首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Ligand interactions with yeast aldehyde dehydrogenase   总被引:3,自引:0,他引:3  
  相似文献   

3.
4.
In this study we have examined the roles of alcohol dehydrogenase, aldehyde oxidase, and aldehyde dehydrogenase in the adaptation of Drosophila melanogaster to alcohol environments. Fifteen strains were characterized for genetic variation at the above loci by protein electrophoresis. Levels of in vitro enzyme activity were also determined. The strains examined showed considerable variation in enzyme activity for all three gene-enzyme systems. Each enzyme was also characterized for coenzyme requirements, effect of inhibitors, subcellular location, and tissue specific expression. A subset of the strains was chosen to assess the physiological role of each gene-enzyme system in alcohol and aldehyde metabolism. These strains were characterized for both the ability to utilize alcohols and aldehydes as carbon sources as well as the capacity to detoxify such substrates. The results of the above analyses demonstrate the importance of both alcohol dehydrogenase and aldehyde dehydrogenase in the in vivo metabolism of alcohols and aldehydes.  相似文献   

5.
Crystalline alcohol dehydrogenase from baker's yeast   总被引:61,自引:0,他引:61  
  相似文献   

6.
Cellulose acetate zymograms of alcohol dehydrogenase (ADH), aldehyde dehydrogenase (AHD), aldehyde reductase (AHR), aldehyde oxidase (AOX) and xanthine oxidase (XOX) extracted from horse tissues were examined. Five ADH isozymes were resolved: three corresponded to the previously reported class I ADHs (EE, ES and SS) (Theorell, 1969); a single form of class II ADH (designated ADH-C2) and of class III ADH (designated ADH-B2) were also observed. The latter isozyme was widely distributed in horse tissues whereas the other enzymes were found predominantly in liver. Four AHD isozymes were differentially distributed in subcellular preparations of horse liver: AHD-1 (large granules); AHD-3 (small granules); and AHD-2, AHD-4 (cytoplasm). AHD-1 was more widely distributed among the horse tissues examined. Liver represented the major source of activity for most AHDs. A single additional form of NADPH-dependent AHR activity (identified as hexonate dehydrogenase), other than the ADHs previously described, was observed in horse liver. Single forms of AOX and XOX were observed in horse tissue extracts, with highest activities in liver.  相似文献   

7.
Polymorphism of aldehyde dehydrogenase and alcohol sensitivity   总被引:6,自引:0,他引:6  
H W Goedde  D P Agarwal 《Enzyme》1987,37(1-2):29-44
The metabolism of acetaldehyde has received considerable attention in the past years owing to its acute and chronic toxic effects in humans. Aldehyde dehydrogenase (ALDH) catalyzes the oxidation of acetaldehyde in liver and other organs. Two major isozymes of hepatic ALDH (ALDH I or E2 and ALDH II or E1), which differ in their structural and functional properties, have been characterized in humans. The ALDH I with a low Km for acetaldehyde is predominantly of mitochondrial origin and ALDH II which has a relatively higher Km is of cytosolic origin. An inherited deficiency of ALDH I isozyme has been found among Japanese and Chinese which is primarily responsible for producing acute alcohol sensitivity symptoms (flushing response) after drinking mild doses of alcohol. Biochemical, immunochemical and molecular genetics data indicate a structural mutation in the ALDH I isozyme gene responsible for the loss in catalytic activity. Population genetic studies indicate a wide prevalence of this ALDH polymorphism among individuals of Mongoloid race. Flushing response to alcohol shows familial resemblances and preliminary family data from Japan, China and Korea hint to an autosomal codominant inheritance for ALDH I isozyme deficiency. The ALDH polymorphism is apparently responsible for the low incidence of alcoholism in Japanese, Chinese and Koreans. Alcohol-induced sensitivity due to ALDH isozyme deficiency may act as an inhibitory factor against excessive alcohol drinking thereby imparting a protection against alcoholism.  相似文献   

8.
1. Cellulose acetate zymograms of alcohol dehydrogenase (ADH), aldehyde dehydrogenase, sorbitol dehydrogenase, aldehyde oxidase, "phenazine" oxidase and xanthine oxidase extracted from tissues of inbred mice were examined. 2. ADH isozymes were differentially distributed in mouse tissues: A2--liver, kidney, adrenals and intestine; B2--all tissues examined; C2--stomach, adrenals, epididymis, ovary, uterus, lung. 3. Two NAD+-specific aldehyde dehydrogenase isozymes were observed in liver and kidney and differentially distributed in other tissues. Alcohol dehydrogenase, aldehyde oxidase, "phenazine" oxidase and xanthine oxidase were also stained when aldehyde dehydrogenase was being examined. 4. Two aldehyde oxidase isozymes exhibited highest activities in liver. 5. "Phenazine oxidase" was widely distributed in mouse tissues whereas xanthine oxidase exhibited highest activity in intestine and liver extracts. 6. Genetic variants for ADH-C2 established its identity with a second form of sorbitol dehydrogenase observed in stomach and other tissues. The major sorbitol dehydrogenase was found in high activity in liver, kidney, pancreas and male reproductive tissues.  相似文献   

