首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amino acid sequence of the small copper protein auracyanin A isolated from the thermophilic photosynthetic green bacterium Chloroflexus aurantiacus has been determined to be a polypeptide of 139 residues. His58, Cys123, His128, and Met132 are spaced in a way to be expected if they are the evolutionary conserved metal ligands as in the known small copper proteins plastocyanin and azurin. Secondary structure prediction also indicates that auracyanin has a general beta-barrel structure similar to that of azurin from Pseudomonas aeruginosa and plastocyanin from poplar leaves. However, auracyanin appears to have sequence characteristics of both small copper protein sequence classes. The overall similarity with a consensus sequence of azurin is roughly the same as that with a consensus sequence of plastocyanin, namely 30.5%. We suggest that auracyanin A, together with the B forms, is the first example of a new class of small copper proteins that may be descendants of an ancestral sequence to both the azurin proteins occurring in prokaryotic nonphotosynthetic bacteria and the plastocyanin proteins occurring in both prokaryotic cyanobacteria and eukaryotic algae and plants. The N-terminal sequence region 1-18 of auracyanin is remarkably rich in glycine and hydroxy amino acids, and required mass spectrometric analysis to be determined. The nature of the blocking group X is not yet known, although its mass has been determined to be 220 Da. The auracyanins are the first small blue copper proteins found and studied in anoxygenic photosynthetic bacteria and are likely to mediate electron transfer between the cytochrome bc1 complex and the photosynthetic reaction center.  相似文献   

2.
The membrane-bound photooxidizable cytochrome c-554 from Chloroflexus aurantiacus has been purified. The purified protein runs as a single heme staining band on SDS-PAGE with an apparent molecular mass of 43 000 daltons. An extinction coefficient of 28 ± 1 mM–1 cm–1 per heme at 554 nm was found for the dithionite-reduced protein. The potentiometric titration of the hemes takes place over an extended range, showing clearly that the protein does not contain a single heme in a well-defined site. The titration can be fit to a Nernst curve with midpoint potentials at 0, +120, +220 and +300 mV vs the standard hydrogen electrode. Pyridine hemochrome analysis combined with a Lowry protein assay and the SDS-PAGE molecular weight indicates that there are a minimum of three, and probably four hemes per peptide. Amino acid analysis shows 5 histidine residues and 29% hydrophobic residues in the protein. This cytochrome appears to be functionally similar to the bound cytochrome from Rhodopseudomonas viridis. Both cytochrome c-554 from C. aurantiacus and the four-heme cytochrome c-558-553 from R. viridis appear to act as direct electron donors to the special bacteriochlorophyll pair of the photosynthetic reaction center. They have a similar content of hydrophobic amino acids, but differ in isoelectric point, thermodynamic characteristics, spectral properties, and in their ability to be photooxidized at low temperature.Abbreviations LDAO lauryl dimethyl amine-N-oxide - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - mV millivolt - Em.8 midpoint potential at pH 8.0 - ODV optical density x volume in ml  相似文献   

3.
Three small blue copper proteins designated auracyanin A, auracyanin B-1, and auracyanin B-2 have been isolated from the thermophilic green gliding photosynthetic bacterium Chloroflexus aurantiacus. All three auracyanins are peripheral membrane proteins. Auracyanin A was described previously (Trost, J. T., McManus, J. D., Freeman, J. C., Ramakrishna, B. L., and Blankenship, R. E. (1988) Biochemistry 27, 7858-7863) and is not glycosylated. The two B forms are glycoproteins and have almost identical properties to each other, but are distinct from the A form. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis apparent monomer molecular masses are 14 (A), 18 (B-2), and 22 (B-1) kDa. The amino acid sequences of the B forms are presented. All three proteins have similar absorbance, circular dichroism, and resonance Raman spectra, but the electron spin resonance signals are quite different. Laser flash photolysis kinetic analysis of the reactions of the three forms of auracyanin with lumiflavin and flavin mononucleotide semiquinones indicates that the site of electron transfer is negatively charged and has an accessibility similar to that found in other blue copper proteins. Copper analysis indicates that all three proteins contain 1 mol of copper per mol of protein. All three auracyanins exhibit a midpoint redox potential of +240 mV. Light-induced absorbance changes and electron spin resonance signals suggest that auracyanin A may play a role in photosynthetic electron transfer. Kinetic data indicate that all three proteins can donate electrons to cytochrome c-554, the electron donor to the photosynthetic reaction center.  相似文献   

