the presumptive media it was possible to distinguish between a large number of yeast species, and to track them within cider fermentations. The Irish cider fermentation process can be divided into three sequential phases based on the predominant yeast type present. Kloeckera/Hanseniaspora uvarum type yeasts predominate in the initial 'fruit yeast phase'. Thereafter Saccharomyces cerevisiae type yeast dominate in the 'fermentation phase', where the alcoholic fermentation takes place. Finally the 'maturation phase' which follows, is dominated by Dekkera and Brettanomyces type yeasts. H. uvarum type yeast were found to have originated from the fruit. Brettanomyces type yeast could be traced back to the press house, and also to the fruit. The press house was identified as having high levels of S. cerevisiae type yeast. A strong link was noted between the temperature profile of the cider fermentations, which ranged from 22 to 35 degrees C and the yeast strain population dynamics. CONCLUSIONS: Many different indigenous yeast species were identified. The mycology of Irish cider fermentations appears to be very similar to that which has previously been reported in the wine industry. SIGNIFICANCE AND IMPACT OF THE STUDY: This study has allowed us to gain a better understanding of the role of indigenous yeast species in 'Natural' Irish cider fermentations.  相似文献   

7.
8.
Macrophage infiltration into adipose tissue during obesity and their phenotypic conversion from anti-inflammatory M2 to proinflammatory M1 subtype significantly contributes to develop a link between inflammation and insulin resistance; signaling molecule(s) for these events, however, remains poorly understood. We demonstrate here that excess lipid in the adipose tissue environment may trigger one such signal. Adipose tissue from obese diabetic db/db mice, high fat diet-fed mice, and obese diabetic patients showed significantly elevated fetuin-A (FetA) levels in respect to their controls; partially hepatectomized high fat diet mice did not show noticeable alteration, indicating adipose tissue to be the source of this alteration. In adipocytes, fatty acid induces FetA gene and protein expressions, resulting in its copious release. We found that FetA could act as a chemoattractant for macrophages. To simulate lipid-induced inflammatory conditions when proinflammatory adipose tissue and macrophages create a niche of an altered microenvironment, we set up a transculture system of macrophages and adipocytes; the addition of fatty acid to adipocytes released FetA into the medium, which polarized M2 macrophages to M1. This was further confirmed by direct FetA addition to macrophages. Taken together, lipid-induced FetA from adipocytes is an efficient chemokine for macrophage migration and polarization. These findings open a new dimension for understanding obesity-induced inflammation.  相似文献   

9.
Role of chromosomal rearrangement in N. gonorrhoeae pilus phase variation   总被引:47,自引:0,他引:47  
E Segal  E Billyard  M So  S Storzbach  T F Meyer 《Cell》1985,40(2):293-300
N. gonorrhoeae undergoes pilus phase and antigenic variation. During phase variation, the pilin gene is turned on and off at high frequencies. Two loci on the gonococcal chromosome from strain MS11 function as expression sites for the pilin gene (pilE1 and pilE2); many other sites apparently contain silent variant pilin sequences. We reported previously that during pilus phase variation, when cells switch from the pilus expressing state (P+) to the nonexpressing state (P-), genome rearrangement occurs. We have examined phase variation in more detail, and we report that in most P+ to P- switches a deletion of pilin gene information occurs in one or both expression sites. This deletion is due to either a simple or a multiple-step recombination event involving directly repeated sequences in the expression loci. The deletion explains the state of some P- cells, but not all. In the latter cells pilin expression is probably controlled by an undefined regulator.  相似文献   

10.
Pili prepared from Neisseria gonorrhoeae contain minor amounts of a 110 kd outer membrane protein denoted PilC. The corresponding gene exists in two copies, pilC1 and pilC2, in most strains of N.gonorrhoeae. In the piliated strain MS11(P+), only one of the genes, pilC2, was expressed. Inactivation of pilC2 by a mTnCm insertion resulted in a nonpiliated phenotype, while a mTnCm insertion in pilC1 had no effect on piliation. Expression of pilC was found to be controlled at the translational level by frameshift mutations in a run of G residues positioned in the region encoding the signal peptide. Nonpilated (P-), pilin expressing colony variants that did not express detectable levels of PilC were selected; all P+ backswitchers from these P-, PilC- clones were found to be PilC+. The structural gene for pilin, pilE, was sequenced and found to be identical in one P-, PilC- and P+, PilC+ pair. Most PilC- cells were completely bald whereas the PilC+ backswitcher had 10-40 pili per cell. Thus, a turn ON and turn OFF in the expression of PilC results in gonococcal pili phase variation. These results suggest that PilC is required for pilus assembly and/or translocation across the gonococcal outer membrane.  相似文献   

