首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel nucleoside phosphorylation process using the food additive pyrophosphate as the phosphate source was investigated. The Morganella morganii gene encoding a selective nucleoside pyrophosphate phosphotransferase was cloned. It was identical to the M. morganii PhoC acid phosphatase gene. Sequential in vitro random mutagenesis was performed on the gene by error-prone PCR to construct a mutant library. The mutant library was introduced into Escherichia coli, and the transformants were screened for the production of 5'-IMP. One mutated acid phosphatase with an increased phosphotransferase reaction yield was obtained. With E. coli overproducing the mutated acid phosphatase, 101 g of 5'-IMP per liter (192 mM) was synthesized from inosine in an 88% molar yield. This improvement was achieved with two mutations, Gly to Asp at position 92 and Ile to Thr at position 171. A decreased K(m) value for inosine was responsible for the increased productivity.  相似文献   

2.
The phosphorylation of inosine in the 5′-position to produce inosine-5′-monophosphate (5′-IMP) was studied in a number of microorganisms from our culture collection using pyrophosphate (PPi) as the phosphate source. Although many of the microorganisms screened were able to phosphorylate inosine, phosphotransferase activity specific to the 5′-position was found to be distributed among the bacteria belonging to the family Enterobacteriacea. Morganella morganii NCIMB10466 was selected for further study of 5′-IMP production. When M. morganii intact cells were taken approximately 0.2 mg/ml wet weight, 6.02 mg/ml (11.4 mM) of 5′-IMP were synthesized from 10 mg/ml (37.3 mM) of inosine and 250 mg/ml (560.0 mM) of tetrasodium pyrophosphate decahydrate in 9 h.  相似文献   

3.
The synthesis of inosinic acid from inosine and p-nitrophenylphosphate by the partially purified enzyme, nucleoside phosphotransferase, prepared from Escherichia coli (B-25) is described.

The results presented in this paper represent that the nucleotide, inosinic acid, synthesized by the nucleoside phosphotransferase of E. coli, used as an example of bacterial enzymes, is not always 5′-isomer and that most of inosinic acid synthesized are 3′(& 2′)-isomer, together with a small amount of 5′-isomer. It was pointed out that cupric ion accelerated both the synthesis of inosinic acid and the liberation of p-nitrophenol, and that the nucleoside phosphotransferase and the phosphatase may be different from each other.  相似文献   

4.
1. A non-enzymic method for the preparation of adenosine 5′-diphosphate is described, in which the terminal phosphate of adenosine 5′-triphosphate is transferred to methanol in the presence of hydrochloric acid. The final purified product can be obtained in 60% yield. 2. Experiments with [14C]methanol showed that no methylation of the adenosine diphosphate occurs during the reaction. 3. Confirmation that the pyrophosphate moiety of the adenosine diphosphate produced was in the 5′-position was obtained by: (a) periodate oxidation; (b) treatment with apyrase and examination of the resulting adenylic acid isomer by paper chromatography. 4. The method appears to be generally applicable to the preparation of nucleoside 5′-diphosphates from the corresponding nucleoside 5′-triphosphates.  相似文献   

5.
Plasmodium parasites rely upon purine salvage for survival. Plasmodium purine nucleoside phosphorylase is part of the streamlined Plasmodium purine salvage pathway that leads to the phosphorylysis of both purines and 5′-methylthiopurines, byproducts of polyamine synthesis. We have explored structural features in Plasmodium falciparum purine nucleoside phosphorylase (PfPNP) that affect efficiency of catalysis as well as those that make it suitable for dual specificity. We used site directed mutagenesis to identify residues critical for PfPNP catalytic activity as well as critical residues within a hydrophobic pocket required for accommodation of the 5′-methylthio group. Kinetic analysis data shows that several mutants had disrupted binding of the 5′-methylthio group while retaining activity for inosine. A triple PfPNP mutant that mimics Toxoplasma gondii PNP had significant loss of 5′-methylthio activity with retention of inosine activity. Crystallographic investigation of the triple mutant PfPNP with Tyr160Phe, Val66Ile, andVal73Ile in complex with the transition state inhibitor immucillin H reveals fewer hydrogen bond interactions for the inhibitor in the hydrophobic pocket.  相似文献   

6.
A method for the identification of the 5′-linked termini of ribosomal RNA is described. The method involves the phosphorylation of the nucleosides released from the 5′-linked termini after hydrolysis of the ribonucleic acid chain with alkali. The radioactive 5′-nucleotide derivatives are formed by a nucleoside phosphotransferase mediated phosphoryl transfer from (32P) p-nitrophenyl phosphate to the nucleosides. The sensitivity of the method allows the use of small amounts of ribosomal RNA.  相似文献   

