首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The biotin holoenzyme synthetases (BHS) are essential enzymes in all organisms that catalyze post-translational linkage of biotin to biotin-dependent carboxylases. The primary sequences of a large number of these enzymes are now available and homologies are found among all. The glycine-rich sequence, GRGRXG, constitutes one of the homologous regions in these enzymes and, based on its similarity to sequences found in a number of mononucleotide binding enzymes, has been proposed to function in ATP binding in the BHSs. In the Escherichia coli enzyme, the only member of the family for which a three-dimensional structure has been determined, the conserved sequence is found in a partially disordered surface loop. Mutations in the sequence have previously been isolated and characterized in vivo. In this work these single-site mutants, G115S, R118G, and R119W, of the E. coli BHS have been purified and biochemically characterized with respect to binding of small molecule substrates and the intermediate in the biotinylation reaction. Results of this characterization indicate that, rather than functioning in ATP binding, this glycine-rich sequence is required for binding the substrate biotin and the intermediate in the biotinylation reaction, biotinyl-5'-AMP. These results are of general significance for understanding structure-function relationships in biotin holoenzyme synthetases.  相似文献   

2.
One more conserved sequence motif in helicases.   总被引:7,自引:2,他引:5       下载免费PDF全文
  相似文献   

3.
P A Tsonis  J D Lambris 《FEBS letters》1986,194(2):263-266
We report here the homology of different genes with an 18-nucleotide sequence element derived from a conserved region of the homoeo boxes. Possible evolutionary relationships are discussed.  相似文献   

4.
alpha(4)beta(1) integrin-mediated cell adhesion results in increased cell migration, reduced cell spreading, and focal adhesion formation relative to other beta(1) integrins. Paxillin, a signaling adapter protein, binds tightly to the alpha(4) cytoplasmic domain and is implicated in alpha(4) integrin signaling. We now report the mapping of a paxillin-binding site in the alpha(4) cytoplasmic domain and an assessment of its role in the alpha(4) tail-specific integrin functions. By using truncation mutants and a peptide competition assay, we found that a region of 9 amino acid residues (Glu(983)-Tyr(991)) within the alpha(4) cytoplasmic domain contains a minimal sequence sufficient for paxillin binding. Alanine scanning of this region implicated Tyr(991) and Glu(983) as critical residues. The role of these residues was confirmed by introducing these Ala substitutions into the full-length alpha(4) tail sequence. Y991A or E983A substitution disrupted the interaction of alpha(4) integrins with paxillin. These same two point mutations reversed the effects of the alpha(4) tail on cell spreading. The key features of the identified paxillin-binding sequence are present in all alpha(4) integrins sequenced to date, including that from Xenopus laevis. The maintenance of this sequence motif suggests that paxillin binding is an evolutionarily conserved function of alpha(4) integrins.  相似文献   

5.
Proliferating cell nuclear antigen (PCNA) has recently been identified as a target for the binding of several proteins. The cell cycle regulatory protein, p21, and the replication endonuclease, Fen1, have already been described as competing for PCNA binding. Two recent reports have identified DNA (cytosine-5)methyltransferase (MCMT) and the DNA repair endonuclease XPG as binding to PCNA.1,2 The remarkable thing about these interactions is that they all seem to occur through a conserved motif that is likely to contact the same site on PCNA. This has fascinating implications for a regulatory network linking these diverse protein functions. BioEssays 20 :195–199, 1998. © 1998 John Wiley & Sons, Inc.  相似文献   

