首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Enterococcus faecalis, the peptide cCF10 acts as a pheromone, inducing transfer of the conjugative plasmid pCF10 from plasmid-containing donor cells to plasmid-free recipient cells. In these studies, it was found that a substantial amount of cCF10 associates with the envelope of the producing cell. Pheromone activity was detected in both wall and membrane fractions, with the highest activity associated with the wall. Experiments examining the effects of protease inhibitor treatments either prior to or following cell fractionation suggested the presence of a cell envelope-associated pro-cCF10 that can be processed to mature cCF10 by a maturase or protease. A pCF10-encoded membrane protein, PrgY, was shown to prevent self-induction of donor cells by reducing the level of pheromone activity in the cell wall fraction.  相似文献   

2.
Conjugative transfer of the Enterococcus faecalis tetracycline resistance plasmid pCF10 is stimulated by a peptide pheromone, cCF10. Once a recipient strain acquires pCF10 and thus becomes a pheromone-responsive donor, cCF10 activity is no longer detected in culture filtrates. Here we show that pCF10 encodes a peptide inhibitor, iCF10, secreted by donor cells; this inhibitor antagonizes the cCF10 activity in culture filtrates. In order to detect and quantitate iCF10, we developed a reverse-phase high-performance liquid chromatography assay in which the inhibitor peptide elutes separately from the pheromone; this type of assay enabled us to determine that lack of pheromone activity in donor culture filtrates was due to secretion of a mixture of iCF10 and cCF10, rather than abolition of cCF10 secretion. The gene encoding iCF10, prgQ, is located on the EcoRI-C fragment of pCF10. The open reading frame comprising the prgQ gene encodes a 23-amino-acid precursor that resembles a signal peptide. This precursor is cleaved to the mature heptapeptide iCF10 during the secretion process.  相似文献   

3.
Expression of a large set of gene products required for conjugative transfer of the antibiotic resistance plasmid pCF10 is controlled by cell-cell communication between plasmid-free recipient cells and plasmid-carrying donor cells using a peptide mating pheromone cCF10. Most of the recent experimental analysis of this system has focused on the molecular events involved in initiation of the pheromone response in the donor cells, and on the mechanisms by which the donor cells control self-induction by endogenously produced pheromone. Recently, studies of the molecular machinery of conjugation encoded by the pheromone-inducible genes have been initiated. In addition, the system may serve as a useful bacterial model for addressing the evolution of biological complexity.  相似文献   

4.
In order to investigate the mechanism by which peptide sex pheromones induce expression of the conjugation functions of certain Enterococcus faecalis plasmids, a biological assay was developed to measure the ability of cells carrying the conjugative plasmid pCF10 to bind the sex pheromone cCF10. The data indicated that pCF10 endows its host E. faecalis cell with the ability to specifically remove (apparently by irreversible binding) cCF10 activity from culture medium. The pCF10 DNA encoding this ability was localized to a 3.4-kb segment within a region involved in negative control of expression of conjugal transfer functions. This segment also encoded ability to bind the pheromone inhibitor peptide iCF10. DNA sequencing revealed three open reading frames, which have been denoted prgW (pheromone responsive gene W), prgZ, and prgY. The deduced product of prgW resembled regulatory proteins from other bacteria and eucaryotes, with a very high degree of identity within a putative DNA-binding domain. The prgY gene actually extended into an adjacent region of pCF10 and could encode a protein with significant similarity to a protein called TraB, believed to be involved in shutdown of pheromone cAD1 production by cells carrying the pheromone-inducible hemolysin plasmid pAD1, according to F.Y. An and D.B. Clewell (Abstr. Gen. Meet. Am. Soc. Microbiol. 1992, H70, 1992). The prgZ gene product showed significant relatedness to binding proteins encoded by oligopeptide permease (opp) operons in gram-positive and gram-negative bacteria and is highly similar to a pAD1-encoded protein, TraC, which is believed to mediate sex pheromone cAD1 binding (K. Tanimoto, F. Y. An, and D. B. Clewell, submitted for publication). A Tn5 insertion into prgZ abolished cCF10 binding ability.  相似文献   

