首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently we reported 6-(2-hydroxy-3-methylbenzylamino)purine (PI-55) as the first molecule to antagonize cytokinin activity at the receptor level. Here we report the synthesis and in vitro biological testing of eleven BAP derivatives substituted in the benzyl ring and in the C2, N7 and N9 positions of the purine moiety. The ability of the compounds to interact with Arabidopsis cytokinin receptors AHK3 and CRE1/AHK4 was tested in bacterial receptor and in live-cell binding assays, and in an Arabidopsis ARR5:GUS (Arabidopsis response regulator 5) reporter gene assay. Cytokinin activity of the compounds was determined in classical cytokinin biotests (tobacco callus, wheat leaf senescence and Amaranthus bioassays). 6-(2,5-Dihydroxybenzylamino)purine (LGR-991) was identified as a cytokinin receptor antagonist. At the molecular level LGR-991 blocks the cytokinin receptor CRE1/AHK4 with the same potency as PI-55. Moreover, LGR-991 acts as a competitive inhibitor of AHK3, and importantly shows reduced agonistic effects in comparison to PI-55 in the ARR5:GUS reporter gene assay and in cytokinin bioassays. LGR-991 causes more rapid germination of Arabidopsis seeds and increases hypocotyl length of dark-grown seedlings, which are characteristics of plants with a reduced cytokinin status. LGR-991 exhibits a structural motive that might lead to preparation of cytokinin antagonists with a broader specificity and reduced agonistic properties.  相似文献   

2.
3.
Glucosylation of adenine and 6-methylaminopurine was not detected in derooted 10-day-old radish seedlings. However, 4-(purin-6-ylamino)butanoic amide and 6-(3,4-dimethoxybenzylamino)purine (N6-substituted adenines with negligible cytokinin activity), like the highly active cytokinin 6-benzylaminopurine, were converted to 7-glucopyranosides. The N2-substituted guanine, 2-benzylaminopurin-6-one, and 6-benzylamino-2-(2-hydroxy-ethylamino)purine were also metabolized to glucosides which were probably 7-glucopyranosides. Hence glucosylation of purines is not restricted to N6-substituted adenines with strong cytokinin activity. Although only ca 1.6% of 6-benzylamino-9-(4-chlorobutyl)purine taken up by the derooted seedlings could be accounted for as 7- and 9-glucosides, a considerable proportion was metabolized to these glucosides in cotyledons excised from 2-day-old radish seedlings. The high cytokinin activity of this 9-substituted compound may be a consequence of cleavage of the 4-chlorobutyl groud at N-9.  相似文献   

4.
The biosynthesis of cytokinins was examined in pea (Pisum sativum L.) plant organs and carrot (Daucus carota L.) root tissues. When pea roots, stems, and leaves were grown separately for three weeks on a culture medium containing [8-14C]adenine without an exogenous supply of cytokinin and auxin, radioactive cytokinins were synthesized by each of these organs. Incubation of carrot root cambium and noncambium tissues for three days in a liquid culture medium containing [8-14C]adenine without cytokinin demonstrates that radioactive cytokinins were synthesized in the cambium but not in the noncambium tissue preparation. The radioactive cytokinins extracted from each of these tissues were analyzed by Sephadex LH-20 columns, reverse phase high pressure liquid chromatography, paper chromatography in various solvent systems, and paper electrophoresis. The main species of cytokinins detectable by these methods are N6-(Δ2-isopentyl_adenine-5′-monophosphate, 6-(4-hydroxy-3-methyl-2-butenyl-amino)-9-β-ribofuranosylpurine-5′- monophosphate, N6-(Δ2-isopentenyl)adenosine, 6-(4-hydroxy-3-methyl-2-butenylamino)-9-β-ribofuranosylpurine, N6-(Δ2-isopentenyl)adenine, and 6-(4-hydroxy-3-methyl-2-butenylamino)purine. On the basis of the amounts of cytokinin synthesized per gram fresh tissues, these results indicate that the root is the major site, but not the only site, of cytokinin biosynthesis. Furthermore, cambium and possibly all actively dividing tissues are responsible for the synthesis of this group of plant hormones.  相似文献   

