首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thalassaemias result from mutations of the globin genes that cause reduced or absent haemoglobin production and thus interfere with the critical function of oxygen delivery. They represent the most common single-gene disorders, with 4.83% of the world population carrying globin gene variants. Reduced or absent alpha-globin (alpha-thalassaemia) or beta-globin (beta-thalassaemia) leads to anaemia and multifaceted clinical syndromes. In this second of two reviews on the pathophysiology of haemoglobinopathies, we describe the clinical features, pathophysiology and molecular basis of alpha- and beta-thalassaemias. We then discuss current targeted therapies, including the new oral iron chelators, which, along with chronic transfusions, constitute the mainstay of symptomatic therapy for the majority of patients. Finally, we describe potentially curative therapies, such as bone marrow transplant, and discuss some of the outstanding research studies and questions, including the upcoming field of gene therapy for beta-thalassaemia. An accompanying article on haemoglobinopathies (Part I) focuses on sickle cell disease.  相似文献   

2.
In Jamaican children with homozygous sickle cell (SS) disease diagnosed at birth two-year survival was 87%, compared with 95% in children with sickle cell-haemoglobin C (CS) disease, and 99% in normal controls. Death among those with SS disease occurred most often between the ages of 6 and 12 months. Principal causes were acute splenic sequestration and pneumococcal infection. Neonatal diagnosis of haemoglobinopathies must be followed by close observation if mortality is to be reduced by early diagnosis and treatment of these complications.  相似文献   

3.
Owing to the episodic and unpredictable nature of the sickling crisis, many aspects of the disease sickle cell anemia have resisted in vivo analysis. The lack of an animal model has hindered the pathophysiological investigation of this disease, as well as deterred the development of pharmacological therapies. The transgenic mouse system offers a new means for creating animals that make a specified mutant gene product, and we have used this system to create a series of mice that contain the human beta s-globin gene. These animals express this gene in the appropriate tissues and at the same point in development as the adult mouse globin genes are expressed. We have crossed the human beta s-containing transgenic mice with a beta-thalassemic mouse line and examined the hemoglobins produced by these mice. Their red cells contain 10% mouse alpha/human beta s hybrid hemoglobin, which partially corrects the thalassemic phenotype of the homozygous beta-thalassemic animals. Though the red cells do not sickle, other properties of the human beta s gene in these mice indicate the potential for the eventual development of a transgenic animal model for sickle cell anemia.  相似文献   

4.
During 1978-81 there were about 43,500 births in Birmingham, of which 10.3% were to Negroes and 22.6% to Asians. Cellulose acetate electrophoresis of red cell haemolysates from capillary specimens collected for phenylketonuria screening was performed for these babies to assess the feasibility, cost, and benefits of detecting sickle haemoglobinopathies early. Eight babies had important haemoglobinopathies; four were homozygotes for haemoglobin S (HbS), three were mixed heterozygotes for HbS and haemoglobin C (HbC), and one had haemoglobin E (HbE) and beta-thalassemia. Also, 534 (1.19%) were heterozygotes for HbS or haemoglobin D (HbD) and 205 (0.46%) for HbC or HbE, 453 (1.01%) were heterozygotes with a fast-moving band, one was a heterozygote for haemoglobin Norfolk, and one a heterozygote for both HbS and haemoglobin G Philadelphia. The cost of neonatal screening for haemoglobinopathies was 12.5 p per baby (705 pounds for each serious abnormality).  相似文献   

5.
In sickle cell disease, the changes in RBC morphology destabilize the red blood cell (RBC) membrane and lead to hemolysis. Several experimental and clinical studies have associated intravascular hemolysis with pulmonary hypertension in sickle cell disease. Cell-free hemoglobin (Hb) from intravascular hemolysis has high affinity for nitrixc oxide (NO) and can affect the NO bioavailability in the sickle cell disease, which may eventually lead to pulmonary hypertension. To study the effects of intravascular hemolysis related cell-free Hb concentrations on NO bioavailability, we developed a two-dimensional mathematical model of NO biotransport in 50-μm arteriole under steady-state sickle cell disease conditions. We analyzed the effects of flow-dependent NO production and axial and radial transport of NO, a recently reported much lower NO-RBC reaction rate constant, and cell-free layer thickness on NO biotransport. Our results show that the presence of cell-free Hb concentrations as low as 0.5 μM results in an approximately three- to sevenfold reduction in the predicted smooth muscle cell NO concentrations compared with those under physiological conditions. In addition, increasing the diffusional resistance for NO in vascular lumen from cell-free layer or reducing NO-RBC reaction rate did not improve the NO bioavailability at the smooth muscle cell layer significantly for cell-free Hb concentrations ≥1 μM. These results suggest that lower NO bioavailability due to low micromolar cell-free Hb can disturb NO homeostasis and cause insufficient bioavailability at the smooth muscle cell layer. Our results supports the hypothesis that hemolysis-associated reduction in NO bioavailability may play a role in the development of pathophysiological complications like pulmonary hypertension in sickle cell disease that are observed in several clinical and experimental studies.  相似文献   

