首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Red light causes a reduction in the extension growth of dark-grown seedlings. The involvement of gibberellin in this process was tested by screening a number of gibberellin synthesis and gibberellin response mutants of Pisum sativum L. for the kinetic response of stem growth inhibition by red light. Gibberellin deficient dwarfs, produced by mutant alleles at the Le, Na, and Ls loci, and gibberellin response mutants produced by mutant alleles at the La and Cry2, Lka, and Lkb loci were tested. Extension growth of expanding third internodes of dark-grown seedlings was recorded with high resolution using angular position transducers. Seedlings were treated with red light at a fluence rate of 4 micromoles per square meter per second either continuously or for 75 seconds, and the response was measured over 9 hours. With certain small exceptions, the response to the red light treatments was similar in all the mutants and wild types examined. The lag time for the response was approximately 1 hour and a minimum in growth rate was reached by 3 to 4 hours after the onset of the light treatment. Growth rate depression at this point was about 80%. Seedlings treated with 75 seconds red light recovered growth to a certain extent. Red/far-red treatments indicated that the response was mediated largely by phytochrome. The similar responses to red light among these wild-type and mutant genotypes suggest that the short-term (i.e. 9 hour) response to red light is not mediated by either a reduction in the level of gibberellin or a reduction in the level or affinity of a gibberellin receptor.  相似文献   

2.
A Mung Bean Assay for Malformin-induced Growth Stimulation   总被引:2,自引:2,他引:0       下载免费PDF全文
Curtis RW 《Plant physiology》1976,57(3):365-368
A bioassay employing green or etiolated cuttings of Phaseolus aureus Roxb. was developed for determining malformin-induced growth stimulation in light. Growth enhancement of green cuttings was more rapid and relatively greater than that of etiolated cuttings. Cuttings from green seedlings responded less as seedlings aged; those from etiolated seedlings responded more. Malformin also stimulated the growth of green or etiolated seedlings in light. Most growth enhancement induced by malformin occurred in the upper 1 cm of the stem. Using green cuttings, malformin stimulated stem elongation relatively more when cotyledons, leaves, or especially apical buds were removed. Although malformin failed to stimulate elongation of 2-cm stem sections “floated” on solutions in Petri dishes, it stimulated elongation of sections when they were upright. High concentrations of indoleacetic acid inhibited growth enhancement by malformin. When gibberellin and malformin were combined, growth enhancement was nearly additive.  相似文献   

3.
Dark-grown pea seedlings (Pisum sativum L.) were irradiated for a short period each day with low intensity red light (662 nm), red light immediately followed by far red light (730 nm), or far red light alone. Other plants were transferred to a white light regime (14 hours light/10 hours dark). There was no change in the amount of RNA in the tissue on a fresh weight basis after the various treatments. However, compared with dark-grown seedlings, those plants irradiated with red light showed an increase in the net RNA content per stem apex. In addition there was a two- to three-fold increase in ribosomal RNA of the etioplasts relative to the total ribosomal RNA. These increases were comparable to those found in plants grown in the white light regime. The changes were much smaller if the dark-grown plants were irradiated either with red light followed by far red light, or with far red light alone. Thus continuous light is not essential for the production of ribosomal RNA in plastids, and the levels of ribosomal RNA found in chloroplasts can also be attained in etioplasts of pea leaves in the dark provided the leaf phytochrome is maintained in its active form.  相似文献   

4.
5.
We investigated the role of auxin on stem elongation in pea (Pisum sativum L.) grown for 10d in continuous darkness or under low-irradiance blue, red, far red and white light. The third internode of treated seedlings was peeled and the tissues (epidermis and cortex+central cylinder) were separately analyzed for the concentration of free and conjugated indole-3-acetic acid (IAA). Under red, far red and white light internode elongation was linearly related with the free IAA content of all internode tissues, suggesting that phytochrome-dependent inhibition of stem growth may be mediated by a decrease of free IAA levels in pea seedlings. The correlation between IAA and internode elongation, however, did not hold for blue light-grown seedlings. The hypothesis that the growth response under low-irradiance blue light might be correlated with the lack of phytochrome B signalling and changes in gibberellin metabolism is discussed in view of current knowledge on hormonal control of stem growth.  相似文献   