7.
Owing to the markedly increased reactivity of amino functional groups versus hydroxyls, the 5′-amino-5′-deoxy nucleoside and nucleotide analogs have proven widely useful in biological, pharmaceutical and genomic applications. However, synthetic procedures leading to these analogs have not been fully explored, which may possibly have limited the scope of their utility. Here we describe the synthesis of the 5′-amino-2′,5′-dideoxy analogs of adenosine, cytidine, guanosine, inosine and uridine from their respective naturally occurring nucleosides via the reduction of 5′-azido-2′,5′-dideoxy intermediates using the Staudinger reaction, and the high yield conversion of these modified nucleosides and 5′-amino-5′-deoxythymidine to the corresponding 5′-N-triphosphates through reaction with trisodium trimetaphosphate in the presence of tris(hydroxymethyl)aminomethane (Tris). We also show that each of these nucleotide analogs can be efficiently incorporated into DNA by the Klenow fragment of Escherichia coli DNA polymerase I when individually substituted for its naturally occurring counterpart. Mild acid treatment of the resulting DNA generates polynucleotide fragments that arise from specific cleavage at each modified nucleotide, providing a sequence ladder for each base. Because the ladders are generated after the extension, the corresponding products may be manipulated by enzymatic and/or purification processes. The potential utility of this extension–cleavage procedure in genomic sequence analysis is discussed.  相似文献   

8.
The gene encoding a deoxyriboaldolase (DERA) was cloned from the chromosomal DNA of Klebsiella pneumoniae B-4-4. This gene contains an open reading frame consisting of 780 nucleotides encoding 259 amino acid residues. The predicted amino acid sequence exhibited 94.6% homology with the sequence of DERA from Escherichia coli. The DERA of K. pneumoniae was expressed in recombinant E. coli cells, and the specific activity of the enzyme in the cell extract was as high as 2.5 U/mg, which was threefold higher than the specific activity in the K. pneumoniae cell extract. One of the E. coli transformants, 10B5/pTS8, which had a defect in alkaline phosphatase activity, was a good catalyst for 2-deoxyribose 5-phosphate (DR5P) synthesis from glyceraldehyde 3-phosphate and acetaldehyde. The E. coli cells produced DR5P from glucose and acetaldehyde in the presence of ATP. Under the optimal conditions, 100 mM DR5P was produced from 900 mM glucose, 200 mM acetaldehyde, and 100 mM ATP by the E. coli cells. The DR5P produced was further transformed to 2′-deoxyribonucleoside through coupling the enzymatic reactions of phosphopentomutase and nucleoside phosphorylase. These results indicated that production of 2′-deoxyribonucleoside from glucose, acetaldehyde, and a nucleobase is possible with the addition of a suitable energy source, such as ATP.  相似文献   

9.
NADP(H) phosphatase has not been identified in eubacteria and eukaryotes. In archaea, MJ0917 of hyperthermophilic Methanococcus jannaschii is a fusion protein comprising NAD kinase and an inositol monophosphatase homologue that exhibits high NADP(H) phosphatase activity (S. Kawai, C. Fukuda, T. Mukai, and K. Murata, J. Biol. Chem. 280:39200-39207, 2005). In this study, we showed that the other archaeal inositol monophosphatases, MJ0109 of M. jannaschii and AF2372 of hyperthermophilic Archaeoglobus fulgidus, exhibit NADP(H) phosphatase activity in addition to the already-known inositol monophosphatase and fructose-1,6-bisphosphatase activities. Kinetic values for NADP+ and NADPH of MJ0109 and AF2372 were comparable to those for inositol monophosphate and fructose-1,6-bisphosphate. This implies that the physiological role of the two enzymes is that of an NADP(H) phosphatase. Further, the two enzymes showed inositol polyphosphate 1-phosphatase activity but not 3′-phosphoadenosine 5′-phosphate phosphatase activity. The inositol polyphosphate 1-phosphatase activity of archaeal inositol monophosphatase was considered to be compatible with the similar tertiary structures of inositol monophosphatase, fructose-1,6-bisphosphatase, inositol polyphosphate 1-phosphatase, and 3′-phosphoadenosine 5′-phosphate phosphatase. Based on this fact, we found that 3′-phosphoadenosine 5′-phosphate phosphatase (CysQ) of Escherichia coli exhibited NADP(H) phosphatase and fructose-1,6-bisphosphatase activities, although inositol monophosphatase (SuhB) and fructose-1,6-bisphosphatase (Fbp) of E. coli did not exhibit any NADP(H) phosphatase activity. However, the kinetic values of CysQ and the known phenotype of the cysQ mutant indicated that CysQ functions physiologically as 3′-phosphoadenosine 5′-phosphate phosphatase rather than as NADP(H) phosphatase.  相似文献   