4.
Superoxide dismutase from the thermophilic anoxygenic photosynthetic bacterium Chloroflexus aurantiacus was cloned, purified, and characterized. This protein is in the manganese- and iron-containing family of superoxide dismutases and is able to use both manganese and iron catalytically. This appears to be the only soluble superoxide dismutase in C. aurantiacus. Iron and manganese cofactors were identified by using electron paramagnetic resonance spectroscopy and were quantified by atomic absorption spectroscopy. By metal enrichment of growth media and by performing metal fidelity studies, the enzyme was found to be most efficient with manganese incorporated, yet up to 30% of the activity was retained with iron. Assimilation of iron or manganese ions into superoxide dismutase was also found to be affected by the growth conditions. This enzyme was also found to be remarkably thermostable and was resistant to H2O2 at concentrations up to 80 mM. Reactive oxygen defense mechanisms have not been previously characterized in the organisms belonging to the phylum Chloroflexi. These systems are of interest in C. aurantiacus since this bacterium lives in a hyperoxic environment and is subject to high UV radiation fluxes.  相似文献   

5.
The complete nucleotide sequence of the cytochrome c-554 gene from the green photosynthetic bacterium Chloroflexus aurantiacus has been determined. The derived amino acid sequence showed that the cytochrome precursor protein consists of 414 residues and contains 4-Cys-X-X-Cys-His- heme binding motifs. The only regions of the cytochrome c-554 sequence that were found to be significantly similar to the sequences of cytochromes from other organisms were the heme binding sites. The highest similarity was found with the heme binding segments in the four-heme reaction center cytochrome subunit from the purple photosynthetic bacterium Rhodopseudomonas viridis. The importance of this similarity for the evolutionary relationship between Chloroflexus and the purple bacteria is discussed.  相似文献   

6.
The mechanism of primary photochemistry has been investigated in purified cytoplasmic membranes and isolated reaction centers of Chloroflexus aurantiacus. Redox titrations on the cytoplasmic membranes indicate that the midpoint redox potential of P870, the primary electron donor bacteriochlorophyll, is +362 mV. An early electron acceptor, presumably menaquinone has Em 8.1 = -50 mV, and a tightly bound photooxidizable cytochrome c554 has Em 8.1 = +245 mV. The isolated reaction center has a bacteriochlorophyll to bacteriopheophytin ratio of 0.94:1. A two-quinone acceptor system is present, and is inhibited by o-phenanthroline. Picosecond transient absorption and kinetic measurements indicate the bacteriopheophytin and bacteriochlorophyll form an earlier electron acceptor complex.  相似文献   

7.
Picosecond photodichroism (photoselection) measurements have been carried out on reaction centers from the facultative green photosynthetic bacterium Chloroflexus aurantiacus using weak 30 ps flashes in the long-wavelength band of the primary electron donor, P. Absorption changes due to the chemical and photochemical oxidation of P and the reduction of quinone also have been examined. Our results on Chloroflexus suggest that the Qy transition-dipoles of the bacteriopheophytin molecules participating in, or affected by, the primary reactions are oriented essentially perpendicular to the 865 nm transition dipole of P. This is in agreement with previous work on reaction centers from purple bacteria, such as Rhodopseudomonas sphaeroides. The data also suggest that the 812 nm ground-state transition is oriented at an angle of 45–65° with respect to the 865 nm transition. The new band that appears near 800 nm upon oxidation of P is polarized mainly parallel to the 865 nm band. These relative polarizations of the absorption bands are in very good agreement with the results of recent linear dichroism studies (Vasmel, H., Meiburg, R.F., Kramer, H.J.M., De Vos, L.J. and Amesz, J. (1983) Biochim. Biophys. Acta 724, 333–339). Possible origins for the absorption changes and the photodichroism spectra are discussed. The data are consistent with either a monomeric or dimeric structure of P-865.  相似文献   