6.
Various processes (selection, mutation, migration and genetic dirft) are known to determine the frequency of genetic disease in human populations, but so far it has proved almost impossible to decide to what extent each is responsible for the presence of a particular genetic disease. The techniques of gene and haplotype analysis offer new hope in addressing this issue, and we review relevant studies of three haemoglobinopathies: sickle cell anaemia, and and thalassaemia. We show how for each disease it is possible to recognize a pattern of regionally specific mutations, found in association with one or a few haplotypes, that is best explained as the result of selection; other patterns are due to population migration and genetic drift. However, we caution that such conclusions can be drawn in special circumstances only. In the case of the haemoglobinopathies it is possible because a selective agent (malaria) was already suspected, and the investigations could be carried out in relatively genetically homogenous populations whose migratory histories are known. Moreover, some data reviewed here suggest that gene conversion and the haplotype composition of a population may affect the frequency of a mutation, making interpretation of gene frequencies difficult on the basis of standard population genetics theory. Hence attempts to use the same approaches with other genetic diseases are likely to be frustrated by a lack of suitably untrammelled populations and by difficulties accounting for poorly understood genetic processes. We conclude that although this combination of molecular and population genetics is successful when applied to the study of haemoglobinopathies, it may not be so easy to apply it to the study of other genetic diseases.  相似文献   

7.
The protection from malaria afforded by sickle haemoglobin (and certain other haemoglobinopathies) suggests that it may be possible to utilise a common property that their erythrocytes share with both malaria-infected erythrocytes and senescent erythrocytes to develop a vaccine. All three conditions cause clustering of a specific protein molecule, band 3, on their erythrocyte's surface and this protein, when present on senescent erythrocytes at least, results in the immune recognition and removal of these by naturally occurring antibodies. It is hypothesised that if an up-regulated immune response to this protein on sickle cells is responsible for the benefit afforded to malaria patients then a vaccine using antigenic band 3 peptides may provide similar protection.  相似文献   

8.
Fibrin is an extracellular matrix protein that is responsible for maintaining the structural integrity of blood clots. Much research has been done on fibrin in the past years to include the investigation of synthesis, structure-function, and lysis of clots. However, there is still much unknown about the morphological and structural features of clots that ensue from patients with disease. In this research study, experimental techniques are presented that allow for the examination of morphological differences of abnormal clot structures due to diseased states such as diabetes and sickle cell anemia. Our study focuses on the preparation and evaluation of fibrin clots in order to assess morphological differences using various experimental assays and confocal microscopy. In addition, a method is also described that allows for continuous, real-time calculation of lysis rates in fibrin clots. The techniques described herein are important for researchers and clinicians seeking to elucidate comorbid thrombotic pathologies such as myocardial infarctions, ischemic heart disease, and strokes in patients with diabetes or sickle cell disease.  相似文献   

9.
Experimenta naturae, like the glucose-6-phosphate dehydrogenase deficiency, indicate that malaria parasites are highly susceptible to alterations in the redox equilibrium. This offers a great potential for the development of urgently required novel chemotherapeutic strategies. However, the relationship between the redox status of malarial parasites and that of their host is complex. In this review article we summarise the presently available knowledge on sources and detoxification pathways of reactive oxygen species in malaria parasite-infected red cells, on clinical aspects of redox metabolism and redox-related mechanisms of drug action as well as future prospects for drug development. As delineated below, alterations in redox status contribute to disease manifestation including sequestration, cerebral pathology, anaemia, respiratory distress, and placental malaria. Studying haemoglobinopathies, like thalassemias and sickle cell disease, and other red cell defects that provide protection against malaria allows insights into this fine balance of redox interactions. The host immune response to malaria involves phagocytosis as well as the production of nitric oxide and oxygen radicals that form part of the host defence system and also contribute to the pathology of the disease. Haemoglobin degradation by the malarial parasite produces the redox active by-products, free haem and H(2)O(2), conferring oxidative insult on the host cell. However, the parasite also supplies antioxidant moieties to the host and possesses an efficient enzymatic antioxidant defence system including glutathione- and thioredoxin-dependent proteins. Mechanistic and structural work on these enzymes might provide a basis for targeting the parasite. Indeed, a number of currently used drugs, especially the endoperoxide antimalarials, appear to act by increasing oxidant stress, and novel drugs such as peroxidic compounds and anthroquinones are being developed.  相似文献   