11.
Pili confer the initial ability of Neisseria gonorrhoeae to bind to epithelial cells. Pilin (PilE), the major pilus subunit, and a minor protein termed PilC, reportedly essential for pilus biogenesis, undergo intra-strain phase and structural variation. We demonstrate here that at least two different adherence properties are associated with the gonococcal pili: one is specific for erythrocytes, which is virtually unaffected by PilE variation, and another is specific for epithelial cells, and is modulated in response to the variation of PilE. Based on this finding, mutants of a recA- strain were selected that had lost the ability to bind to human cornea epithelial cells (A-) but retained the ability to form pili (P+) and to agglutinate human erythrocytes (H+). The adherence-negative mutants failed to produce detectable levels of PilC1 or PilC2 proteins, representing piIC phase variants generated in the absence of RecA. The A- pilC phase variants were indistinguishable from their A+ parents and spontaneous A+ revertants with regard to the amount of PilE produced and its electrophoretic mobility, the degrees of piliation and haemagglutination, and the pilE nucleotide sequence. These data demonstrate a central role for PilC in pilus-mediated adherence of N. gonorrhoeae to human epithelial cells and further indicate that neither PilC1 nor PilC2 is obligatory for the assembly of gonococcal pili.  相似文献   

12.
Summary
Pili of Neisseria gonorrhoeae are correlated with Increased bacterial attachment to epithelial cells and undergo both phase and antigenic variation. Phase variation of gonococcal pili can be brought about by recombination events in the pilin structural gene, pilE , or by the on/off switch in expression of PilC, a pilus biogenesis protein for which two loci exist. We have studied the binding to epithelial cell lines and to fixed tissue sections of N. gonorrhoeae MS11 derivatives and mutants carrying structurally defined PilE and PilC proteins, in situ binding studies of N. gonorrhoeae to formalin-fixed tissue sections resulted in a binding pattern similar to that obtained using viable epithelial cell lines of different origin. Piliated gonococcal clones, containing different pilE sequences, varied dramatically from one another in their efficiencies at binding to corneal and conjunctival tissue, but bound equally well to cervical and endometrial tissues. Further, the binding data suggested that PJIC expression by itself, i.e. without pili, cannot confer bacterial binding and that expression of either PilC1 or PiiC2 does not confer different binding properties to the bacterial cells. Possible receptors for piliated gonococci were expressed in human tissues, such as cervix, endometrium, cornea, intestine, stomach, mid-brain and meninges, but not in human kidney. Pretreatment of the target tissues with Proteinase K decreased the gonococcal binding dramatically, whereas pretreatment with neuraminidase and meta-periodate, which cleave carbon-carbon linkages between vicinal hydroxyl groups in carbohydrates, did not affect attachment of gonococci. These data argue that pilus-dependent attachment of N. gonorrhoeae to human tissue may be mediated by a eukaryotic receptor having protein characteristics, and that the pilus subunit sequence may play an important role in the interaction with human cornea.  相似文献   

13.
14.
Skeletal muscle and adipose tissues are known to be two important insulin target sites. Therefore, lipid induced insulin resistance in these tissues greatly contributes in the development of type 2 diabetes (T2D). Ferulic acid (FRL) purified from the leaves of Hibiscus mutabilis, showed impressive effects in preventing saturated fatty acid (SFA) induced defects in skeletal muscle cells. Impairment of insulin signaling molecules by SFA was significantly waived by FRL. SFA markedly reduced insulin receptor β (IRβ) in skeletal muscle cells, this was affected due to the defects in high mobility group A1 (HMGA1) protein obtruded by phospho-PKCε and that adversely affects IRβ mRNA expression. FRL blocked PKCε activation and thereby permitted HMGA1 to activate IRβ promoter which improved IR expression deficiency. In high fat diet (HFD) fed diabetic rats, FRL reduced blood glucose level and enhanced lipid uptake activity of adipocytes isolated from adipose tissue. Importantly, FRL suppressed fetuin-A (FetA) gene expression, that reduced circulatory FetA level and since FetA is involved in adipose tissue inflammation, a significant attenuation of proinflammatory cytokines occurred. Collectively, FRL exhibited certain unique features for preventing lipid induced insulin resistance and therefore promises a better therapeutic choice for T2D.  相似文献   

15.
16.
17.
Previous studies indicate that gonococcal pilin phase and antigenic variation occur by intragenomic pilin gene recombination, the outcome of which resembles that of gene conversion. During such transitions, the expressed complete pilin gene (pilE) acquires a novel sequence corresponding to that of a silent pilin gene (pilS). In the present study, we find that internal deletions of pilE can produce pilus-/pilus+ phase transitions: direct oligonucleotide repeats in the pilin-encoding portion of pilE bracket the deleted segments. A novel, orthodox pilE is formed upon repair of the internal deletions, with pilS sequence probably acting as a template for repair. Such deletion/repair of pilE is suggested as a principal mechanism underlying gonococcal pilus variation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号