9.
1. The activity of liver microsomal high Km-ALDH and mitochondrial low Km-ALDH, which may be primarily responsible for the oxidation of acetaldehyde after ethanol administration was found to be predominantly distributed in the centrilobular area. 2. The activities of other ALDH isozymes in mitochondrial and soluble fractions were evenly distributed in periportal and perivenous regions. 3. The activity of ADH which is involved in production of acetaldehyde was predominantly located in the periportal area. 4. From these results it seems unlikely that a concentration of acetaldehyde after ethanol ingestion is higher in perivenous hepatocytes than in periportal ones. Additional data would be needed to understand fully the mechanism by which ethanol induces predominantly centrilobular liver injury.  相似文献   

10.
Phosphogluconic acid dehydrogenase from yeast   总被引:13,自引:0,他引:13  
  相似文献   

11.
The release of Zn2+ from gamma-irradiated yeast alcohol dehydrogenase has been measured using atomic absorption spectrometry. Radiolysis is accompanied by release of Zn2+ at a rate which is dependent on the nature of the free radicals available for reaction. Hydroxyl radicals and hydrogen atoms readily cause zinc release with G values of 0.13 and 0.11 (/100 eV) respectively, whereas hydrated electrons are considered not to contribute to the demetallization process. The radiolytically generated radical anions I2-., (SCN)2-. and Br2-. enhance the rate of zinc release. Evidence is presented that the enzyme is demetallized as a result of free radical reactions at cysteine and histidine residues.  相似文献   

12.
Summary A much higher incidence of alcohol flushing among Orientals in comparison to Caucasians, i.e., >50% vs 5%–10%, has been attributed to racial differences in alcohol-metabolizing enzymes. A large majority of Orientals are atypical in alcohol dehydrogenase-2 locus (ADH 2 ), and their livers exhibit significantly higher ADH activity than the livers of most Caucasians. Approximately 50% of Orientals lack the mitochondrial aldehyde dehydrogenase (ALDH2) activity, and elimination of acetaldehyde might be disturbed. We determined by means of hybridization of genomic DNA samples with allele specific oligonucleotide probes, genotypes of the ADH 2 and ALDH 2 loci in Japanese alcohol flushers and nonflushers. We found that all individuals with homozygous atypical ALDH 2 2 /ALDH 2 2 and most of those with heterozygous atypical ALDH 1 2 /ALDH 2 2 were alcohol flushers, while all subjects with homozygous usual ALDH 1 2 /ALDH 1 2 were nonflushers. Frequency of the atypical ADH 2 2 was found to be higher in alcohol flushers than in nonflushers, but the statistical significance was not established in the sample size examined.  相似文献   

13.

Background

In a previous study, we deleted three aldehyde dehydrogenase (ALDH) genes, involved in ethanol metabolism, from yeast Saccharomyces cerevisiae and found that the triple deleted yeast strain did not grow on ethanol as sole carbon source. The ALDHs were NADP dependent cytosolic ALDH1, NAD dependent mitochondrial ALDH2 and NAD/NADP dependent mitochondrial ALDH5. Double deleted strain ΔALDH2+ΔALDH5 or ΔALDH1+ΔALDH5 could grow on ethanol. However, the double deleted strain ΔALDH1+ΔALDH2 did not grow in ethanol.

Methods

Triple deleted yeast strain was used. Mitochondrial NAD dependent ALDH from yeast or human was placed in yeast cytosol.

Results

In the present study we found that a mutant form of cytoplasmic ALDH1 with very low activity barely supported the growth of the triple deleted strain (ΔALDH1+ΔALDH2+ΔALDH5) on ethanol. Finding the importance of NADP dependent ALDH1 on the growth of the strain on ethanol we examined if NAD dependent mitochondrial ALDH2 either from yeast or human would be able to support the growth of the triple deleted strain on ethanol if the mitochondrial form was placed in cytosol. We found that the NAD dependent mitochondrial ALDH2 from yeast or human was active in cytosol and supported the growth of the triple deleted strain on ethanol.

Conclusion

This study showed that coenzyme preference of ALDH is not critical in cytosol of yeast for the growth on ethanol.