5.
Cytokinin affects the requirement for auxin of a strain of tobacco callus (Nicotiana tabacum) which is cytokinin-autotrophic when grown on Murashige and Skoog medium with 11.4 mum of indole-3-acetic acid but requires cytokinin 6-(3-methyl-2-butenylamino)purine (i(6) Ade) when grown on the same medium with <3 mum indole-3-acetic acid. As the exogenous concentration of cytokinin (i(6) Ade) is increased, the concentration of indole-3-acetic acid required for growth is decreased. A second effect of cytokinin, observed sporadically in cultures with 2.5 mum or 5 mum i(6) Ade, is the transformation of some of the callus pieces to auxin-autotrophic growth. Strains, both callus-forming and bud-forming tissues, that arise in this manner are not permanently altered in their auxin requirement because subcultures on medium without cytokinin still require exogenous auxin.  相似文献   

6.
Kurt A. Santarius 《Planta》1967,74(3):228-242
Summary The carrot-root tissue culture assay for cytokinin activity has been improved by changing the site of explant excision and eliminating certain vitamins from the basal medium. These modifications increased its sensitivity and enabled zeatin [6-(4-hydroxy-3-methylbut-trans-2-enyl)aminopurine] to be detected at concentrations less than 5×10-5M. In the improved assay, zeatin was markedly more active than kinetin, 6-benzylaminopurine, 6-(o-methylbenzyl)aminopurine and 6-(3-methylbut-2-enyl)aminopurine.The activity of zeatin also exceeded that of kinetin in the etiolated bean-leaf disk expansion assay. Zeatin was markedly more effective than kinetin and 6-(3-methylbut-2-enyl)aminopurine in promoting frond expansion and increasing frond number of Spirodela oligorrhiza cultures grown under continuous illumination. Zeatin was also more active than kinetin and 6-(3-methylbut-2-enyl)aminopurine in increasing frond number of Spirodela cultures grown in darkness. In retarding the senescence of disks of leaves of several species, kinetin was considerably more effective than zeatin which was more active than 6-(3-methylbut-2-enyl)aminopurine. The allylic hydroxyl group in zeatin is therefore a structural feature associated with high cytokinin activity.The relative activities of cytokinins can be very different and even in reverse order in different bioassays. It is suggested that this is due to the mechanism of cytokinin action varying in the different biological systems used.Part IV: Shannon and Letham (1966).  相似文献   

7.
Although cytokinin plays a central role in plant development, our knowledge about the signal transduction pathway initiated by this plant hormone is fragmentary. By randomly introducing enhancer elements into theArabidopsis genome throughAgrobacterium-mediated transformation, 5 cytokinin independent mutant calli (cki1-1, −2, −3, −4 andcki2) were obtained. These mutants exhibit typical cytokinin responses, including rapid proliferation, chloroplast differentiation, shoot induction and inhibition of root formation, in the absence of cytokinin. TheCKl1 gene encodes a product similar to the sensor histidine kinases of two-component systems, and its overexpression in plants induces typical cytokinin responses (Kakimoto 1996). Here I report that overexpression of this gene did not alter the auxin reqirement ofArabidopsis. Another mutant,many shoots, which was also identified on the same screening, produced many adventitious shoots on cotyledons, petioles and true leaves. The extended abstract of a paper presented at the 13th International Symposium in Conjugation with Award of the International Prize for Biology “Frontier of Plant Biology”  相似文献   