10.
The promise of molecular medicine is the prevention and treatment of illness. Understanding the mechanism of the disease should allow one to "fix" it. For sickle cell anemia, however, knowledge of the biochemical basis of the disease was only partly responsible for finding a means of treating the disease--of equal value were hypotheses and conclusions generated from clinical observations. This article describes the research path that led to the first effective treatment for sickle cell anemia, hydroxy-urea. Rather than exemplifying the "bench-to-bedside" model commonly used to describe the process of therapeutic innovation, this history of this research reveals that the critical advances for the development of treatment came not from basic research, but instead from clinical and patient-oriented research. Given that the linear approach is the prevailing paradigm of therapeutic innovation, this history is important because it indicates the inadequacy of this approach for a relatively straightforward single-gene mutation disease such as sickle cell anemia and suggests the need for multiple models of innovation for more complex diseases. Thus, this article questions the expectations of molecular medicine and the dominance of a linear model of therapeutic innovation, which often excludes or subordinates other models of developing treatments.  相似文献   

11.
Hydroxyurea is a relatively new treatment for sickle cell disease. A portion of hydroxyurea's beneficial effects may be mediated by nitric oxide, which has also drawn considerable interest as a sickle cell disease treatment. Patients taking hydroxyurea show a significant increase in iron nitrosyl hemoglobin and plasma nitrite and nitrate within 2 h of ingestion, providing evidence for the in vivo conversion of hydroxyurea to nitric oxide. Hydroxyurea reacts with hemoglobin to produce iron nitrosyl hemoglobin, nitrite, and nitrate, but these reactions do not occur fast enough to account for the observed increases in these species in patients taking hydroxyurea. This report reviews recent in vitro studies directed at better understanding the in vivo nitric oxide release from hydroxyurea in patients. Specifically, this report covers: (1) peroxidase-mediated formation of nitric oxide from hydroxyurea; (2) nitric oxide production after hydrolysis of hydroxyurea to hydroxylamine; and (3) the nitric oxide-producing structure-activity relationships of hydroxyurea. Results from these studies should provide a better understanding of the nitric oxide donor properties of hydroxyurea and guide the development of new hydroxyurea-derived nitric oxide donors as potential sickle cell disease therapies.  相似文献   

12.
Acute chest syndrome (ACS) is the leading cause of death in sickle cell disease. Severe ACS often develops in the course of a vasoocclusive crisis (VOC), and frequently involves pulmonary fat embolism. Secretory phospholipase A2 (sPLA2), a potent inflammatory mediator, is elevated in ACS, and sPLA2 levels in serum or plasma predict impending ACS. In addition sPLA2 may play a major role in the actual damage to the lung resulting in a new pulmonary infiltrate on chest radiography, respiratory symptoms, and ultimately alveolar collapse and the impairment of gas exchange. The data indicate that measurement of sPLA2 can be useful in alerting the clinician to patients with impending ACS, and suggest that instituting early therapies based on sPLA2 levels, including inhibition of sPLA2 activity, may be useful to prevent or reduce the clinical morbidity of ACS in sickle cell disease.  相似文献   

13.
血红蛋白疾病是由于血红蛋白分子突变造成其结构或合成异常引起的一类疾病,分为血红蛋白病和地中海贫血两大类。前者表现为血红蛋白分子的珠蛋白肽链结构异常,如镰刀状贫血;后者表现为珠蛋白肽链合成速率的降低,如β-地中海贫血。本文主要以β-地中海贫血和镰刀状贫血为例,从DNA水平、RNA水平和基因调控及干细胞移植等方面介绍血红蛋白疾病基因治疗的研究进展,并结合生命科学的最新发现,对该领域将来可能出现的新的治疗方法提出展望。  相似文献   