General significance

The present study provides a basis to understand the coenzyme preference of ALDH in ethanol metabolism in yeast.  相似文献   

14.
A didelphid marsupial, the gray short-tailed opossum (Monodelphis domestica), was used as a model species to study the biochemical genetics of alcohol dehydrogenases (ADHs) and aldehyde dehydrogenase (ALDH) in corneal tissue. Isoelectric point variants of corneal ALDH (designated ALDH3) and a major soluble protein in corneal extracts were observed among eight families of animals used in studying the genetics of these proteins. Both phenotypes exhibited identical patterns following PAGE-IEF and were inherited in a normal Mendelian fashion, with two alleles at a single locus (ALDH3) showing codominant expression. The data provided evidence for genetic identity of corneal ALDH with this major soluble protein, and supported biochemical evidence, recently reported for purified bovine corneal ALDH, that this enzyme constitutes a major portion of soluble corneal protein (Abedinia et al. 1990). Isoelectric point variants for corneal ADH were also observed, with patterns for the two major forms (ADH3 and ADH4) and one minor form (ADH5) being consistent with the presence of two ADH subunits (designated gamma and delta), and variant phenotypes existing for the gamma subunit. The genetics of this enzyme was studied in the eight families, and the results were consistent with codominant expression of two alleles at a single locus (designated ADH3). It is relevant that a major detoxification function has been proposed for corneal ADH and ALDH, in the oxidoreduction of peroxidic aldehydes induced by available oxygen and UV-B light (Holmes & VandeBerg, 1986a). In addition, a direct role for corneal ALDH as a UV-B photoreceptor in this anterior eye tissue has also been proposed (Abedinia et al. 1990).  相似文献   

15.
1. Inhibition by pyridine of reduction of NAD by ethanol in the presence of yeast alcohol dehydrogenase was studied at 25 degrees in 60mm-glycine buffer (K(+), pH9.3). 2. The apparent Michaelis constant for ethanol increases linearly and that for NAD increases non-linearly with pyridine concentration. 3. Rates, v, observed in the presence of pyridine are lower than the values calculated from the effect of pyridine on the two apparent Michaelis constants and are described by the expression V/v={1+5.8[pyridine]}x{1+0.016(1+124 [pyridine)]/[EtOH]}x{1+0.00019(1+3.3[pyridine]+110 [pyridine](2))/[NAD]}. 4. Mixed inhibitor studies with pyridine and N(1)-methylnicotinamide chloride in 40mm-pyrophosphate buffer (Na(+), pH8.2) indicated little interaction of pyridine with the ;pyridinium site' of the dehydrogenase (interaction constant, alpha, 2.1). 5. The possible competition of ethanol and pyridine for a zinc atom in the active centre of yeast alcohol dehydrogenase is discussed.  相似文献   

16.
An adhE, ldhA double mutant Escherichia coli strain, SBS110MG, has been constructed to produce succinic acid in the presence of heterologous pyruvate carboxylase (PYC). The strategic design aims at diverting maximum quantities of NADH for succinate synthesis by inactivation of NADH competing pathways to increase succinate yield and productivity. Additionally an operational PFL enzyme allows formation of acetyl-CoA for biosynthesis and formate as a potential source of reducing equivalents. Furthermore, PYC diverts pyruvate toward OAA to favor succinate generation. SBS110MG harboring plasmid pHL413, which encodes the heterologous pyruvate carboxylase from Lactococcus lactis, produced 15.6 g/L (132 mM) of succinate from 18.7 g/L (104 mM) of glucose after 24 h of culture in an atmosphere of CO(2) yielding 1.3 mol of succinate per mole of glucose. This molar yield exceeded the maximum theoretical yield of succinate that can be achieved from glucose (1 mol/mol) under anaerobic conditions in terms of NADH balance. The current work further explores the importance of the presence of formate as a source of reducing equivalents in SBS110MG(pHL413). Inactivation of the native formate dehydrogenase pathway (FDH) in this strain significantly reduced succinate yield, suggesting that reducing power was lost in the form of formate. Additionally we investigated the effect of ptsG inactivation in SBS110MG(pHL413) to evaluate the possibility of a further increase in succinate yield. Elimination of the ptsG system increased the succinate yield to 1.4 mol/mol at the expense of a reduction in glucose consumption of 33%. In the presence of PYC and an efficient conversion of glucose to products, the ptsG mutation is not indispensable since PEP converted to pyruvate as a result of glucose phosphorylation by the glucose specific PTS permease EIICB(glu) can be rediverted toward OAA favoring succinate production.  相似文献   

17.
18.
【目的】研究假坚强芽胞杆菌OF4中乙醇脱氢酶和乙醛脱氢酶的酶学特性。【方法】通过引物设计,采用PCR技术从嗜碱芽胞杆菌OF4的基因组DNA中扩增获得乙醇脱氢酶(adh)基因和乙醛脱氢酶(aldh)基因,构建表达载体,通过异源原核表达,Ni-NTA柱层析纯化酶蛋白,分析其酶学特性。【结果】乙醛脱氢酶的最适反应温度为35℃,最适反应pH值为8.0,酶蛋白的活力为979.6 U/mg,其稳定性在25℃和35℃下比45℃稍好;尽管由于乙醇脱氢酶的表达量低而未能纯化获得酶蛋白,但通过双基因共表达及乙醇耐受性实验发现乙醇脱氢酶也具备较高的催化活性。【结论】成功地从假坚强芽胞杆菌OF4中克隆获得了乙醇脱氢酶和乙醛脱氢酶基因,二者共同作用能够较大提高宿主对乙醇的耐受性。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号