6.
In Gram-negative bacteria, the two-partner secretion pathway mediates the secretion of TpsA proteins with various functions. TpsB transporters specifically recognize their TpsA partners in the periplasm and mediate their transport through a hydrophilic channel. The filamentous haemagglutinin adhesin (FHA)/FhaC pair represents a model two-partner secretion system, with the structure of the TpsB transporter FhaC providing the bases to decipher the mechanism of action of these proteins. FhaC is composed of a β-barrel preceded by two periplasmic polypeptide-transport-associated (POTRA) domains in tandem. The barrel is occluded by an N-terminal helix and an extracellular loop, L6, folded back into the FhaC channel. In this article, we describe a functionally important motif of FhaC. The VRGY tetrad is highly conserved in the TpsB family and, in FhaC, it is located at the tip of L6 reaching the periplasm. Replacement by Ala of the invariant Arg dramatically affects the secretion efficiency, although the structure of FhaC and its channel properties remain unaffected. This substitution affects the secretion mechanism at a step beyond the initial TpsA-TpsB interaction. Replacement of the conserved Tyr affects the channel properties, but not the secretion activity, suggesting that this residue stabilizes the loop in the resting conformation of FhaC. Thus, the conserved motif at the tip of L6 represents an important piece of two-partner secretion machinery. This motif is conserved in a predicted loop between two β-barrel strands in more distant relatives of FhaC involved in protein transport across or assembly into the outer membranes of bacteria and organelles, suggesting a conserved function in the molecular mechanism of transport.  相似文献   

7.
Modifiers of position-effect-variegation in Drosophila encode proteins that are thought to modify chromatin, rendering it heritably changed in its expressibility. In an attempt to identify similar modifier genes in other species we have utilized a known sequence homology, termed chromo box, between a suppressor of position-effect-variegation, Heterochromatin protein 1 (HP1), and a repressor of homeotic genes, Polycomb (Pc). A PCR generated probe encompassing the HP1 chromo box was used to clone full-length murine cDNAs that contain conserved chromo box motifs. Sequence comparisons, in situ hybridization experiments, and RNA Northern blot analysis suggest that the murine and human sequences presented in this report are homologues of the Drosophila HP1 gene. Chromo box sequences can also be detected in other animal species, and in plants, predicting a strongly conserved structural role for the peptide encoded by this sequence. We propose that epigenetic (yet heritable) changes in gene expressibility, characteristic of chromosomal imprinting phenomena, can largely be explained by the action of such modifier genes. The evolutionary conservation of the chromo box motif now enables the isolation and study of putative modifier genes in those animal and plant species where chromosomal imprinting has been described.  相似文献   

8.
9.
The TEA domain: a novel, highly conserved DNA-binding motif   总被引:16,自引:0,他引:16  
T R Bürglin 《Cell》1991,66(1):11-12
  相似文献   

10.
11.
Cdc37 is a molecular chaperone that is important for the stability and activity of several protein kinases, including Cdk4 and Raf1. We first determined, using in vitro assays, that Cdc37 binds to the amino-terminal lobe of Cdk4. Subsequent mutagenesis revealed that Gly-15 (G15A) and Gly-18 (G18A) were critical for Cdc37-Cdk4 complex formation. Gly-15 and Gly-18 of Cdk4 are within the conserved Gly-X-Gly-X-X-Gly motif that is required for ATP binding to the kinase. Mutation of either glycine at the equivalent positions of Raf1 (G358A and G361A) also inhibited Cdc37 binding to Raf1. Replacing another conserved residue critical for ATP binding and kinase activity, Lys-35 (K35A), reduced Cdc37-Cdk4 complex formation but to a lesser extent. The interaction of Cdk4 with Cdc37 in vitro was not sensitive to changes in ATP levels. Cell-based assays indicated that Cdk4(G15A) and Cdk4(G18A) were present at the same level as wild type Cdk4. Equivalent amounts of p16 bound to Cdk4(G15A) and Cdk4(G18A) relative to wild type Cdk4, suggesting that Cdk4(G15A) and Cdk4(G18A) adopt significant tertiary structure. However, in contrast to wild type Cdk4, Cdk4(G15A), and Cdk4(G18A) had greatly reduced binding of cyclin D1, Cdc37, and Hsp90. Importantly, overexpression of Cdc37 not only stimulated cyclin D1 binding to wild type Cdk4 but also restored its binding to Cdk4(G15A). Under the same conditions, p16 binding to wild type Cdk4 was suppressed. Our findings show that the interaction of Cdc37 with its client protein kinases requires amino acid residues within a motif that is present in many protein kinases.  相似文献   