6.
A study has been made of the effects on higher plants of i-amino-2-nitrocyclo-pentane-1-carboxylicacid (ANPCA), a metabolite of Aspergillus wentii Wehmer. ANPCAwas rapidly translocated to young tissues when injected intothe stems of pea seedlings, but when applied to the roots ofvery young seedlings only trace amounts entered the plants.In intact plants ANPCA produced loss of apical dominance andshorter internodes but was without effect on isolated stem orleaf sections. There was some reduction of cell extension inthe internodes of intact pea seedlings, but the main effectwas on cell numbers. ANPCA inhibited mitosis in root tips andapical buds, the degree of inhibition varying with the species.There appeared to be a block in the mitotic cycle between theend of DNA synthesis and prophase. Inhibition caused by ANPCAcould be reversed by L-leucine. Chlorophyll synthesis was inhibitedby ANPCA in newly formed tissue and in etiolated leaves transferredto the light. There was a considerable increase in the freeamino-acid pool and a decrease in gibberellin content due totreatment with ANPCA. It is suggested that the primary effectof ANPCA may be on protein or RNA synthesis.  相似文献   

7.
8.
Senescence of shoot apices of Pisum sativum L. ‘Alaska’ as measured by cessation of stem elongation was delayed by removal of flowers and by treatment with gibberellin A3 and was hastened by treatment with AMO-1618 (2 isopropyl-4-dimethylamino-5-methylphenyl-1-piperi-dinecarboxylate methyl chloride). Ontogenetic changes in relative endogenous gibberellin levels and in capability of gibberellin biosynthesis in deflowered and control plants were determined indirectly by studying time-course changes in the sensitivity, as indicated by the growth response, of these plants to applied gibberellin and AMO-1618. The results of these experiments suggest that the endogenous gibberellin level varies directly with the growth rate. Analyses of total RNA and protein in shoot tips of deflowered and control plants revealed that the levels of these substances also vary directly with growth rate throughout ontogeny. It is concluded that decreases in endogenous gibberellin, RNA and protein are factors correlated with senescence of the shoot apex.  相似文献   

9.
Law DM  Davies PJ 《Plant physiology》1990,93(4):1539-1543
Free indole-3-acetic acid levels were measured by gas chromatography-mass spectrometry in three ultra-tall `slender' Pisum sativum L. lines differing in gibberellin content. Measurements were made for apices and stem elongation zones of light-grown plants and values were compared with wild-type, dwarf, and nana phenotypes in which internode length is genetically regulated, purportedly via the gibberellin level. Indole-3-acetic acid levels of growing stems paralleled growth rates in all lines, and were high in all three slender genotypes. Growth was inhibited by p-chlorophenoxyisobutyric acid, demonstrating the requirement of auxin activity for stem elongation, and also by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. It is concluded that the slender phenotype may arise from constant activation of a gibberellin receptor or transduction chain event leading directly or indirectly to elevated levels of indole-3-acetic acid, and that increased indole-3-acetic acid levels are a significant factor in the promotion of stem elongation.  相似文献   

10.
In contrast to a wealth of knowledge about the photoregulation of gibberellin metabolism in dicots, that in monocots remains largely unclear. In this study, we found that a blue light signal triggers reduction of active gibberellin content in rice seedlings with simultaneous repression of two gibberellin 20-oxidase genes (OsGA20ox2 and OsGA20ox4) and acute induction of four gibberellin 2-oxidase genes (OsGA2ox4-OsGA2ox7). For further examination of the regulation of these genes, we established a series of cryptochrome-deficient lines through reverse genetic screening from a Tos17 mutant population and construction of knockdown lines based on an RNA interference technique. By using these lines and phytochrome mutants, we elucidated that cryptochrome 1 (cry1), consisting of two species in rice plants (cry1a and cry1b), is indispensable for robust induction of the GA2ox genes. On the other hand, repression of the GA20ox genes is mediated by phytochromes. In addition, we found that the phytochromes also mediate the repression of a gibberellin 3-oxidase gene (OsGA3ox2) in the light. These results imply that, in rice seedlings, phytochromes mediate the repression of gibberellin biosynthesis capacity, while cry1 mediates the induction of gibberellin inactivation capacity. The cry1 action was demonstrated to be dominant in the reduction of active gibberellin content, but, in rice seedlings, the cumulative effects of these independent actions reduced active gibberellin content in the light. This pathway design in which different types of photoreceptors independently but cooperatively regulate active gibberellin content is unique from the viewpoint of dicot research. This redundancy should provide robustness to the response in rice plants.  相似文献   