10.
2′,3′-Dideoxyadenosine was previously shown to be lethal to Escherichia coli and to inhibit deoxyribonucleic acid (DNA) synthesis irreversibly in this organism. It was also shown that triphosphate of this analogue terminates DNA chains in an in vitro system. Data presented here show that the nucleoside is relatively insensitive to E. coli adenosine deaminase and is converted intracellularly into the dideoxynucleotide, including the triphosphate. Thymine nucleotide pools were not reduced in inhibited bacteria, nor did preformed DNA break down. Some adenine was liberated from the dideoxyadenosine on incubation, and the latter was incorporated into ribonucleic acid. Nevertheless, about 4,000 molecules of the dideoxynucleoside were incorporated into DNA per cell. The dideoxynucleotide occurred in DNA chains in a terminal position, liberated selectively by venom phosphodiesterase. The possible nature of the lethal event is discussed.  相似文献   

11.
Clostridium thermocellum polynucleotide kinase-phosphatase (CthPnkp) catalyzes 5′ and 3′ end-healing reactions that prepare broken RNA termini for sealing by RNA ligase. The central phosphatase domain of CthPnkp belongs to the dinuclear metallophosphoesterase superfamily exemplified by bacteriophage λ phosphatase (λ-Pase). CthPnkp is a Ni2+/Mn2+-dependent phosphodiesterase-monoesterase, active on nucleotide and non-nucleotide substrates, that can be transformed toward narrower metal and substrate specificities via mutations of the active site. Here we characterize the Mn2+-dependent 2′,3′ cyclic nucleotide phosphodiesterase activity of CthPnkp, the reaction most relevant to RNA repair pathways. We find that CthPnkp prefers a 2′,3′ cyclic phosphate to a 3′,5′ cyclic phosphate. A single H189D mutation imposes strict specificity for a 2′,3′ cyclic phosphate, which is cleaved to form a single 2′-NMP product. Analysis of the cyclic phosphodiesterase activities of mutated CthPnkp enzymes illuminates the active site and the structural features that affect substrate affinity and kcat. We also characterize a previously unrecognized phosphodiesterase activity of λ-Pase, which catalyzes hydrolysis of bis-p-nitrophenyl phosphate. λ-Pase also has cyclic phosphodiesterase activity with nucleoside 2′,3′ cyclic phosphates, which it hydrolyzes to yield a mixture of 2′-NMP and 3′-NMP products. We discuss our results in light of available structural and functional data for other phosphodiesterase members of the binuclear metallophosphoesterase family and draw inferences about how differences in active site composition influence catalytic repertoire.  相似文献   

12.
Escherichia coli mRNA translation is facilitated by sequences upstream and downstream of the initiation codon, called Shine–Dalgarno (SD) and downstream box (DB) sequences, respectively. In E.coli enhancing the complementarity between the DB sequences and the 16S rRNA penultimate stem resulted in increased protein accumulation without a significant affect on mRNA stability. The objective of this study was to test whether enhancing the complementarity of plastid mRNAs downstream of the AUG (downstream sequence or DS) with the 16S rRNA penultimate stem (anti-DS or ADS region) enhances protein accumulation. The test system was the tobacco plastid rRNA operon promoter fused with the E.coli phage T7 gene 10 (T7g10) 5′-untranslated region (5′-UTR) and DB region. Translation efficiency was tested by measuring neomycin phosphotransferase (NPTII) accumulation in tobacco chloroplasts. We report here that the phage T7g10 5′-UTR and DB region promotes accumulation of NPTII up to ~16% of total soluble leaf protein (TSP). Enhanced mRNA stability and an improved NPTII yield (~23% of TSP) was obtained from a construct in which the T7g10 5′-UTR was linked with the NPTII coding region via a NheI site. However, replacing the T7g10 DB region with the plastid DS sequence reduced NPTII and mRNA levels to 0.16 and 28%, respectively. Reduced NPTII accumulation is in part due to accelerated mRNA turnover.  相似文献   