8.
Abstract Some properties of the citrate synthase from Chloroflexus aurantiacus have been examined in crude cell-free extracts and partially purified preparations. The enzyme had an approximate native molecular size of 140 000, was not inhibited by NADH or 2-oxoglutarate but was inhibited by ATP (about 50% at 5 mM). The K m for acetyl CoA at pH 8.2 in the presence of 0.5 mM oxaloacetate was determined to be 25 μM.
These properties are characteristic of the 'small' size class of citrate synthases normally associated with gram-positive eubacteria, despite the fact that Chloroflexus stains gram-negatively.  相似文献   

9.
Analysis of the Chloroflexus aurantiacus reaction centre (RC) using both protein and recombinant DNA techniques resulted in determination of its polypeptide composition and the primary structures of its two subunits. A model of the polypeptide chains' folding in the membrane is suggested based on: i) homology between L- and M-subunits of Chloroflexus aurantiacus RC and their counterparts in purple bacteria; ii) comparison of their hydropathy plots, and iii) data on the tertiary structures of purple bacteria RCs. The role of a number of functionally important amino acid residues in the RC electron transport activity is discussed. Limited proteolysis of the RC under non-denaturing conditions was used to determine the contribution of the N-terminal regions to its thermal stability.  相似文献   

10.
We have studied the pigment arrangement in purified cytoplasmic membranes of the thermophilic green bacterium Chloroflexus aurantiacus. The membranes contain 30–35 antenna bacteriochlorophyll a molecules per reaction center; these are organized in the B808–866 light-harvesting complex, together with carotenoids in a 2:1 molar ratio. Measurements of linear dichroism in a pressed polyacrylamide gel permitted the accurate determination of the orientation of the optical transition dipole moments with respect to the membrane plane. Combination of linear dichroism and low temperature fluorescence polarization data shows that the Qy transitions of the BChl 866 molecules all lie almost perfectly parallel to the membrane plane, but have no preferred orientation within the plane. The BChl 808 Qy transitions make an average angle of about 44° with this plane. This demonstrates that there are clear structural differences between the B808–866 complex of C. aurantiacus and the B800–850 complex of purple bacteria. Excitation energy transfer from carotenoid to BChl a proceeds with about 40% efficiency, while the efficiency of energy transfer from BChl 808 to BChl 866 approaches 100%. From the minimal energy transfer rate between the two spectral forms of BChl a, obtained by analysis of low temperature fluorescence emission spectra, a maximal distance between BChl 808 and BChl 866 of 23 was derived.Abbreviations BChl bacteriochlorophyll - BPheo bacteriopheophytin - CD circular dichroism - LD linear dichroism - Tris Tris(hydroxymethyl)aminomethane  相似文献   

11.
The transfer of excitation energy and the pigment arrangement in isolated chlorosomes of the thermophilic green bacterium Chloroflexus aurantiacus were studied by means of absorption, fluorescence and linear dichroism spectroscopy, both at room temperature and at 4 K. The low temperature absorption spectrum shows bands of the main antenna pigments BChl c and carotenoid, in addition to which bands of BChl a are present at 798 and 613 nm. Fluorescence measurements showed that excitation energy from BChl c and carotenoid is transferred to BChl a, which presumably functions as an intermediate in energy transfer from the chlorosome to the cytoplasmic membrane. Measurements of fluorescence polarization and the use of two different orientation techniques for linear dichroism experiments enabled us to determine the orientation of several transition dipole moments with respect to each other and to the three principal axes of the chlorosome. The Qy transition of BChl a is oriented almost perfectly perpendicular to the long axis of the chlorosome. The Qy transition of BChl c and the -carotene transition dipole are almost parallel to each other. They make an angle of about 40° with the long axis and of about 70° with the short axis of the chlorosome; the angle between these transitions and the BChl a Qy transition is close to the magic angle (55°).Abbreviations BChl bacteriochlorophyll - CD circular dichroism - LD linear dichroism Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement.  相似文献   