11.

Background and Aims

Gibberellin stimulates negative gravitropism and the formation of tension wood in tilted Acacia mangium seedlings, while inhibitors of gibberellin synthesis strongly inhibit the return to vertical growth and suppress the formation of tension wood. To characterize the role of gibberellin in tension wood formation and gravitropism, this study investigated the role of gibberellin in the development of gelatinous fibres and in the changes in anatomical characteristics of woody elements in Acacia mangium seedlings exposed to a gravitational stimulus.

Methods

Gibberellin, paclobutrazol and uniconazole-P were applied to the soil in which seedlings were growing, using distilled water as the control. Three days after the start of treatment, seedlings were inclined at 45 ° to the vertical and samples were harvested 2 months later. The effects of the treatments on wood fibres, vessel elements and ray parenchyma cells were analysed in tension wood in the upper part of inclined stems and in the opposite wood on the lower side of inclined stems.

Key Results

Application of paclobutrazol or uniconazole-P inhibited the increase in the thickness of gelatinous layers and prevented the elongation of gelatinous fibres in the tension wood of inclined stems. By contrast, gibberellin stimulated the elongation of these fibres. Application of gibberellin and inhibitors of gibberellin biosynthesis had only minor effects on the anatomical characteristics of vessel and ray parenchyma cells.

Conclusions

The results suggest that gibberellin is important for the development of gelatinous fibres in the tension wood of A. mangium seedlings and therefore in gravitropism.  相似文献   

12.
When dark-grown cucumber (Cucumis sativus L.) seedlings previously exposed to white light for 20 hours were returned to darkness, the ability of isolated chloroplasts to synthesize 5-aminolevulinic acid dropped by approximately 70% within 1 hour. The seedlings were then exposed to light, and the synthetic ability of the isolated chloroplasts was determined. Restoration of the synthetic capacity was promoted by continuous white or red light of moderate intensity. Intermittent red light was also effective. Blue and far-red light did not restore the synthetic capability. Blue light given after a red pulse did not enhance the effect of the red light. Far-red light given immediately after each red pulse prevented the stimulation due to intermittent red light. Restoration of the biosynthetic activity by in vivo light treatments was inhibited by cycloheximide indicating the requirement for translation on 80 S ribosomes for the in vivo light response. These findings suggest that the majority of the plastidic 5-aminolevulinic acid synthesis is under phytochrome regulation.  相似文献   

13.
Mechanism of Gibberellin-Dependent Stem Elongation in Peas   总被引:7,自引:2,他引:5       下载免费PDF全文
Stem elongation in peas (Pisum sativum L.) is under partial control by gibberellins, yet the mechanism of such control is uncertain. In this study, we examined the cellular and physical properties that govern stem elongation, to determine how gibberellins influence pea stem growth. Stem elongation of etiolated seedlings was retarded with uniconozol, a gibberellin synthesis inhibitor, and the growth retardation was reversed by exogenous gibberellin. Using the pressure probe and vapor pressure osmometry, we found little effect of uniconozol and gibberellin on cell turgor pressure or osmotic pressure. In contrast, these treatments had major effects on in vivo stress relaxation, measured by turgor relaxation and pressure-block techniques. Uniconozol-treated plants exhibited reduced wall relaxation (both initial rate and total amount). The results show that growth retardation is effected via a reduction in the wall yield coefficient and an increase in the yield threshold. These effects were largely reversed by exogenous gibberellin. When we measured the mechanical characteristics of the wall by stress/strain (Instron) analysis, we found only minor effects of uniconozol and gibberellin on the plastic compliance. This observation indicates that these agents did not alter wall expansion through effects on the mechanical (viscoelastic) properties of the wall. Our results suggest that wall expansion in peas is better viewed as a chemorheological, rather than a viscoelastic, process.  相似文献   