8.
Ultra-performance liquid chromatography-tandem mass spectrometry was used to establish the cytokinin profile of the bryophyte Physcomitrella patens (Hedw.) B.S.G.; of 40 analyzed cytokinins, 20 were detected. cis-Zeatin-riboside-O-glucoside, N(6)-(Delta(2)-isopentenyl)adenosine-5'-monophosphate (iPRMP), and trans-zeatin-riboside-O-glucoside were the most abundant intracellular cytokinins. In addition, the aromatic cytokinins N(6)-benzyladenosine (BAR), N(6)-benzyladenine, meta-, and ortho-topolin were detected. Unexpectedly, the most abundant extracellular cytokinin was the nucleotide iPRMP, and its identity was confirmed by quadrupole time-of-flight mass spectrometry. The effects of overexpressing a heterologous cytokinin oxidase/dehydrogenase (CKX; EC 1.4.3.18/1.5.99.12) gene (AtCKX2 from Arabidopsis [Arabidopsis thaliana]) on the intracellular and extracellular distribution of cytokinins was assessed. In cultures of CKX-transformed plants, ultra-performance liquid chromatography-tandem mass spectrometry measurements showed that there were pronounced reductions in the extracellular concentrations of N(6)-(Delta(2)-isopentenyl)adenine (iP) and N(6)-(Delta(2)-isopentenyl)adenosine (iPR), but their intracellular cytokinin concentrations were only slightly affected. In vitro and in vivo measured CKX activity was shown to be strongly increased in the transformants. Major phenotypic changes observed in the CKX-overexpressing plants included reduced and retarded budding, absence of sexual reproduction, and abnormal protonema cells. In bud-induction bioassays with wild-type Physcomitrella, the nucleotides iPRMP, trans-zeatin-riboside-5'-monophosphate, BAR monophosphate, and the cis-zeatin forms cZ and cZR had no detectable effects, while the activities displayed by other selected cytokinins were in the following order: iP > tZ > N(6)-benzyladenine > BAR > iPR > tZR > meta-topolin > dihydrozeatin > ortho-topolin. The results on wild type and CKX transgenics suggest that extracellular iP and iPR are the main cytokinins responsible for inducing buds in the bryophyte Physcomitrella. Cytokinin profile is discussed regarding the evolution of cytokinin biosynthetic pathways.  相似文献   

9.
A selective, sensitive and rapid (2 min or less) method for detecting compounds with potential for cytokinin activity is described. The method does not measure cytokinesis; instead, it determines the ability of cytokinin-active agents to (i) activate the intake of either L-tryptophan or indoleacetic acid by germinated spores of the water-mould Achlya, while inhibiting the energy-dependent transport of all L-amino acids usually found in proteins; (ii) inhibit the energy-dependent transport of nucleosides and sugars by the same organism. The compounds with cytokinin activity generally activate auxin (tryptophan) intake at 10(-8) M or greater and inhibit at 10(-6) M or greater. The most effective activating compounds were N6-(delta2-isopentenyl)adenine, N6-benzyladenine. N6-furfuryladenine, and N6-(trans-hydroxy-3-methyl-but-2-enyl)adenine. These compounds are classed generally as cytokinins in plant growth studies. A cell membrane - localized glycopeptide of molecular weight 6000 was isolated from this organism and shown to be the site at which cytokinins, auxin, and tryptophan bind. An earlier study had also established that calcium ions bind to this entity as well. Tryptophan binding to the glycopeptide was enhanced by cytokinins, suggesting that this may be the way in which whole cells display enhanced tryptophan binding in the bioassay. On the other hand, calcium binding was antagonized by cytokinin. The results suggest that this may be an important experimental system for use in studying one possible way in which cytokinin may regulate plant growth.  相似文献   

10.
ARR5-gene expression was studied in the course of natural leaf senescence and detached leaf senescence in the dark using Arabidopsis thaliana plants transformed with the P ARR5 -GUS gene construct. GUS-activity was measured as a marker of ARR5-gene expression. Chlorophyll and total protein amounts were also estimated to evaluate leaf senescence. Natural leaf senescence was accompanied by the progressive decline in the GUS-activity in leaves of the 2nd and 3rd nodes studied, and this shift of GUS-activity was more pronounced than the loss of chlorophyll content. The ability of the ARR5-gene promoter to respond to cytokinin was not eliminated during natural leaf senescence, as was demonstrated by a cytokinin-induced increase in GUS activity in leaves after their detachment and incubation on benzyladenine (BA, 5 × 10−6 M) in the dark. Leaf senescence in the dark was associated with the further decrease in the GUS-activity. The ARR5-gene promoter response to cytokinin was enhanced with the increase of the age of plants, taken as a source of leaves for cytokinin treatments. Hence, although the expression of the ARR5 gene reduces during natural and dark/detached leaf senescence, the ARR5-gene sensitivity to cytokinin was maintained in both cases and even increased with the leaf age. This data suggest that the ARR5 gene, which belongs to the type-A negative regulators of plant response to cytokinin, could be a feedback regulator able to prevent retardation by cytokinin of leaf senescence when it is important for plant life. Growth regulators either reduced ARR5 gene response to cytokinin during senescence of mature detached leaves in the dark (SA, meJA, ABA, SP) or increased it (IAA), thus modifying the resulting rate of its expression.  相似文献   