12.
Mutants deficient in the production of bacteriochlorophyll c (Bchl c) and one mutant lacking colored carotenoids were isolated from the filamentous gliding bacterium Chloroflexus aurantiacus. Mutagenesis was achieved by using UV radiation or N-methyl-N'-nitro-N-nitrosoguanidine. Several clones were isolated that were deficient in Bchl c synthesis. All reverted. One double mutant deficient both in Bchl c synthesis and in the synthesis of colored carotenoids under anaerobic conditions was isolated. Isolation of a revertant in Bchl c synthesis from this double mutant produced a mutant strain of Chloroflexus that grew photosynthetically under anaerobic conditions and lacked colored carotenoids. Analysis of pigment contents and growth rates of the mutants revealed a positive association between growth rate and content of Bchl c under light-limiting conditions.  相似文献   

13.
Wang  Chao  Xin  Yueyong  Min  Zhenzhen  Qi  Junjie  Zhang  Chenyun  Xu  Xiaoling 《Photosynthesis research》2020,143(3):301-314
Photosynthesis Research - Auracyanin (Ac) is a blue copper protein that mediates the electron transfer between Alternative Complex III (ACIII) and downstream electron acceptors in both fort chains...  相似文献   

14.
The protein assumed to be associated with bacteriochlorophyll (BChl) a in chlorosomes from the photosynthetic green filamentous bacterium Chloroflexus aurantiacus was investigated by alkaline treatment, proteolytic digestion and a new treatment using 1-hexanol, sodium cholate and Triton X-100. Upon alkaline treatment, only the 5.7 kDa CsmA protein was removed from the chlorosomes among six proteins detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis, concomitantly with the disappearance of BChl a absorption at 795 nm. Trypsin treatment removed two proteins with molecular masses of 11 and 18 kDa (CsmN and CmsM), whereas the spectral properties of BChl a and BChl c were not changed. By the new hexanol-detergent (HD) treatment, most BChl c and all of the detected proteins except CsmA were removed from the chlorosomes without changing the BChl a spectral properties. Subsequent proteinase K treatment of these HD-treated chlorosomes caused digestion of CsmA and a simultaneous decrease of the BChl a absorption band. Based on these results, we suggest that CsmA is associated with BChl a in the chlorosomes. This suggestion was supported by the measured stoichiometric ratio of BChl a to CsmA in isolated chlorosomes, which was estimated to be between 1.2 and 2.7 by amino acid analysis of the SDS-PAGE-resolved protein bands.  相似文献   

15.
Spectrally pure reaction center preparations from Chloroflexus aurantiacus have been obtained in a stable form; however, the product contained several contaminating polypeptides. The reaction center pigment molecules (probably three bacteriochlorophyll a and three bacteriopheophytin a molecules) are associated with two polypeptides (Mr = 30000 and 28000) in a reaction center complex of Mr = 52000. No carotenoid is present in the complex. These data together with previous spectral data suggest that the Chloroflexus reaction center represents a more primitive evolutionary form of the purple bacterial reaction center, and that it has little if any relationship to the green bacterial component. A reaction center preparation from Rhodopseudomonas sphaeroides R26 was fully denatured at 50°C while the Chloroflexus reaction center required higher temperatures (70–75°C) for complete denaturation. Thus, an intrinsic membrane protein of a photosynthetic thermophile has been demonstrated to have greater thermal stability than the equivalent component of a mesophile.  相似文献   