12.
The natural inhibitor proteins IF1 regulate mitochondrial F0F1 ATPsynthase in a wide range of species. We characterized the interaction of CaM with purified bovine IF1, two bovine IF1 synthetic peptides, as well as two homologous proteins from yeast, namely IF1 and STF1. Fluorometric analyses showed that bovine and yeast inhibitors bind CaM with a 1:1 stoichiometry in the pH range between 5 and 8 and that CaM-IF1 interaction is Ca2+-dependent. Bovine and yeast IF1 have intermediate binding affinity for CaM, while the Kd (dissociation constant) of the STF1-CaM interaction is slightly higher. Binding studies of CaM with bovine IF1 synthetic peptides allowed us to identify bovine IF1 sequence 33-42 as the putative CaM-binding region. Sequence alignment revealed that this region contains a hydrophobic motif for CaM binding, highly conserved in both yeast IF1 and STF1 sequences. In addition, the same region in bovine IF1 has an IQ motif for CaM binding, conserved as an IQ-like motif in yeast IF1 but not in STF1. Based on the pH and Ca2+ dependence of IF1 interaction with CaM, we suggest that the complex can be formed outside mitochondria, where CaM could regulate IF1 trafficking or additional IF1 roles not yet clarified.  相似文献   

13.
14.
15.
Merino EJ  Barton JK 《Biochemistry》2007,46(10):2805-2811
Sites of oxidative damage in mitochondrial DNA have been identified on the basis of DNA-mediated charge transport. Our goal is to understand which sites in mitochondrial DNA are prone to oxidation at long range and whether such oxidative damage correlates with cancerous transformation. Here we show that a primer extension reaction can be used to monitor directly oxidative damage to authentic mitochondrial DNA through photoreactions with a rhodium intercalator. The complex [Rh(phi)2bpy]Cl3 (phi = 9,10-phenanthrenequinone diimine) binds to DNA without sequence specificity and, upon photoactivation, either promotes strand breaks directly at the binding site or promotes one-electron oxidative damage; comparing the sites of base oxidation to direct strand breaks reveals the oxidative damage that arises from a distance through DNA-mediated charge transport. Significantly, base oxidation by charge transport overlaps with known mutational hot spots associated with cancers at nucleotides surrounding positions 263 and 303; the latter is known as conserved sequence block II and is vital to DNA replication. Since DNA base oxidation at conserved sequence block II should weaken the ability of damaged mitochondrial genomes to be replicated, DNA-mediated charge transport may provide a protection mechanism for excluding damaged DNA.  相似文献   

16.
Plant ROPs (or RACs) are soluble Ras-related small GTPases that are attached to cell membranes by virtue of the post-translational lipid modifications of prenylation and S-acylation. ROPs (RACs) are subdivided into two major subgroups called type-I and type-II. Whereas type-I ROPs terminate with a conserved CaaL box and undergo prenylation, type-II ROPs undergo S-acylation on two or three C-terminal cysteines. In the present work we determined the sequence requirement for association of Arabidopsis type-II ROPs with the plasma membrane. We identified a conserved sequence motif, designated the GC-CG box, in which the modified cysteines are flanked by glycines. The GC-CG box cysteines are separated by five to six mostly non-polar residues. Deletion of this sequence or the introduction of mutations that change its nature disrupted the association of ROPs with the membrane. Mutations that changed the GC-CG box glycines to alanines also interfered with membrane association. Deletion of a polybasic domain proximal to the GC-CG box disrupted the plasma membrane association of AtROP10. A green fluorescent protein fusion protein containing the C-terminal 25 residues of AtROP10, including its polybasic domain and GC-CG box, was primarily associated with the plasma membrane but a similar fusion protein lacking the polybasic domain was exclusively localized in the soluble fraction. These data provide evidence for the minimal sequence required for plasma membrane association of type-II ROPs in Arabidopsis and other plant species.  相似文献   

