首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
2.
3.
4.
5.
PrnB, the l-proline transporter of Aspergillus nidulans, belongs to the Amino acid Polyamine Organocation (APC) transporter family conserved in prokaryotes and eukaryotes. In silico analysis and limited biochemical evidence suggest that APC transporters comprise 12 transmembrane segments (TMS) connected with relatively short hydrophilic loops (L). However, very little is known on the structure-function relationships in APC transporters. This work makes use of the A. nidulans PrnB transporter to address structure-function relationships by selecting, constructing and analysing several prnB mutations. In the sample, most isolated missense mutations affecting PrnB function map in the borders of cytoplasmic loops with transmembrane domains. These are I119N and G120W in L2-TMS3, F278V in L6-TMS7, NRT378NRTNRT and PY382PYPY in L8-TMS9 and T456N in L10-TMS11. A single mutation (G403E) causing, however, a very weak phenotype, maps in the borders of an extracellular loop (L9-TMS10). An important role of helix TMS6 for proline binding and transport is supported by mutations K245L and, especially, F248L that clearly affect PrnB uptake kinetics. The critical role of these residues in proline binding and transport is further shown by constructing and analysing isogenic strains expressing selected prnB alleles fused to the gene encoding the Green Fluorescent Protein (GFP). It is shown that, while some prnB mutations affect proper translocation of PrnB in the membrane, at least two mutants, K245E and F248L, exhibit physiological cellular expression of PrnB and, thus, the corresponding mutations can be classified as mutations directly affecting proline binding and/or transport. Finally, comparison of these results with analogous studies strengthens conclusions concerning amino acid residues critical for function in APC transporters.  相似文献   

6.
7.
The shrA gene of Aspergillus nidulans codes for a structural and functional homologue of Shr3p, a yeast ER membrane protein, which plays a crucial role in the secretory pathway of yeast amino acid permeases. shrA is a single-copy gene, whose expression is early activated during germination of A. nidulans conidiospores. ShrA is localized in the ER of the fungal cells and partially complements the shr3delta phenotype. Differently from Saccharomyces cerevisiae, where SHr3p is necessary for membrane localization of the majority of amino acid permeases, deletion of the shrA locus in A. nidulans impairs a limited number of amino acid uptake activities, including those responsible for proline and aspartate transport. Strongly reduced membrane levels of a PrnB-sGFP fusion in a shrAdelta background clearly suggest a direct role of ShrA in the topogenesis of the proline specific transporter.  相似文献   

8.
The PrnB protein is a highly specific proline transporter that belongs to an amino acid transporter family conserved in both prokaryotes and eukaryotes. In this work, we detected and analyzed the cellular localization of PrnB in vivo by means of green fluorescent protein (GFP) fusions. Several prnB-gfp gene fusions, driven by prnB native promoter sequences, were constructed and targeted to the genomic locus of a prnB null mutant. Chimeric proteins containing GFP fused to the C terminus of PrnB through a linker of two, four, or eight amino acids, with low potential to form secondary structure elements, were shown to be functional in vivo. A two-linker fusion results in partial complementation at both 25 and 37 degrees C. A four-linker fusion affords almost full complementation at 25 degrees C but partial complementation at 37 degrees C, whereas the eight-linker fusion results in partial complementation at both temperatures but in no GFP fluorescence. These results show that the number of linker amino acids is critical for the correct expression and/or translocation of PrnB-GFP fused proteins to the plasma membrane and for the fluorescence of the GFP. The expression of the four-linker PrnB-GFP transporter was detected and analyzed in vivo by both conventional fluorescence and confocal laser microscopy. This chimeric protein is localized in the plasma membrane, secondarily in large vacuoles found in the swollen conidial end of the germlings, and in other small intracellular structures observed as fluorescent granules. A strong correlation between known patterns of PrnB expression and intensity of PrnB-GFP fluorescence was observed. This work also demonstrates that the GFP fusion technology is a unique tool with which to study the expression and cellular localization of low-abundance transmembrane transporters expressed from their native promoters.  相似文献   

9.
Many plants accumulate proline as a non-toxic and protective osmolyte under saline or dry conditions. Its accumulation is caused by both the activation of its biosynthesis and inactivation of its degradation. We report here on the alterations induced by water and salt stress in the proline metabolism and amino acid content of 5-day-old seedlings of Triticum durum cv. Simeto. Most of the amino acids showed an increase with the induction of either stress, but proline increased more markedly than did other amino acids. We also measured the activities of two enzymes, Δ1-pyrroline-5-carboxylate (P5C) reductase (EC 1.5.1.2) and proline dehydrogenase (EC 1.5.1.2), which are involved in proline biosynthesis and catabolism, respectively. The activity of P5C reductase was enhanced during both water and salt stress, while proline dehydrogenase was inhibited only during salt stress. The results indicate that synthesis de novo is the predominant mechanism in proline accumulation in durum wheat. Use of a cDNA clone that encodes P5C-reductase from Arabidopsis thaliana , showed no differences in the gene expression between controls and stressed plants, implying that the increase in enzyme activity is unrelated to the expression of this gene.  相似文献   

10.
11.
12.
13.
14.
15.
The cationic amino acid transporter, Cat-1, is a high affinity transporter of the essential amino acids, arginine and lysine. Expression of the cat-1 gene is known to be regulated by amino acid availability. It is shown here that cat-1 gene expression is also induced by Glc limitation, which causes a 7-fold increase in cat-1 mRNA, a 30-fold induction of Cat-1 protein levels, and a 4-fold stimulation of arginine uptake. Glc limitation is known to induce the unfolded protein response (UPR) by altering protein glycosylation in the endoplasmic reticulum (ER). The studies here demonstrate that synthesis of Cat-1 occurs during the UPR when global protein synthesis is inhibited. The 5'-UTR of the cat-1 mRNA contains an internal ribosomal entry site (IRES) that is activated by amino acid starvation by a mechanism that involves phosphorylation of the translation initiation factor, eukaryotic initiation factor 2alpha, by the GCN2 kinase. It is shown here that translation from the cat-1/IRES is also induced by Glc deprivation in a manner dependent upon phosphorylation of eukaryotic initiation factor 2alpha by the transmembrane ER kinase, PERK. Because PERK is a key constituent of the UPR, it is concluded that induction of cat-1 gene expression is part of the adaptive response of cells to ER stress. These results also demonstrate that regulation of IRES activity in cellular mRNAs is part of the mechanism by which the UPR protects cells from unfolded proteins in the ER.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号