14.
Hybridizable ribonucleic acid of rat brain   总被引:5,自引:4,他引:1       下载免费PDF全文
1. Cerebral RNA of adult and newborn rats was labelled in vivo by intracervical injection of [5-3H]uridine or [32P]phosphate. Hepatic RNA of similar animals was labelled by intraperitoneal administration of [6-14C]orotic acid. Nuclear and cytoplasmic fractions were isolated and purified by procedures involving extraction with phenol and repeated precipitation with ethanol. 2. The fraction of pulse-labelled RNA from cerebral nuclei that hybridized to homologous DNA exhibited a wide range of turnover values and was heterogeneous in sucrose density gradients. 3. Base composition of the hybridizable RNA was similar to that of the total pulse-labelled material; both were DNA-like. 4. Pulse-labelled cerebral nuclear RNA hybridized to a greater extent than cytoplasmic RNA for at least a week after administration of labelled precursor. This finding suggested that cerebral nuclei contained a hybridizable component that was not transferred to cytoplasm. 5. The rates of decay of the hybridizable fractions of cerebral nuclei and cytoplasm were faster in the newborn animal than in the adult. Presumably a larger proportion of labile messenger RNA molecules was present in the immature brain. 6. Cerebral nuclear and cytoplasmic RNA fractions from newborn or adult rats, labelled either in vivo for periods varying from 4min. to 7 days or in vitro by exposure to [3H]-dimethyl sulphate, uniformly hybridized more effectively than the corresponding hepatic preparation. These data suggested that a larger proportion of RNA synthesis was oriented towards messenger RNA formation in brain than in liver.  相似文献   

15.
Holm RE  Key JL 《Plant physiology》1971,47(5):606-608
Rootless soybean (Glycine max) seedlings were used as a test system to examine the action of auxin on chromatin-directed RNA synthesis. Chromatin from the basal tissue of rootless seedlings (both control and auxin-treated) had RNA synthetic capacity similar to that of chromatin from comparably treated intact seedlings. When DNA synthesis normally induced in the basal tissue by auxin was blocked in the rootless seedlings by 5-fluorodeoxyuridine, the auxin enhancement of chromatin activity was inhibited 70%. This level was still three times the control level, indicating that auxin influenced the synthetic activity of existing DNA template. Experiments with Escherichia coli RNA polymerase revealed that chromatin from both auxin- and auxin plus 5-fluorodeoxyuridine-treated tissue saturated at higher levels than chromatin from control tissue.  相似文献   

16.
Gibberellic acid induced growth in Avena (oat) stem segments within 35 minutes after hormone application. The total elongation elicited by gibberellic acid was greater than 15 times the control growth. The sensitivity of the segments to low concentrations of gibberellic acid (1 pmole) and the specificity of the segments to the gibberellin class of hormones suggest that oat stem segments would be a valuable tool for gibberellin bioassays. Both gibberellic acid-induced growth and control growth are temperature-dependent and showed a Q10 of two or greater. Although the most apparent effect of gibberellic acid was to promote the uptake of water into the internode, the hormone also promoted transport of endogenous substrate and the uptake of exogenous substrate into the growing region. The growth promotion was accomplished without an apparent increase in osmotic pressure.  相似文献   

17.
Gibberellic acid (GA3) induced a marked elongation of 2.5-centimeter shoot tips of Cuscuta chinensis Lamk. cultured in vitro. In terms of the absolute amount of elongation, this growth may be the largest reported for an isolated plant system. The response to hormone was dependent on an exogenous carbohydrate supply. The hormone-stimulated growth was due to both cell division and cell elongation. The growth response progressively decreased if GA3 was given at increasingly later times after culturing, but the decreased growth response could be restored by the application of indole-3-acetic acid (IAA) to the apex. Explants deprived of GA3 gradually lost their ability to transport IAA basipetally, but this ability was also restored by auxin application. The observations are explained on the basis that: (a) the growth of Cuscuta shoot tip in vitro requires, at least, both an auxin and a gibberellin; and (b) in the absence of gibberellin the cultured shoot tip explants lose the ability to produce and/or transport auxin.  相似文献   