16.
S Miki  H Yamada  T Orita  M Yamamoto  Y Miki 《FEBS letters》1991,289(2):179-182
The photosynthetic reaction centers (RC) of the green bacterium Chloroflexus aurantiacus have been investigated by spectral and electrometrical methods. In these reaction centers, the secondary quinone was found to be reconstituted by the addition of ubiquinone-10. The equilibrium constant of electron transfer between primary (QA) and secondary (QB) quinones was much higher than that in RC of purple bacteria. The QB binding to the protein decreased under alkalinization with apparent pK 8.8. The single flash-induced electric responses were about 200 mV. An additional electrogenic phase due to the QB protonation was observed after the second flash in the presence of exogenous electron donors. The magnitude of this phase was 18% of that related to the primary dipole (P+QA-) formation. Since the C. aurantiacus RC lacks H-subunit, this subunit was not an obligatory component for electrogenic QB protonation.  相似文献   

17.
Bacteriochlorophyll (BChl) c pigments in the aggregated state are responsible for efficient light harvesting in chlorosomes of the filamentous anoxygenic photosynthetic bacterium, Chloroflexus (Cfx.) aurantiacus. Absorption of light creates excited states in the BChl c aggregates. After subpicosecond intrachlorosomal energy transfer, redistribution and relaxation, the excitation is transferred to the BChl a complexes and further to reaction centers on the picosecond time scale. In this work, the femtosecond excited state dynamics within BChl c oligomers of isolated Cfx. aurantiacus chlorosomes was studied by double difference pump‐probe spectroscopy at room temperature. Difference (Alight ? Adark) spectra corresponding to excitation at 725 nm (blue side of the BChl c absorption band) were compared with those corresponding to excitation at 750 nm (red side of the BChl c absorption band). A very fast (time constant 70 ± 10 fs) rise kinetic component was found in the stimulated emission (SE) upon excitation at 725 nm. This component was absent at 750‐nm excitation. These data were explained by the dynamical red shift of the SE due to excited state relaxation. The nature and mechanisms of the ultrafast excited state dynamics in chlorosomal BChl c aggregates are discussed.  相似文献   

18.
《BBA》1986,849(3):316-324
The formation and decay of antenna-excited states and the primary charge separation in membranes of the green photosynthetic bacterium Chloroflexus aurantiacus were studied by means of picosecond absorbance difference spectroscopy. After chemical oxidation of the primary electron donor, a 35 ps excitation pulse at 532 nm produced singlet- and triplet-excited states of carotenoid and of bacteriochlorophyll a. Excitation of bacteriochlorophyll a caused a bleaching of its Qy absorption band and induced a blue shift of several neighboring bacteriochlorophyll molecules. The singlet-excited state decayed biphasically with lifetimes of about 200 ps and 1.2 ns. A decrease in the lifetime at increasing flash intensity was attributed to singlet-singlet annihilation. In the presence of active reaction centers also the primary-charge separation and secondary electron transfer were observed. The charge separation consisted of the transfer of an electron from the primary donor, P-865, to the primary-acceptor complex of bacteriopheophytin a and bacteriochlorophyll a. Electron transfer to a secondary acceptor occurred with a time constant of 400 ± 50 ps, which is about 30% longer than had been observed with isolated reaction centers (Kirmaier, C., Holten, D., Mancino, L.J. and Blankenship, R.E. (1984) Biochim. Biophys. Acta 765, 138–146). When this secondary acceptor was prereduced chemically, the lifetime of the primary radical pair increased to 10 ns or more.  相似文献   

19.
Chloroflexus, a newly described genus of filamentous, photosynthetic, gliding bacteria, oxidizes sulfide anaerobically under photoautotrophic or photoheterotrophic growh conditions and deposits elemental sulfur outside the cell. The formation of sulfur granules outside the cell supports the idea that this organism is related to the green sulfur bacteria (Chlorobiaceae).  相似文献   

20.
The arrangement of core antenna complexes (B808-866-RC) in the cytoplasmic membrane of filamentous phototrophic bacterium Chloroflexus aurantiacus was studied by electron microscopy in cultures from different light conditions. A typical nearest-neighbor center-to-center distance of ~18 nm was found, implying less protein crowding compared to membranes of purple bacteria. A mean RC:chlorosome ratio of 11 was estimated for the occupancy of the membrane directly underneath each chlorosome, based on analysis of chlorosome dimensions and core complex distribution. Also presented are results of single-particle analysis of core complexes embedded in the native membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号