17.
We have discovered a novel DNA sequence element in Drosophila which is based upon a CTGA tandem repeat. This element has been named the YYRR box to emphasize its dipyrimidine-dipurine nature which is predicted to have unusual structural features. Southern hybridization analysis of genomic DNA indicates the presence of 25-30 copies of the YYRR box in each of three Drosophila species (melanogaster, pseudoobscura, and virilis) and conservation of genomic location within species. Similar analysis of human and rat DNA indicates the presence of YYRR related sequences in mammals as well. YYRR boxes have been localized to two genetic loci in Drosophila: Gld and a gene tentative identified as ted. These two genes exhibit correlated patterns of developmental expression and an identical mutant phenotype. Sequence analysis of the Gld YYRR box in three Drosophila species revealed a high degree of conservation despite its intronic location.  相似文献   

18.

Background  

With the advent of high throughput sequencing techniques, large amounts of sequencing data are readily available for analysis. Natural biological signals are intrinsically highly variable making their complete identification a computationally challenging problem. Many attempts in using statistical or combinatorial approaches have been made with great success in the past. However, identifying highly degenerate and long (>20 nucleotides) motifs still remains an unmet challenge as high degeneracy will diminish statistical significance of biological signals and increasing motif size will cause combinatorial explosion. In this report, we present a novel rule-based method that is focused on finding degenerate and long motifs. Our proposed method, named iTriplet, avoids costly enumeration present in existing combinatorial methods and is amenable to parallel processing.  相似文献   

19.
We have previously reported that a human nuclear factor, probably corresponding to the USF/MLTF protein [1,2], is able to bind specifically to a DNA sequence present in DNA replicated at the onset of S-phase [3]. Here we demonstrate that the same factor binds also to several other similar sequences, present in eukaryotic and viral genomes. Mutations or methylation in a CpG dinucleotide, central in the palindromic binding site, completely abolish binding. Furthermore, we present evidence for the existence of at least two other nuclear proteins in human cells with the same DNA binding specificity. The data presented suggest a strong evolutionary conservation, among distantly related organisms, of the binding motif, which is probably the target of a number of nuclear factors that share the same DNA binding specificity albeit in the context of different functions.  相似文献   

20.
BACKGROUND: The mammalian target of rapamycin (mTOR) controls the translation machinery via activation of S6 kinases 1 and 2 (S6K1/2) and inhibition of the eukaryotic initiation factor 4E (eIF4E) binding proteins 1, 2, and 3 (4E-BP1/2/3). S6K1 and 4E-BP1 are regulated by nutrient-sensing and mitogen-activated pathways. The molecular basis of mTOR regulation of S6K1 and 4E-BP1 remains controversial. RESULTS: We have identified a conserved TOR signaling (TOS) motif in the N terminus of all known S6 kinases and in the C terminus of the 4E-BPs that is crucial for phosphorylation and regulation S6K1 and 4E-BP1 activities. Deletion or mutations within the TOS motif significantly inhibit S6K1 activation and the phosphorylation of its hydrophobic motif, Thr389. In addition, this sequence is required to suppress an inhibitory activity mediated by the S6K1 C terminus. The TOS motif is essential for S6K1 activation by mTOR, as mutations in this motif mimic the effect of rapamycin on S6K1 phosphorylation, and render S6K1 insensitive to changes in amino acids. Furthermore, only overexpression of S6K1 with an intact TOS motif prevents 4E-BP1 phosphorylation by a common mTOR-regulated modulator of S6K1 and 4E-BP1. CONCLUSIONS: S6K1 and 4E-BP1 contain a conserved five amino acid sequence (TOS motif) that is crucial for their regulation by the mTOR pathway. mTOR seems to regulate S6K1 by two distinct mechanisms. The TOS motif appears to function as a docking site for either mTOR itself or a common upstream activator of S6K1 and 4E-BP1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号