首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
盐单胞菌属BYS1四氢嘧啶合成基因ectABC克隆及其盐激表达   总被引:5,自引:2,他引:5  
利用SEFA-PCR技术从中度嗜盐菌Halomonassp.BYS-1总DNA中克隆了四氢嘧啶合成基因ectABC及其上游序列(GenBank accession number DQ017757);OMIGA软件分析结果显示ectA、ectB、ectC位于同一个操纵子上,大小分别为573bp1、251bp和387bp,预测编码的DAT(L-二氨基丁酸转氨酶)、DAA(L-二氨基丁酸乙酰转移酶)和ES(四氢嘧啶合酶)大小分别为21.1kDa(191 amino acid)、45.7kDa(417 amino acid)和14.5kDa(129 amino acid);将包含ectABC基因及其上游1000bp序列的片段克隆到pUC19中并转化E.coliDH5α,转化子E.coli(pUC19ECT)能够在盐激条件下合成四氢嘧啶,但其耐盐能力没有得到显著改善。  相似文献   

2.
中度嗜盐菌Bacillus alcalophilus DTY1分离自晋西北黄土高原盐碱土壤, 能够产生耐盐相关的相容性溶质四氢嘧啶。为了研究四氢嘧啶的功能, 克隆了DTY1菌株四氢嘧啶合成基因簇ectABC。ectA、ectB和ectC分别编码169、428和132个氨基酸的肽链, 分别与B. halodurans C-125中的二氨基丁酸乙酰基转移酶(EctA)、二氨基丁酸氨基转移酶(EctB)、四氢嘧啶合成酶(EctC)同源性达59%、81%和81%。将携带该基因簇的4.0 kb片段转入蜡质芽孢杆菌B. cereus Z后, 芽孢杆菌的耐盐度显著提高。HPLC检测发现, 在1.0% NaCl浓度下, 转化菌B. cereus Z-E菌株生成70.1 mg/g四氢嘧啶, 而在5.0%的NaCl浓度下四氢嘧啶的产量高达118.6 mg/g, 显著高于B. alcalophilus DTY1的四氢嘧啶产量。而且随着盐浓度的提高, 四氢嘧啶的合成量也随之提高。由此证明四氢嘧啶参与中度嗜盐菌重要的渗透调节, ectABC的表达受盐诱导。  相似文献   

3.
中度嗜盐菌Bacillus alcalophilus DTY1分离自晋西北黄土高原盐碱土壤, 能够产生耐盐相关的相容性溶质四氢嘧啶。为了研究四氢嘧啶的功能, 克隆了DTY1菌株四氢嘧啶合成基因簇ectABC。ectA、ectB和ectC分别编码169、428和132个氨基酸的肽链, 分别与B. halodurans C-125中的二氨基丁酸乙酰基转移酶(EctA)、二氨基丁酸氨基转移酶(EctB)、四氢嘧啶合成酶(EctC)同源性达59%、81%和81%。将携带该基因簇的4.0 kb片段转入蜡质芽孢杆菌B. cereus Z后, 芽孢杆菌的耐盐度显著提高。HPLC检测发现, 在1.0% NaCl浓度下, 转化菌B. cereus Z-E菌株生成70.1 mg/g四氢嘧啶, 而在5.0%的NaCl浓度下四氢嘧啶的产量高达118.6 mg/g, 显著高于B. alcalophilus DTY1的四氢嘧啶产量。而且随着盐浓度的提高, 四氢嘧啶的合成量也随之提高。由此证明四氢嘧啶参与中度嗜盐菌重要的渗透调节, ectABC的表达受盐诱导。  相似文献   

4.
The ectABC genes encoding the biosynthesis of ectoine were identified from Nesterenkonia halobia DSM 20541. The intergenic regions of the ectABC genes from N. halobia DSM 20541 were more loosely spaced than those that had been reported before. The amino acid sequence deduced from ectABC of the strain was highly homologous to the EctABC of Brevibacterium linens BL2 (EctA 50%, EctB 70%, and EctC 68% identities). The osmoprotection of ectABC was studied in the Escherichia coli KNabc and E. coli XL1-Blue. The results revealed that ectABC could shorten the lag phase and enhance the final OD600 of E. coli XL1-Blue in MM63 medium containing 0.68 M NaCl, and could initiate KNabc growth in 0.2 M NaCl. Ectoine was proven to be accumulated in E. coli KNabc/pGEM-Nect using HPLC-UV, and validated by LC-MSD-Trap-VL.  相似文献   