11.
The profile of endogenous cytokinins in a genetic tumor line of tobacco, namely, Nicotiana glauca (Grah.) × Nicotiana langsdorffii (Weinm.), following 1 to 10 weeks of growth on solid medium was determined by radioimmunoassay. 3H-labeled cytokinins of high specific activity were added during tissue extraction to correct for the purification losses. Following subculture (of 4-week-old tissues when their cytokinin content is high) onto fresh medium the total cytokinin content continued to be high during the first week (1470 picomoles per gram fresh weight) when the tissue fresh weight remained essentially unchanged (lag phase). The cytokinin levels then declined by about half in 2- and 3-week-old tissues (626 and 675 picomoles per gram fresh weight, respectively), a period when rapid increase in tissue fresh weight was recorded. Increments of 840% and 2780% over initial fresh weight were obtained in 2- and 3-week-old cultures, respectively. The cytokinin content then increased to initial high levels in 4-week-old tissues (1384 picomoles per gram fresh weight) after which it gradually declined with tissue age. The lowest cytokinin levels (432 picomoles per gram fresh weight) were observed in 10-week-old tissues. Maximal tissue fresh weight (4030% increase over initial fresh weight) was recorded in 5-week-old cultures after which it decreased slowly to 77.5% of the highest tissue fresh weight in 10-week-old cultures. Zeatin appeared to be the dominant endogenous cytokinin in tissues of all ages. Other cytokinins quantified were dihydrozeatin, zeatin riboside, and dihydrozeatin riboside; the values may include contributions from aglucones derived from the hydrolysis of corresponding O-glucosides, since the entire basic fraction was treated with β-glucosidase before analysis. In addition the levels of isopentenyladenine, isopentenyladenosine, and the nucleotides of zeatin riboside, dihydrozeatin riboside, and isopentenyladenosine were also determined.  相似文献   

12.
Phosphorylation of cytokinin by adenosine kinase from wheat germ   总被引:5,自引:3,他引:2       下载免费PDF全文
Adenosine kinase was partially purified from wheat germ. This enzyme preparation, which was devoid of adenine phosphoribosyltransferase and nearly free of adenosine deaminase but contained adenylate kinase, rapidly phosphorylated adenosine and a cytokinin, N6-(δ2-isopentenyl)adenosine. Electrophoretic analysis indicated that only N6-(δ2-isopentenyl)adenosine-monophosphate was formed from the cytokinin while about 55% AMP, 45% ADP, and a trace of ATP were formed from adenosine. The biosynthesized nucleoside monophosphates were quantitatively hydrolyzed to the corresponding nucleosides by 5′-nucleotidase and the isopentenyl side chain of the phosphorylated cytokinin was not cleaved. The enzyme did not catalyze phosphorylation of inosine.  相似文献   

13.
Cytokinin oxidase/dehydrogenase (CKO) is a flavoenzyme, which irreversibly degrades the plant hormones cytokinins and thereby participates in their homeostasis. Several synthetic cytokinins including urea derivatives are known CKO inhibitors but structural data explaining enzyme–inhibitor interactions are lacking. Thus, an inhibitory study with numerous urea derivatives was undertaken using the maize enzyme (ZmCKO1) and the crystal structure of ZmCKO1 in a complex with N-(2-chloro-pyridin-4-yl)-N′-phenylurea (CPPU) was solved. CPPU binds in a planar conformation and competes for the same binding site with natural substrates like N6-(2-isopentenyl)adenine (iP) and zeatin (Z). Nitrogens at the urea backbone are hydrogen bonded to the putative active site base Asp169. Subsequently, site-directed mutagenesis of L492 and E381 residues involved in the inhibitor binding was performed. The crystal structures of L492A mutant in a complex with CPPU and N-(2-chloro-pyridin-4-yl)-N′-benzylurea (CPBU) were solved and confirm the importance of a stacking interaction between the 2-chloro-4-pyridinyl ring of the inhibitor and the isoalloxazine ring of the FAD cofactor. Amino derivatives like N-(2-amino-pyridin-4-yl)-N′-phenylurea (APPU) inhibited ZmCKO1 more efficiently than CPPU, as opposed to the inhibition of E381A/S mutants, emphasizing the importance of this residue for inhibitor binding. As highly specific CKO inhibitors without undesired side effects are of major interest for physiological studies, all studied compounds were further analyzed for cytokinin activity in the Amaranthus bioassay and for binding to the Arabidopsis cytokinin receptors AHK3 and AHK4. By contrast to CPPU itself, APPU and several benzylureas bind only negligibly to the receptors and exhibit weak cytokinin activity.  相似文献   