14.
鞠君毅  赵权 《遗传》2018,40(6):429-444
成人体内的血红蛋白是由2个 α-珠蛋白和2个β-珠蛋白组成的四聚体,负责氧气的运输。珠蛋白基因在基因组中成簇分布,其表达受到多种顺式作用元件和反式作用因子的共同调控,具有高度的组织特异性和发育时序性。β-地中海贫血和镰刀型细胞贫血是两种最常见的由于β-珠蛋白基因突变引起的常染色体隐性遗传病。γ-珠蛋白是一种主要在胎儿时期表达的类β-珠蛋白,同样具有载氧功能,但编码该蛋白的基因在上述贫血患者中却保持完好。因此,临床上优选的治疗方案之一是重新激活患者体内沉默的γ-珠蛋白基因的表达来弥补缺损的β-珠蛋白,从而缓解临床症状。目前已有多种能提高γ-珠蛋白基因表达的药物,在临床上用于治疗β-地中海贫血和镰刀型细胞贫血。随着基因组编辑技术的发展,针对这两种贫血的精准基因治疗研究也在进行中。本文着重介绍了参与γ-珠蛋白基因调控的转录因子和表观遗传修饰分子,以及目前相关的β-地中海贫血和镰刀型细胞贫血的临床治疗药物和手段,以期为深入阐明γ-珠蛋白基因的转录表达分子调控机制提供参考。  相似文献   

15.
Sickle cell disease is characterized by microvascular occlusion and hemolytic anemia, factors that impair tissue oxygen delivery. We use visible reflectance hyperspectral imaging to quantitate skin tissue hemoglobin oxygen saturation (HbO2) and to determine whether changes in blood flow during nitric oxide (NO) stimulation or gas administration (therapies proposed for this disease) improve skin tissue oxygen saturation in five patients with sickle cell disease. Compared with six healthy African-American subjects, sickle cell patients exhibited higher forearm blood flows (7.4 +/- 1.8 vs. 3.2 +/- 0.4 ml.min-1.100 ml tissue-1, P = 0.037) but significantly reduced percentages of skin HbO2 (61.0 +/- 0.2 vs. 77.5 +/- 0.2%, P < 0.001). Administration of acetylcholine to patients increased blood flow by 15.1 +/- 3.8 ml.min-1.100 ml tissue-1 and the percentage of skin HbO2 by 4.1 +/- 0.3% (P = 0.02, P < 0.001, respectively, from baseline values). Sodium nitroprusside, a direct NO donor, increased blood flow by 3.9 +/- 1.1 ml/min and the percentage of skin HbO2 by 2.9 +/- 0.3% (P = 0.02, P < 0.001, respectively). NO inhalation had no effect on forearm blood flow, yet increased the percentage of skin HbO2 by 2.3 +/- 0.3% (P < 0.001). Percentages of skin HbO2 were exponentially related to blood flow (R = 0.97, P < 0.001), indicating a limit to skin tissue oxygen saturation at high blood flows. Thus, for acetylcholine infusion leading to blood flows sevenfold greater than those of healthy resting African-American subjects, patients still exhibited lower percentages of skin HbO2 (65.2 +/- 0.2 vs. 77.5 +/- 0.2%, P < 0.001). Visible reflectance hyperspectral imaging demonstrates that either the stimulation or the administration of NO pharmacologically or by gas inhalation improves, but does not normalize, skin tissue oxygen saturation in patients with sickle cell disease.  相似文献   

16.
The rheological properties of normal erythrocytes appear to be largely determined by those of the red cell membrane. In sickle cell disease, the intracellular polymerization of sickle hemoglobin upon deoxygenation leads to a marked increase in intracellular viscosity and elastic stiffness as well as having indirect effects on the cell membrane. To estimate the components of abnormal cell rheology due to the polymerization process and that due to the membrane abnormalities, we have developed a simple mathematical model of whole cell deformability in narrow vessels. This model uses hydrodynamic lubrication theory to describe the pulsatile flow in the gap between a cell and the vessel wall. The interior of the cell is modeled as a Voigt viscoelastic solid with parameters for the viscous and elastic moduli, while the membrane is assigned an elastic shear modulus. In response to an oscillatory fluid shear stress, the cell--modeled as a cylinder of constant volume and surface area--undergoes a conical deformation which may be calculated. We use published values of normal and sickle cell membrane elastic modulus and of sickle hemoglobin viscous and elastic moduli as a function of oxygen saturation, to estimate normalized tip displacement, d/ho, and relative hydrodynamic resistance, Rr, as a function of polymer fraction of hemoglobin for sickle erythrocytes. These results show the transition from membrane to internal polymer dominance of deformability as oxygen saturation is lowered. More detailed experimental data, including those at other oscillatory frequencies and for cells with higher concentrations of hemoglobin S, are needed to apply fully this approach to understanding the deformability of sickle erythrocytes in the microcirculation. The model should be useful for reconciling the vast and disparate sets of data available on the abnormal properties of sickle cell hemoglobin and sickle erythrocyte membranes, the two main factors that lead to pathology in patients with this disease.  相似文献   