18.
Lockhart , James A. (U. Hawaii, Honolulu.) Photoinhibition of stem elongation by full solar radiation. Amer. Jour. Bot. 48(5): 387–392. Illus. 1961.—Stem growth response of ‘Pinto’ bean (Phaseolus vulgaris) to full solar radiation and to various degrees of shading has been studied. Maximum stem elongation occurred at light intensities of approximately 40,000 lux, under the conditions used here. Lower growth rates were found when light intensities were greater or less than this level. When the plants are saturated with gibberellin A3, stem growth is maximum at the highest light intensity, and less at all lower light intensities. Sucrose sprays promoted growth at low light intensities. Apparently, slower growth at low light intensities is due to a deficiency of photosynthetic products, while growth inhibition at high intensities is due to a deficiency of gibberellin. Growth of ‘Alaska’ peas, which are more nearly saturated with endogenous gibberellin, is much less inhibited by high light—or much less promoted by partial shading. This appears to be a general relationship. Dwarf Zea mays (d1), which is very deficient in gibberellin, responds markedly to shading, but the normal segregate (D1) responds little to shading. When the dwarfs are saturated with gibberellin they, too, respond little to shading. Experiments are presented indicating that the high-intensity light inhibition of stem growth and low-energy red light inhibition act on the same step in the gibberellin system.  相似文献   

19.
Gibberellins A19, A20, and A1 were applied to seedlings of birch (Betula pubescens Ehrh.) and alder (Alnus glutinosa (L.) Gaertn.) in order to test their ability to counteract growth inhibition induced by growth retardants (ancymidol and BX-112) or short day (SD, 12 h) photoperiod. Ancymidol inhibits early and BX-112 inhibits late steps in gibberellin biosynthesis. BX-112 inhibited stem elongation in both species while ancymidol, applied as a soil drench, was effective in alder only. Growth retardants affected stem elongation mainly by inhibiting elongation of internodes. All three gibberellins were equally active when applied to seedlings treated with ancymidol; however, only GA1 was able to counteract the growth inhibition induced by BX-112. SD-induced cessation of elongation growth in birch was counteracted by GA1, and to some degree, by GA20, while GA19 was inactive. SD treatment did not induce cessation of apical growth in alder. These results are consistent with the hypothesis that of gibberellins belonging to the early C-13 hydroxylation pathway, GA1 is the only active gibberellin for stem elongation.  相似文献   

20.
The stability of rapidly labelled hybridizable messenger RNA in both exponential and post-exponential phase cells of Bacillus amyloliquefaciens was measured in terms of the rate of loss of its radioactivity. In the exponential phase, where 96% of the mRNA was specific for cell proteins and only 4% was exoprotein mRNA, the label was lost exponentially from the rapidly labelled hybridizable mRNA fraction with a half-life of six minutes at 30 °C. The antibiotic rifampicin, at a concentration of 10 μg/ml, had no effect on the characteristics of decay of this exponential-phase mRNA. In the post-exponential phase, where there were equal amounts of cell protein and exoprotein-specific mRNA, rapidly labelled hybridizable mRNA decayed exponentially in the presence of rifampicin (10 μg/ml), with a half-life of six minutes at 30 °C. In the absence of rifampicin the characteristics of decay were more complex. The evidence available suggested that this was due to the superimposition of a component attributable to reincorporation of degradation products of radioactive RNA on the characteristic exponential decay pattern of the post-exponential mRNA.Measurement of the stability of active mRNA, by studying the loss of ability to incorporate l-[14C]leucine into protein in the presence of rifampicin (10 μg/ml), gave half-lives of 4.5 minutes and six minutes, respectively, for exponential and post-exponential material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号