5.
The chromosomally encoded galactose utilization (gal) operons of Salmonella typhimurium and S. typhi were each cloned on similar 5.5-kilobase HindIII fragments into pBR322 and were identified by complementation of Gal- Escherichia coli strains. Restriction endonuclease analyses indicated that these Salmonellae operons share considerable homology, but some heterogeneities in restriction sites were observed. Subcloning and exonuclease mapping experiments showed that both operons have the same genetic organization as that established for the E. coli gal operon (i.e., 5' end, promoter, epimerase, transferase, kinase, and 3' end). Two gal operator regions (oE and oI) of S. typhimurium, identified by repressor titration in an E. coli superrepressor [galR(Sup)] mutant, were sequenced and found to flank the promoter region. This promoter region is identical to the -10 and -35 regions of the E. coli gal operon. Minicell studies demonstrated that the three gal structural genes of S. typhimurium encode separate polypeptides of 39 kilodaltons (kDa) (epimerase, 337 amino acids [aa's]), 41 kDa (transferase, 348 aa's), and 43 kDa (kinase, 380 aa's). Despite functional and organizational similarities, DNA sequence analysis revealed that the S. typhimurium gal genes show less than 70% homology to the E. coli gal operon. Because of codon degeneracy, the deduced amino acid sequences of these polypeptides are highly conserved (greater than 90% homology) as compared with those of the E. coli gal enzymes. These studies have defined basic genetic parameters of the gal genes of two medically important Salmonella species, and our findings support the hypothesized divergent evolution of E. coli and Salmonella spp. from a common ancestral parent bacterium.  相似文献   

6.
The hemin receptor HemR of Yersinia enterocolitica was identified as a 78 kDa iron regulated outer membrane protein. Cells devoid of the HemR receptor as well as cells mutated in the tonB gene were unable to take up hemin as an iron source. The hemin uptake operon from Y. enterocolitica was cloned in Escherichia coli K12 and was shown to encode four proteins: HemP (6.5 kDa), HemR (78 kDa), HemS (42 kDa) and HemT (27 kDa). When expressed in E.coli hemA aroB, a plasmid carrying genes for HemP and HemR allowed growth on hemin as a porphyrin source. Presence of genes for HemP, HemR and HemS was necessary to allow E.coli hemA aroB cells to use hemin as an iron source. The nucleotide sequence of the hemR gene and its promoter region was determined and the amino acid sequence of the HemR receptor deduced. HemR has a signal peptide of 28 amino acids and a typical TonB box at its amino-terminus. Upstream of the first gene in the operon (hemP), a well conserved Fur box was found which is in accordance with the iron-regulated expression of HemR.  相似文献   

7.
Two genes encoding thermostable xylanases, named xyn10A and xyn11A, from an alkaliphilic Bacillus firmus were cloned and expressed in Escherichia coli. The E. coli harboring either gene showed clear zone with Congo red clearance assay on xylan plate. The Xyn10A and Xyn11A have molecular weights of 45 and 23kDa, respectively, and both show activities on xylan-zymogram. The xyn10A encodes 396 amino acid residues and is very similar to an alkaliphilic xylanase A from alkaliphilic Bacillus halodurans. The Xyn11A contains 210 amino acid residues and only one amino acid different from an endo-beta-1,4-xylanase from B. halodurans. From alignment of the amino acid sequences with other xylanases, Xyn10A and Xyn11A belong to family 10 and 11 glycosyl hydrolases, respectively. Both show activities over the pH range of 4-11 at 37 degrees C and over 80% activities at 70 degrees C. Interestingly both still retain over 70% activities after 16h preincubation at 62 degrees C.  相似文献   

8.
Abstract The glnAntrBC operon of Proteus vulgaris was cloned and heterologously expressed in Escherichia coli . The nucleotide sequence was determined. An open reading frame of 1407 bp was identified as the glnA gene and the deduced amino acid sequence showed 82% identity with the E. coli glutamine synthetase protein. Heterologous expression of the glnA gene in E. coli restored glutamine synthetase (GS) activity in a GS-negative mutant and a 52 kDa protein was detected and addressed as the GS subunit of P. vulgaris . Adjacent to the glnA gene the regulatory genes ntrB and ntrC were identified. Their coding regions comprised 1053 and 1452 bp, respectively, and the deduced gene products NRII (NtrB) and NRI (NtrC) shared 72% identity with the corresponding E. coli proteins. Heterologous expression in E. coli revealed only a 54 kDa protein which was shown to be NRI. NRII was not detectable using the methods employed.  相似文献   