13.
Natural and modified nucleoside-5′-monophosphates and their precursors are valuable compounds widely used in biochemical studies. Bacterial nonspecific acid phosphatases (NSAPs) are a group of enzymes involved in the hydrolysis of phosphoester bonds, and some of them exhibit phosphotransferase activity. NSAP containing Enterobacter aerogenes and Raoultella planticola whole cells were evaluated in the phosphorylation of a wide range of nucleosides and nucleoside precursors using pyrophosphate as phosphate donor. To increase the productivity of the process, we developed two genetically modified strains of Escherichia coli which overexpressed NSAPs of E. aerogenes and R. planticola. These new recombinant microorganisms (E. coli BL21 pET22b-phoEa and E. coli BL21 pET22b-phoRp) showed higher activity than the corresponding wild-type strains. Reductions in the reaction times from 21 h to 60 min, from 4 h to 15 min, and from 24 h to 40 min in cases of dihydroxyacetone, inosine, and fludarabine, respectively, were obtained.  相似文献   

14.
A novel process for producing inosine 5′-monophosphate (5′-IMP) has been demonstrated. The process consists of two sequential bioreactions; the first is a fermentation of inosine by a mutant of Corynebacterium ammoniagenes, and the second is a unique phosphorylating reaction of inosine by guanosine/inosine kinase (GIKase). GIKase was produced by an Escherichia coli recombinant strain, MC1000(pIK75), which overexpressed the enzyme up to 50% of the total cellular protein. The overproducing plasmid, pIK75, which was randomly screened out from deletion plasmids with various lengths of intermediate sequence between the E. coli trpL Shine-Dalgarno sequence, derived from the vector plasmid, and the start codon of the GIKase structural gene. In pIK75, the start ATG was placed 16 bp downstream of the trpL Shine-Dalgarno sequence under the control of the E. coli trp promoter. Fermentation of inosine and its phosphorylation were sequentially performed in a 5-l jar fermenter. At the end of inosine fermentation by C. ammoniagenes KY13761, culture broth of MC1000(pIK75) was mixed with that of KY13761 to start the phosphorylating reaction. Inosine in the reaction mixture was stoichiometrically phosphorylated, and 91 mM 5′-IMP accumulated in a 12-h reaction. This new biological process has advantages over traditional methods for producing 5′-IMP. Received: 7 April 1997 / Received last revision: 18 July 1997 / Accepted: 27 July 1997  相似文献   

15.
A plasmid-encoded enzyme reported by us to phosphorylate amikacin in a laboratory strain of Escherichia coli has been localized in the bacterial cell. More than 88% of this amikacin phosphotransferase (APH) activity was retained in spheroplasts formed by ethylenediaminetetraacetate-lysozyme treatment of an APH-containing E. coli transconguant known to form spheroplasts readily. By comparison, the spheroplasts retained 94% of deoxyribonucleic acid polymerase I and 98% of glutamyl-transfer ribonucleic acid synthetase, two internal markers, whereas less than 10% of the activity of a periplasmic marker, acid phosphatase, was present in spheroplasts. Treatment of whole cells of the transconjugant with chemical probes incapable of crossing the plasma membrane obliterated acid phosphatase activity, whereas the internal markers deoxyribonucleic acid polymerase I, glutamyl-transfer ribonucleic acid synthetase, and β-galactosidase were virtually unaffected after treatment for 5 min; more than 60% of the APH activity remained. As a control, similar chemical treatment of sonic extracts, in which enzymes were not protected by bacterial compartmentalization, produced more extensive reduction in the activities of all test enzymes, including APH. Spheroplasts preincubated with adenosine triphosphatase were shown by thin-layer chromatography to phosphorylate amikacin. Spheroplasts of cells grown in the presence of H332PO4 were shown to utilize internally generated adenosine 5′-triphosphate in the phosphorylation of amikacin. The absence of 32P-phosphorylated amikacin after incubation of [γ-32P]adenosine 5′-triphosphate with spheroplasts confirmed that exogenous adenosine 5′-triphosphate was not used in the reaction. These results suggest an internal location for APH. This conclusion has implications for the role of such enzymes in aminoglycoside resistance of gram-negative bacteria.  相似文献   

16.
Evidence is presented for the occurrence of 5′-terminal capping structures in the polyadenylated RNA of oat (Avena sativa) coleoptiles. These structures are composed of an inverted terminal nucleoside containing the modified base 7-methylguanine which is joined 5′ to 5′ with a second (penultimate) nucleoside by means of three phosphate groups in two pyrophosphate linkages. The penultimate nucleoside is joined to the remainder of the RNA molecule by a conventional 3′,5′ phosphodiester bond. A significant difference between the cap structures of oat coleoptile RNA and those of previously described higher eucaryotic cellular mRNAs is the lack of ribose methylations in the penultimate nucleosides of the plant RNA.  相似文献   