5.
Conjugative transfer of the Enterococcus faecalis plasmid pCF10 is induced by the peptide pheromone cCF10 when recipient-produced cCF10 is detected by donors. cCF10 is produced by proteolytic processing of the signal sequence of a chromosomally encoded lipoprotein (CcfA). In donors, endogenously produced cCF10 is carefully controlled to prevent constitutive expression of conjugation functions, an energetically wasteful process, except in vivo, where endogenous cCF10 induces a conjugation-linked virulence factor. Endogenous cCF10 is controlled by two plasmid-encoded products; a membrane protein PrgY reduces pheromone levels in donors, and a secreted inhibitor peptide iCF10 inhibits the residual endogenous pheromone that escapes PrgY control. In this study we genetically determined the amino acid specificity determinants within PrgY, cCF10, and the cCF10 precursor that are necessary for cCF10 processing and for PrgY-mediated control. We showed that amino acid residues 125 to 241 of PrgY are required for specific recognition of cCF10 and that PrgY recognizes determinants within the heptapeptide cCF10 sequence, supporting a direct interaction between PrgY and mature cCF10. In addition, we found that a regulated intramembrane proteolysis (RIP) family pheromone precursor-processing protein Eep recognizes amino acids N-terminal to cCF10 in the signal sequence of CcfA. These results support a model where Eep directly targets pheromone precursors for RIP and PrgY interacts directly with the mature cCF10 peptide during processing. Despite evidence that both PrgY and Eep associate with cCF10 in or near the membrane, results presented here indicate that these two proteins function independently.  相似文献   

6.
The peptide pheromone, cCF10, which induces aggregation and high frequency plasmid transfer in Streptococcus faecalis cells carrying the tetracycline resistance plasmid, pCF10, was isolated and its structure determined. The molecular weight of cCF10 is 789, and its amino acid sequence is H-Leu-Val-Thr-Leu-Val-Phe-Val-OH. Pheromone activity, as determined by a clumping induction assay, was detectable at a concentration of 2.5 x 10(-11) M. A peptide of the same sequence as that of the cCF10 produced by S. faecalis cells was synthesized by the liquid-phase method. The synthetic pheromone showed biological activity and chromatographic behavior that was identical to that of the cCF10 of bacterial origin. When the response of S. faecalis cells to various concentrations of synthetic cCF10 was monitored by measuring both the frequency of plasmid transfer and the synthesis of pheromone-inducible antigens, an excellent correlation was observed between donor ability and the appearance of a 150-kilodalton protein that appears to be involved in formation of mating aggregates. The dose-response data in the range of concentrations where the amount of pheromone became limiting (10(-11)-10(-12) M) were consistent with the notion that as few as one or two molecules per donor cell may be sufficient to induce a mating response.  相似文献   

7.
8.
The effect of synthetic sex pheromone on pheromone-inducible conjugation between the isogenic Enterococcus faecalis strains OG1RF and OG1SS was investigated in (i) Todd-Hewitt broth medium and (ii) intestinal mucus isolated from germ-free rats. In broth, the presence of synthetic pheromone cCF10 had no detectable effect on the transfer kinetics observed for the tetracycline resistance encoding plasmid pCF10. In mucus, presence of the same pheromone significantly increased the transfer efficiency observed during the first 2 h of conjugation, while the effect was less pronounced later in the experiment. We suggest that due to differences in diffusion rates and medium-binding of the pheromones, the effect of the synthetic cCF10 was immediately dominated by the effect of pheromones produced by the recipient E. faecalis strain in broth, while this happened later in mucus.  相似文献   

9.
In many bacteria expression of lateral gene transfer and of virulence factors is controlled by cell-cell signalling systems. Molecular interactions of microbial signal molecules with their cognate receptors are not well understood. For the Enterococcus faecalis conjugative plasmid pCF10, the PrgX protein serves as a molecular switch controlling expression of conjugation and virulence genes encoded by the plasmid. The induction state of a pCF10-carrying donor cell is determined by the ratio of two signalling peptides, cCF10 pheromone and iCF10 inhibitor. Recent analysis of PrgX/cCF10 interactions suggests a mechanism for conversion to the induced state. However, the means by which iCF10 peptide antagonizes cCF10 activity is unclear, and it has been suggested that inhibitor peptides block import of pheromone peptides. We now show that both of these peptides interact with the same binding pocket of PrgX, but they differentially alter the conformation of the protein and its oligomerization state, resulting in opposing biological activities.  相似文献   

10.
11.
12.
The nosocomial pathogen Enterococcus faecalis has a unique pheromone-inducible conjugative mating system. Conjugative transfer of the E. faecalis plasmid pCF10 is specifically induced by the cCF10 peptide pheromone (LVTLVFV). Genomic sequence information has recently allowed the identification of putative structural genes coding for the various enterococcal pheromones (D. B. Clewell et al., Mol. Microbiol. 35:246-247, 2000). The cCF10 pheromone sequence LVTLVFV was found within an open reading frame designated ccfA, encoding a putative lipoprotein precursor. Several other pheromone sequences were found in similar locations within other predicted lipoproteins. CcfA shows significant sequence relatedness to the Escherichia coli protein YidC, an inner membrane protein translocase, as well as to a large number of homologs identified in gram-positive and in gram-negative bacteria. Analysis of the deduced CcfA amino acid sequence suggested that mature cCF10 peptide could be formed from the proteolytic degradation of its signal peptide. Expression of the cloned ccfA gene with an inducible expression vector dramatically increased cCF10 production by E. faecalis and also resulted in cCF10 production by Lactococcus lactis, a non-pheromone producer. Site-directed mutagenesis of the ccfA sequence encoding the cCF10 peptide confirmed that ccfA was a functional genetic determinant for cCF10.  相似文献   