9.
The genes coding for aspartate carbamoyltransferase (ATCase) in the extremely thermophilic archaeon Sulfolobus acidocaldarius have been cloned by complementation of a pyrBI deletion mutant of Escherichia coli. Sequencing revealed the existence of an enterobacterial-like pyrBI operon encoding a catalytic chain of 299 amino acids (34 kDa) and a regulatory chain of 170 amino acids (17.9 kDa). The deduced amino acid sequences of the pyrB and pyrI genes showed 27.6-50% identity with archaeal and enterobacterial ATCases. The recombinant S. acidocaldarius ATCase was purified to homogeneity, allowing the first detailed studies of an ATCase isolated from a thermophilic organism. The recombinant enzyme displayed the same properties as the ATCase synthesized in the native host. It is highly thermostable and exhibits Michaelian saturation kinetics for carbamoylphosphate (CP) and positive homotropic cooperative interactions for the binding of L-aspartate. Moreover, it is activated by nucleoside triphosphates whereas the catalytic subunits alone are inhibited. The holoenzyme purified from recombinant E. coli cells or present in crude extract of the native host have an Mr of 340 000 as estimated by gel filtration, suggesting that it has a quaternary structure similar to that of E. coli ATCase. Only monomers could be found in extracts of recombinant E. coli or Saccharomyces cerevisiae cells expressing the pyrB gene alone. In the presence of CP these monomers assembled into trimers. The stability of S. acidocaldarius ATCase and the allosteric properties of the enzyme are discussed in function of a modeling study.  相似文献   

10.
The cdhA and cdhB genes that code for the large and the small subunits of carbon monoxide dehydrogenase (CDH), respectively, were isolated from a genomic library of Methanothrix soehngenii DNA in Escherichia coli, using polyclonal antibodies raised against purified CDH. After introduction in E. coli or Desulfovibrio vulgaris, the cdh genes appeared to be expressed irrespective of their orientation, yielding immunoreactive proteins of 79 and 19 kDa, corresponding in size to the known subunits of purified CDH. However, no CDH activity could be detected in these heterologous hosts. The cdh genes are preceded by consensus ribosome-binding sites and are arranged in an operon-like structure, with cdhA preceding cdhB. Upstream from this operon, sequences similar to archaeal promoters were identified. The amino acid sequence, deduced from the primary sequence of cdhA, showed homology with ferredoxins and with acyl-CoA oxidase. This is compatible with the proposed functions of CDH.  相似文献   

11.
12.
The genes involved in biosynthesis of the major compatible solute ectoine (1,4,5,6-tetrahydro-2-methylpyrimidine carboxylic acid) in halotolerant obligate methanotroph “Methylomicrobium alcaliphilum 20Z” were studied. The complete nucleotide sequences of the structural genes encoding l-aspartokinase (Ask), l-2,4-diaminobutyric acid transaminase (EctB), l-2,4-diaminobutyric acid acetyltransferase (EctA), and l-ectoine synthase (EctC) were defined and shown to be transcribed as a single operon ectABCask. Phylogenetic analysis revealed high sequence identities (34–63%) of the Ect proteins to those from halophilic heterotrophs with the highest amino acid identities being to Vibrio cholerae enzymes. The chromosomal DNA fragment from “M. alcaliphilum 20Z” containing ectABC genes and putative promoter region was expressed in Escherichia coli. Recombinant cells could grow in the presence of 4% NaCl and synthesize ectoine. The data obtained suggested that despite the ectoine biosynthesis pathway being evolutionary well conserved with respect to the genes and enzymes involved, some differences in their organization and regulation could occur in various halophilic bacteria.Dedicated to the 70th birthday of Professor Gerhard Gottschalk who inspired our studies on methylotrophic haloalkaliphiles.  相似文献   