17.
Taj Jadavji  Charles G. Prober 《CMAJ》1985,132(7):814-815
Dactylitis commonly occurs in patients with homozygous hemoglobin S disease (sickle cell anemia), sickle cell-hemoglobin C disease or sickle cell-β-thalassemia. A case is reported of dactylitis associated with sickle cell trait, a very rare occurrence. It may be that in this patient the disorder was secondary to severe diarrhea and dehydration.  相似文献   

18.
Chronic heart failure, secondary to left ventricular hypertrophy or myocardial infarction, is a condition with increasing morbidity and mortality. Although the mechanisms underlying the development and progression of this condition remain a subject of intense interest, there is now growing evidence that redox-sensitive pathways play an important role. This article focuses on the involvement of reactive oxygen species derived from a family of superoxide-generating enzymes, termed NADPH oxidases (NOXs), in the pathophysiology of ventricular hypertrophy, the accompanying interstitial fibrosis and subsequent heart failure. In particular, the apparent ability of the different NADPH oxidase isoforms to define the response of a cell to a range of physiological and pathophysiological stimuli is reviewed. If confirmed, these data would suggest that independently targeting different members of the NOX family may hold the potential for therapeutic intervention in the treatment of cardiac disease.  相似文献   

19.
Platelet endothelial cell adhesion molecule (PECAM-1) is a member of the superfamily of immunoglobulins. This cell adhesion molecule has been implicated to mediate the adhesion and trans-endothelial migration of T lymphocytes/monocytes into the vascular wall, a critical step in the initiation of atherogenesis. Current thinking, however, posits that PECAM-1 by virtue of being a scaffolding molecule may well play a role in several signal transduction reactions. As a consequence, this cell adhesion molecule may be responsible for several biological and pathophysiological functions such as thrombosis, and inflammation. Evidence has also been put forward for a potential role of PECAM-1 in apoptosis and atherosclerosis. This article focuses on the structure of PECAM-1 and its role in intracellular signaling and implications in health and disease.  相似文献   

20.
This study aims to determine whether sickle cell mice could recapitulate features of cognitive and neurobehavioral impairment observed in sickle cell patients and whether neuroinflammation could be a potential therapeutic target as in other non-sickle cell disease-related cognitive dysfunction. Cognitive (learning and memory) and behavioral (anxiety) deficits in 13- and later 6-month-old male Townes humanized sickle cell (SS) and matched control (AA) mice were evaluated using novel object recognition (NOR) and fear conditioning tests. Immunohistochemistry was performed to quantify peripheral immune cell (CD45+) and activated microglia (Iba1+) as markers of neuroinflammation in the dentate and peri-dentate gyrus areas. We evaluated cell fate by measuring 5''-bromodeoxyuridine and doublecortin fluorescence and phenotyped proliferating cells using either glial fibrillary acid protein (GFAP+), neuronal nuclei (NeuN+), CD45+, and Iba1+. In addition, Golgi-Cox staining was used to assess markers of neuroplasticity (dendritic spine density and morphology and density of dendrite arbors) on cortical and hippocampal pyramidal neurons. Compared to matched AA controls, 13-month-old SS mice showed significant evidence of cognitive and behavioral deficit on NOR and fear conditioning tests. Also, SS mice had significantly higher density of CD45+ and activated microglia cells (i.e. more evidence of neuroinflammation) in the dentate and peri-dentate gyrus area. Additionally, SS mice had significantly lower dendritic spine density, but a higher proportion of immature dendritic spines. Treatment of 13-month-old SS mice with minocycline resulted in improvement of cognitive and behavioral deficit compared to matched vehicle-treated SS mice. Also, treated SS mice had significantly fewer CD45+ and activated microglia cells (i.e. less evidence of neuroinflammation) in the dentate and peri-dentate gyrus, as well as a significant improvement in markers of neuroplasticity.Impact statementThis study provides crucial information that could be helpful in the development of new or repurposing of existing therapies for the treatment of cognitive deficit in individuals with sickle cell disease (SCD). Its impact is in demonstrating for the first time that neuroinflammation and along with abnormal neuroplasticity are among the underlying mechanism of cognitive and behavioral deficits in SCD and that drugs such as minocycline which targets these pathophysiological mechanisms could be repurposed for the treatment of this life altering complication of SCD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号