13.
Upon sensing of the peptide pheromone cCF10, Enterococcus faecalis cells carrying pCF10 produce three surface adhesins (PrgA, PrgB or Aggregation Substance, PrgC) and the Prg/Pcf type IV secretion system and, in turn, conjugatively transfer the plasmid at high frequencies to recipient cells. Here, we report that cCF10 induction is highly toxic to cells sustaining a deletion of prgU, a small orf located immediately downstream of prgB on pCF10. Upon pheromone exposure, these cells overproduce the Prg adhesins and display impaired envelope integrity, as evidenced by antibiotic susceptibility, misplaced division septa and cell lysis. Compensatory mutations in regulatory loci controlling expression of pCF10‐encoded prg/pcf genes, or constitutive PrgU overproduction, block production of the Prg adhesins and render cells insensitive to pheromone. Cells engineered to overproduce PrgB, even independently of other pCF10‐encoded proteins, have severely compromised cell envelopes and strong growth defects. PrgU has an RNA‐binding fold, and prgBprgU gene pairs are widely distributed among E. faecalis isolates and other enterococcal and staphylococcal species. Together, our findings support a model in which PrgU proteins represent a novel class of RNA‐binding regulators that act to mitigate toxicity accompanying overproduction of PrgB‐like adhesins in E. faecalis and other clinically‐important Gram‐positive species.  相似文献   

14.
The level of expression of conjugation genes in Enterococcus faecalis strains carrying the pheromone-responsive transferable plasmid pCF10 is determined by the ratio in the culture medium of two types of signaling peptides, a pheromone (cCF10) and an inhibitor (iCF10). Recent data have demonstrated that both peptides target the cytoplasmic receptor protein PrgX. However, the relative importance of the interaction of these peptides with the pCF10 protein PrgZ (which enhances import of cCF10) versus PrgX is not fully understood, and there is relatively little information about specific amino acid sequence determinants affecting the functional interactions of cCF10 with these proteins in vivo. To address these issues, we used a pheromone-inducible reporter gene system where various combinations of PrgX and PrgZ could be expressed in an isogenic host background to examine the biological activities of cCF10, iCF10, and variants of cCF10 isolated in a genetic screen. The results suggest that most of the amino acid sequence determinants of cCF10 pheromone activity affect interactions between the peptide and PrgX, although some sequence variants that affected peptide/PrgZ interactions were also identified. The results provide functional data to complement ongoing structural studies of PrgX and increase our understanding of the functional interactions of cCF10 and iCF10 with the pheromone-sensing machinery of pCF10.  相似文献   

15.
Chandler JR  Dunny GM 《Peptides》2004,25(9):1377-1388
The enterococcal pheromone-inducible plasmids such as pCF10 represent a unique class of mobile genetic elements whose transfer functions are induced by peptide sex pheromones. These pheromones are excreted by potential recipient cells and detected by plasmid-containing donor cells at the cell surface, where the pheromone is imported and signals induction of the plasmid transfer system. Pheromone is processed from a chromosomally encoded lipoprotein and excreted by both the donor and recipient cells, but a carefully controlled detection system prevents a response to self-pheromone while still allowing an extremely sensitive response to exogenous pheromone.  相似文献   

16.
17.
Dunny GM  Antiporta MH  Hirt H 《Peptides》2001,22(10):1529-1539
The tetracycline resistance plasmid pCF10 represents a class of unique mobile genetic elements of the bacterial genus Enterococcus, whose conjugative transfer functions are inducible by peptide sex pheromones excreted by potential recipient cells. These plasmids play a significant role in the dissemination of virulence and antibiotic resistance genes among the enterococci, which have become major nosocomial pathogens. Pheromone response by plasmid-carrying donor cells involves specific import of the peptide signal molecule, and subsequent interaction of the signal with one or more intracellular regulatory gene products. The pheromones are chromosomally encoded hydrophobic octa- or hepta-peptides, and different families of homologous plasmids encode the ability to respond to each pheromone. Among the four pheromone-responsive plasmids that have been characterized in some detail, there is considerable conservation in the genes encoding pheromone sensing and regulatory functions, and the peptides themselves show considerable similarity. In spite of this, there is extremely high specificity of response to each peptide, with virtually no "cross-induction" of transfer of non-cognate pheromone plasmids by the pheromones. This communication reviews the evidence for this specificity and discusses current molecular and genetic approaches to defining the basis for specificity.  相似文献   