14.
The effect of cytokinin on the formation of NR activity were studied with tobacco callus tissues and wheat seedlings. Cytokinin could not induce the NR activity alone but could enhance the NR inducibility (Table 1). The enhancement of NR formation was detected in the tissues pretreated with cytokinin for over 12 hours. It showed that there was a precondition in the tissues for the induction of NR (Fig. 3). The precondition could not be improved by cytokinin when cycloheximide (inhibitor of protein synthesis) was added into the medium during cytokinin pretreatment (Table 2). Thus, it was thought that cytokinin might enhance synthesis of a protein which participated in the NR activity induction. In immunological test (Fig. 5) the existence of a nonactive apoenzyme of NR in higher plant tissues was demonstrated. It is, therefore, suggested that there are two major steps in the NR activity formation: (l) the synthesis of a nonactive NR apoenzyme, (2) the activation of this nonactive apoenzyme. The former step might be stimulated by cytokinin and the latter was mediated by nitrate.  相似文献   

15.
The plant growth regulator N-phenyl-N′-1, 2, 3-thiadiazol-5-ylurea (Thidiazuron) displayed high activity in promoting the growth of cytokinin-dependent callus cultures of Phaseolus lunatus cv. Kingston. The cytokinin activity of Thidiazuron was similar to that of the highly active N-phenyl-N′-4-pyridylurea derivatives and to the most active cytokinins of the adenine type. Replacement of the phenyl ring of Thidiazuron with other ring structures resulted in a decrease in cytokinin activity.  相似文献   

16.
A radioimmunoassay, combined with high-performance liquid chromatography, has been used to analyse the zeatin-type cytokinins of potato (Solanum tuberosum L. cv. Majestic) tubers and tuber buds throughout growth and storage. During tuber growth, zeatin riboside was the predominant cytokinin detected in all tissues. Immediately after harvest, the total cytokinin concentration fell dramatically in the storage tissue, largely as a consequence of the disappearance of zeatin riboside. During storage, levels of cytokinins in the storage tissue remained relatively constant, but increased in the tuber buds. In the buds of tubers stored at 2°C there was a 20-to 50-fold increase in total cytokinin over six weeks, coinciding with the natural break of innate dormancy. At 10°C the rise in the level of bud cytokinins was slower, correlating with the longer duration of innate dormancy. Injecting unlabelled cytokinins into tubers in amounts known to induce sprouting gave rise to increases in cytokinin concentrations in the buds of the same order as the increase associated with the natural break of dormancy. Metabolism of injected cytokinins was greater in non-dormant than in dormant tubers. The roles of cytokinin concentration and the sensitivity of the buds to cytokinin in the control of dormancy are discussed.Abbreviations CK cytokinin - FW fresh weight - HPLC high-performance liquid chromatography - RIA radioimmunoassay - tio6ade 6-(4-hydroxy-3-methylbut-trans-2-enylamino)-purine=zeatin - tio6adeglc9 6-(4-hydroxy-3-methylbut-trans-2-enylamino)-9--D-glucopyranosyl purine=zeatin-9-glucoside - tio6ado 6-(4-hydroxy-3-methylbut-trans-2-enylamino)-9--D-ribofuranosyl purine=zeatin riboside - tio6ado-[3H]-diol a radioactive derivative of zeatin riboside, synthesised by periodate-oxidation followed by [3H]NaBH4-reduction - tio6AMP 6-(4-hydroxy-3-methylbut-trans-2-enylamino)-9--D-5-phosphoribofuranosyl purine=zeatin riboside 5-monophosphate - t(ioglc4)6ade 6-(4-O--D-glucopyranosyl-3-methylbut-trans-2-enylamino)-purine=zeatin-O-glucoside  相似文献   