17.
We examined the activity of polynucleotide phosphorylase (PNPase) from Streptomyces coelicolor, Streptomyces antibioticus, and Escherichia coli in phosphorolysis using substrates derived from the rpsO-pnp operon of S. coelicolor. The Streptomyces and E. coli enzymes were both able to digest a substrate with a 3′ single-stranded tail although E. coli PNPase was more effective in digesting this substrate than were the Streptomyces enzymes. The kcat for the E. coli enzyme was ca. twofold higher than that observed with the S. coelicolor enzyme. S. coelicolor PNPase was more effective than its E. coli counterpart in digesting a substrate possessing a 3′ stem-loop structure, and the Km for the E. coli enzyme was ca. twice that of the S. coelicolor enzyme. Electrophoretic mobility shift assays revealed an increased affinity of S. coelicolor PNPase for the substrate possessing a 3′ stem-loop structure compared with the E. coli enzyme. We observed an effect of nucleoside diphosphates on the activity of the S. coelicolor PNPase but not the E. coli enzyme. In the presence of a mixture of 20 μM ADP, CDP, GDP, and UDP, the Km for the phosphorolysis of the substrate with the 3′ stem-loop was some fivefold lower than the value observed in the absence of nucleoside diphosphates. No effect of nucleoside diphosphates on the phosphorolytic activity of E. coli PNPase was observed. To our knowledge, this is the first demonstration of an effect of nucleoside diphosphates, the normal substrates for polymerization by PNPase, on the phosphorolytic activity of that enzyme.  相似文献   

18.
T4 polynucleotide kinase/phosphatase (Pnkp) exemplifies a family of bifunctional enzymes with 5′-kinase and 3′-phosphatase activities that function in nucleic acid repair. The N-terminal kinase domain belongs to the P-loop phosphotransferase superfamily. The kinase is distinguished by a tunnel-like active site with separate entrances on opposite sides of the protein for the NTP phosphate donor and a 5′-OH single-stranded oligonucleotide phosphate acceptor. Here, we probed by mutagenesis the roles of individual amino acids that comprise the acceptor binding site. We thereby identified Glu57 as an important residue, by virtue of its participation in a salt bridge network with two catalytic residues identified previously: Arg38, which binds the 3′-phosphate of the terminal 5′-OH nucleotide, and the putative general base Asp35 that contacts the nucleophilic 5′-OH group. The 5′-OH nucleoside fits into a pocket lined by aliphatic amino acids (Val131, Pro132 and Val135) that make van der Waals contacts to the nucleobase. Whereas subtraction of these contacts by single alanine substitutions for Val131 or Val135 and glycine for Pro132 had modest effects on kinase activity, the introduction of bulkier phenylalanines for Val131 and Val135 were deleterious, especially V131F, which severely impeded both substrate binding (increasing Km by 15-fold) and catalysis (decreasing kcat by 300-fold).  相似文献   

19.
The peptidyl nucleoside arginomycin is active against Gram-positive bacteria and fungi but displays much lower toxicity to mice than its analog blasticidin S. It features a rare amino acid, β-methylarginine, which is attached to the deoxyhexose moiety via a 4′-aminoacyl bond. We here report cloning of the complete biosynthetic gene cluster for arginomycin from Streptomyces arginensis NRRL 15941. Among the 14 putative essential open reading frames, argM, encoding an aspartate aminotransferase (AAT), and adjacent argN, encoding an S-adenosyl methionine (SAM)-dependent methyltransferase, are coupled to catalyze arginine and yield β-methylarginine in Escherichia coli. Purified ArgM can transfer the α-amino group of l-arginine to α-ketoglutaric acid to give glutamate and thereby converts l-arginine to 5-guanidino-2-oxopentanoic acid, which is methylated at the C-3 position by ArgN to form 5-guanidino-3-methyl-2-oxopentanoic acid. Iteratively, ArgM specifically catalyzes transamination from the donor l-aspartate to the resulting 5-guanidino-3-methyl-2-oxopentanoic acid, generating β-methylarginine. The complete and concise biosynthetic pathway for the rare and bioactive amino acid revealed by this study may pave the way for the production of β-methylarginine either by enzymatic conversion or by engineered living cells.  相似文献   

20.
The nor-1 gene is involved in aflatoxin biosynthesis in Aspergillus parasiticus and was predicted to encode a norsolorinic acid ketoreductase. Recombinant Nor-1 expressed in Escherichia coli converted the 1′ keto group of norsolorinic acid to the 1′ hydroxyl group of averantin in crude E. coli cell extracts in the presence of NADPH. The results confirm that Nor-1 functions as a ketoreductase in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号