13.
14.
盐单胞菌属(Halomonas)通过胞内积聚有机相容溶质(Compatible solutes)来抵抗胞外的高盐渗透压。为了探究相容溶质Ectoine合成代谢相关基因的结构特征和异源共表达的可能性, 以青海湖盐单胞菌Halomonas sp. QHL1为材料, 通过高效液相色谱(HPLC)分析不同盐梯度下QHL1胞内Ectoine的积聚量, 并借助于染色体步移技术(Genome walking)捕获QHL1菌株的Ectoine生物合成基因簇ectABC, 利用分子克隆技术分析ectABC基因簇的异源重组表达(E.coli BL21)。研究结果表明: 胞内Ectoine的积聚量随着培养基中Na+浓度的增加而增加, 最大积聚量为167.1 mg/g细胞干重(1.0 mol/L Na+), 但菌体生长却受到高浓度Na+的强烈抑制作用。QHL1的ectABC操纵子全长序列为3580 bp, 结构基因ectA(579 bp)、ectB(1269 bp)与ectC (390 bp)串联排列。基于生物信息学预测分析, 两个启动子(70与38因子控制)和若干未知功能的保守模序(Motifs)存在于QHL1的ect操纵子上游。构建重组表达载体pET-28-ectABC, 并在E.coli BL21中异源表达ectABC基因簇(2438 bp)。SDS-PAGE结果显示EctA、EctB和EctC分别为27.2、52.5 和 20.8 kD, 与预测结果一致, 表明ectA、ectB和ectC基因能在E. coli BL21中实现异源共表达, 为构建Ectoine合成代谢基因整合的系统代谢工程, 并实现低盐发酵控制和过量化生产提供了重要的理论基础。    相似文献   

15.
16.
Tetragenococcus halophila D10 catalyzes the decarboxylation of L-aspartate with nearly stoichiometric release of L-alanine and CO(2). This trait is encoded on a 25-kb plasmid, pD1. We found in this plasmid a putative asp operon consisting of two genes, which we designated aspD and aspT, encoding an L-aspartate-beta-decarboxylase (AspD) and an aspartate-alanine antiporter (AspT), respectively, and determined the nucleotide sequences. The sequence analysis revealed that the genes of the asp operon in pD1 were in the following order: promoter --> aspD --> aspT. The deduced amino acid sequence of AspD showed similarity to the sequences of two known L-aspartate-beta-decarboxylases from Pseudomonas dacunhae and Alcaligenes faecalis. Hydropathy analyses suggested that the aspT gene product encodes a hydrophobic protein with multiple membrane-spanning regions. The operon was subcloned into the Escherichia coli expression vector pTrc99A, and the two genes were cotranscribed in the resulting plasmid, pTrcAsp. Expression of the asp operon in E. coli coincided with appearance of the capacity to catalyze the decarboxylation of aspartate to alanine. Histidine-tagged AspD (AspDHis) was also expressed in E. coli and purified from cell extracts. The purified AspDHis clearly exhibited activity of L-aspartate-beta-decarboxylase. Recombinant AspT was solubilized from E. coli membranes and reconstituted in proteoliposomes. The reconstituted AspT catalyzed self-exchange of aspartate and electrogenic heterologous exchange of aspartate with alanine. Thus, the asp operon confers a proton motive metabolic cycle consisting of the electrogenic aspartate-alanine antiporter and the aspartate decarboxylase, which keeps intracellular levels of alanine, the countersubstrate for aspartate, high.  相似文献   

17.
18.
19.
20.
Multidrug-resistant strains of Vibrio cholerae (the causative agent of the diarrhoeal disease cholera) have recently been described. In an attempt to identify a homologue of the Escherichia coli TolC in V . cholerae , we isolated a DNA fragment (pVC) that enabled an E . coli tolC mutant to grow in the presence of 0.05% deoxycholate (DOC). However, other TolC defects were not complemented. Nucleotide sequence analysis of this fragment revealed the presence of two open reading frames (ORF1 and ORF2) separated by 9 bp and encoding 42.4 and 55.8 kDa proteins respectively. The translational products of these two ORFs correlated closely with the molecular weights of the predicted proteins. The deduced amino acid sequences of ORF1 and ORF2 showed a high degree of similarity with conserved regions of the E . coli efflux pump proteins, EmrA and EmrB. The presence of pVC2 within the E . coli efflux pump mutants defective in either the emrAB or the acrAB genes provided the mutants with resistance against several antibiotics. A V . cholerae isogenic mutant defective in ORF2 was constructed by gene replacement. Characterization of this mutant has shown it to be more sensitive to CCCP, PMA, PCP, nalidixic acid and DOC than the parent strain. These results suggest that ORF1 and ORF2 constitute an operon encoding two components of a putative multidrug resistance pump in V . cholerae . In addition, the presence of both structural and functional similarities between VceAB and EmrAB suggests that VceAB is a homologue of EmrAB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号