17.
An immunocytochemical method was used to determine the proportion of cells in the DNA synthesis (S phase) of the mitotic cycle in suspension cultures of soybean (Glycine max (L.) Merr. cv. Acme) callus of cotyledonary origin, the stably cytokinin-dependent tissue used in the cytokinin bioassay devised by Carlos O. Miller. A standard cell synchronization protocol involving hydroxyurea was used to demonstrate the applicability of the immunocytochemical method to this cell culture. Cells were brought to mitotic arrest by cytokinin withdrawal, and the cell division cycle was restarted by the addition of cytokinin. We have followed the pattern of resumption of S phase after the readdition of cytokinin. This pattern reveals the existence of three subpopulations of cells in cytokinin-starved cultures, consistent with the occurrence of three cytokinin-requiring events in the cell cycle: one in mitosis, one in S phase, and one in the G1 phase.Abbreviations BrdU 5-bromo-2-deoxyuridine - DI deionized water - FITC fluorescein isothiocyanate - HU hydroxyurea - l-AOPP l--aminooxy--phenylpropionic acid - LI labeling index - PA polyamine - PI propidium iodide  相似文献   

18.
CKX (cytokinin dehydrogenase) is a flavoprotein that cleaves cytokinins to adenine and the corresponding side-chain aldehyde using a quinone-type electron acceptor. In the present study, reactions of maize (Zea mays) CKX with five different substrates (N6-isopentenyladenine, trans-zeatin, kinetin, p-topolin and N-methyl-isopentenyladenine) were studied. By using stopped-flow analysis of the reductive half-reaction, spectral intermediates were observed indicative of the transient formation of a binary enzyme-product complex between the cytokinin imine and the reduced enzyme. The reduction rate was high for isoprenoid cytokinins that showed formation of a charge-transfer complex of reduced enzyme with bound cytokinin imine. For the other cytokinins, flavin reduction was slow and no charge-transfer intermediates were observed. The binary complex of reduced enzyme and imine product intermediate decays relatively slowly to form an unbound product, cytokinin imine, which accumulates in the reaction mixture. The imine product only very slowly hydrolyses to adenine and an aldehyde derived from the cytokinin N6 side-chain. Mixing of the substrate-reduced enzyme with Cu2+/imidazole as an electron acceptor to monitor the oxidative half-reaction revealed a high rate of electron transfer for this type of electron acceptor when using N6-isopentenyladenine. The stability of the cytokinin imine products allowed their fragmentation analysis and structure assessment by Q-TOF (quadrupole-time-of-flight) MS/MS. Correlations of the kinetic data with the known crystal structure are discussed for reactions with different cytokinins.  相似文献   

19.
Cytokinins are naturally occurring substances that act as plant growth regulators promoting plant growth and development, including shoot initiation and branching, and also affecting apical dominance and leaf senescence. Aromatic cytokinin 6-benzylaminopurine (BAP) has been widely used in micropropagation systems and biotechnology. However, its 9-glucoside (BAP9G) accumulates in explants, causing root inhibition and growth heterogenity. To overcome BAP disadvantages, a series of ring-substituted 2′-deoxy-9-(β)-d-ribofuranosylpurine derivatives was prepared and examined in different classical cytokinin bioassays. Amaranthus, senescence and tobacco callus bioassays were employed to provide details of cytokinin activity of 2′-deoxy-9-(β)-d-ribosides compared to their respective free bases and ribosides. The prepared derivatives were also tested for their recognition by cytokinin receptors of Arabidopsis thaliana AHK3 and CRE1/AHK4. The ability of aromatic N6-substituted adenine-2′-deoxy-9-(β)-d-ribosides to promote plant growth and delay senescence was increased considerably and, in contrast to BAP, no loss of cytokinin activity at higher concentrations was observed. The presence of a 2′-deoxyribosyl moiety at the N9-position led to an increase in cytokinin activities in comparison to the free bases and ribosides. The antioxidant capacity, cytotoxicity and effect on the MHV-68 gammaherpesvirus strain were also examined.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号