18.
A new animal model, the streptomycin-treated mini-pig, was developed in order to allow colonization of defined strains of Enterococcus faecalis in numbers sufficient to study plasmid transfer. Transfer of the pheromone-inducible pCF10 plasmid between streptomycin-resistant strains of E. faecalis OG1 was investigated in the model. The plasmid encodes resistance to tetracycline. Numbers of recipient, donor, and transconjugant bacteria were monitored by selective plating of fecal samples, and transconjugants were subsequently verified by PCR. After being ingested by the mini-pigs, the recipient strain persisted in the intestine at levels between 10(6) and 10(7) CFU per g of feces throughout the experiment. The donor strain, which carried different resistance markers but was otherwise chromosomally isogenic to the recipient strain, was given to the pigs 3 weeks after the recipient strain. The donor cells were initially present in high numbers (10(6) CFU per g) in feces, but they did not persist in the intestine at detectable levels. Immediately after introduction of the donor bacteria, transconjugant cells appeared and persisted in fecal samples at levels between 10(3) and 10(4) CFU per g until the end of the experiment. These observations showed that even in the absence of selective tetracycline pressure, plasmid pCF10 was transferred from ingested E. faecalis cells to other E. faecalis organisms already present in the intestinal environment and that the plasmid subsequently persisted in the intestine.  相似文献   

19.
Upon sensing of peptide pheromone, Enterococcus faecalis efficiently transfers plasmid pCF10 through a type IV secretion (T4S) system to recipient cells. The PcfF accessory factor and PcfG relaxase initiate transfer by catalyzing strand-specific nicking at the pCF10 origin of transfer sequence (oriT). Here, we present evidence that PcfF and PcfG spatially coordinate docking of the pCF10 transfer intermediate with PcfC, a membrane-bound putative ATPase related to the coupling proteins of gram-negative T4S machines. PcfC and PcfG fractionated with the membrane and PcfF with the cytoplasm, yet all three proteins formed several punctate foci at the peripheries of pheromone-induced cells as monitored by immunofluorescence microscopy. A PcfC Walker A nucleoside triphosphate (NTP) binding site mutant (K156T) fractionated with the E. faecalis membrane and also formed foci, whereas PcfC deleted of its N-terminal putative transmembrane domain (PcfCDelta N103) distributed uniformly throughout the cytoplasm. Native PcfC and mutant proteins PcfCK156T and PcfCDelta N103 bound pCF10 but not pcfG or Delta oriT mutant plasmids as shown by transfer DNA immunoprecipitation, indicating that PcfC binds only the processed form of pCF10 in vivo. Finally, purified PcfCDelta N103 bound DNA substrates and interacted with purified PcfF and PcfG in vitro. Our findings support a model in which (i) PcfF recruits PcfG to oriT to catalyze T-strand nicking, (ii) PcfF and PcfG spatially position the relaxosome at the cell membrane to stimulate substrate docking with PcfC, and (iii) PcfC initiates substrate transfer through the pCF10 T4S channel by an NTP-dependent mechanism.  相似文献   

20.
A new animal model, the streptomycin-treated mini-pig, was developed in order to allow colonization of defined strains of Enterococcus faecalis in numbers sufficient to study plasmid transfer. Transfer of the pheromone-inducible pCF10 plasmid between streptomycin-resistant strains of E. faecalis OG1 was investigated in the model. The plasmid encodes resistance to tetracycline. Numbers of recipient, donor, and transconjugant bacteria were monitored by selective plating of fecal samples, and transconjugants were subsequently verified by PCR. After being ingested by the mini-pigs, the recipient strain persisted in the intestine at levels between 106 and 107 CFU per g of feces throughout the experiment. The donor strain, which carried different resistance markers but was otherwise chromosomally isogenic to the recipient strain, was given to the pigs 3 weeks after the recipient strain. The donor cells were initially present in high numbers (106 CFU per g) in feces, but they did not persist in the intestine at detectable levels. Immediately after introduction of the donor bacteria, transconjugant cells appeared and persisted in fecal samples at levels between 103 and 104 CFU per g until the end of the experiment. These observations showed that even in the absence of selective tetracycline pressure, plasmid pCF10 was transferred from ingested E. faecalis cells to other E. faecalis organisms already present in the intestinal environment and that the plasmid subsequently persisted in the intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号