首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenol oxidase (EC 1.14.18.1) from the microscopic fungus Mycelia sterilia IBR 35219/2 was immobilized using glutaraldehyde on macroporous silica carriers. The enzyme immobilized on amino-Silochrome SKh-2 or aminopropyl-Silochrome 350/80 exhibited maximum activity. Soluble and immobilized phenol oxidases were compared. Compared to the soluble enzyme, the activity of which was optimum at pH 5.5, immobilized phenol oxidase exhibited optimum activity under slightly more acidic conditions (pH 5.2). Immobilization considerably increased the enzyme stability. Both soluble and immobilized forms of phenol oxidase from M. sterilia IBR 35219/2 catalyze oxidative conversion of phenolic compounds of the green tea extract.  相似文献   

2.
Glucose oxidase from Aspergillus niger was immobilized on nonporous glass beads by covalent bonding and its kinetics were studied in a packed-column recycle reactor. The optimum pH of the immobilized enzyme was the same as that of soluble enzyme; however, immobilized glucose oxidase showed a sharper pH-activity profile than that of the soluble enzyme. The kinetic behavior of immobilized glucose oxidase at optimum pH and 25 degrees C was similar to that of the soluble enzyme, but the immobilized material showed increased temperature sensitivity. Immobilized glucose oxidase showed no loss in activity on storage at 4 degrees C for nearly ten weeks. On continuous use for 60 hr, the immobilized enzyme showed about a 40% loss in activity but no change in the kinetic constant.  相似文献   

3.
Shao J  Ge H  Yang Y 《Biotechnology letters》2007,29(6):901-905
A partially purified potato polyphenol oxidase (PPO) was immobilized in a cross-linked chitosan–SiO2 gel and used to treat phenol solutions. Under optimized conditions (formaldehyde 20 mg/ml, PPO 4 mg/ml and pH 7.0), the activity of immobilized PPO was 1370 U/g and its K m value for catechol was 12 mm at 25°C. The highest activity of immobilized enzyme was at pH 7.4. Immobilization stabilized the enzyme with 73 and 58% retention of activity after 10 and 20 days, respectively, at 30°C whereas most of the free enzyme was inactive after 7 days. The efficiency of removing phenol (10 mg phenol/l) by the immobilized PPO was 86%, and about 60% removal efficiency was retained after five recycles. The immobilized PPO may thus be a useful for removing phenolic compounds from industrial waste-waters.  相似文献   

4.
Glucose oxidase (beta-D-glucose: oxygen 1-oxidoreductase, EC 1.1.3.4) was covalently coupled to silica-based supports containing aldehyde functional groups. The activity of the immobilized enzyme was about 1000 U/g support. The optimum pH of the catalytic activity was 5.5 for the soluble enzyme and 6.0 for the immobilized enzyme. With glucose as a substrate the Km value of the immobilized enzyme was higher than in case of the soluble enzyme. The immobilized enzyme was found to be more thermostable than the soluble one. The immobilization did not affect the stability of glucose oxidase against the denaturing effect of urea.  相似文献   

5.
Mucor miehei lipase was immobilized on magnetic polysiloxane-polyvinyl alcohol particles by covalent binding. The resulting immobilized biocatalyst was recycled by seven assays, with a retained activity around 10% of its initial activity. Km and Vmax were respectively 228.3 M and 36.1 U mg of protein–1 for immobilized enzyme. Whereas the optimum temperature remained the same for both soluble and immobilized lipase (45 °C), there was a shift in pH profiles after immobilization. Optimum pH for the immobilized lipase was 8.0. Immobilized enzyme showed to be more resistant than soluble lipase when assays were performed out of the optimum temperature or pH.  相似文献   

6.
Abstract

Extracellular lipase from an indigenous Bacillus aryabhattai SE3-PB was immobilized in alginate beads by entrapment method. After optimization of immobilization conditions, maximum immobilization efficiencies of 77%?±?1.53% and 75.99%?±?3.49% were recorded at optimum concentrations of 2% (w/v) sodium alginate and 0.2?M calcium chloride, respectively, for the entrapped enzyme. Biochemical properties of both free and immobilized lipase revealed no change in the optimum temperature and pH of both enzyme preparations, with maximum activity attained at 60?°C and 9.5, respectively. In comparison to free lipase, the immobilized enzyme exhibited improved stability over the studied pH range (8.5–9.5) and temperature (55–65?°C) when incubated for 3?h. Furthermore, the immobilized lipase showed enhanced enzyme-substrate affinity and higher catalytic efficiency when compared to soluble enzyme. The entrapped enzyme was also found to be more stable, retaining 61.51% and 49.44% of its original activity after being stored for 30 days at 4?°C and 25?°C, respectively. In addition, the insolubilized enzyme exhibited good reusability with 18.46% relative activity after being repeatedly used for six times. These findings suggest the efficient and sustainable use of the developed immobilized lipase for various biotechnological applications.  相似文献   

7.
A homogenous enzyme with both bilirubin oxidase and laccase activities was isolated from a submerged culture of the basidiomycete Pleurotus ostreatus mycelium and characterized. The yield of the enzyme was 127 μg/g dry biomass of the mycelium. The specific activity of the enzyme was 21 and 261 U/mg to bilirubin and to a laccase substrate ABTS, respectively. The intracellular phenol oxidase from the P. ostreatus mycelium was identified as bilirubin oxidase with the amino acid sequence highly homologous to that of the pox2 gene-encoded product. The enzyme displayed the maximal laccase activity at 50–55°C to all substrates examined, whereas the pH optimum was substrate-dependent and changed from 3.0 for ABTS to 7.0 for syringaldazine and guaiacol. The enzyme maintained catalytic activity within a broad pH range but was inactivated at pH 4.0. The enzyme was thermostable but very sensitive to metal chelating inhibitors. Trypan Blue (5 mg/liter) was completely decolorizated upon 3 h of incubation with the bilirubin oxidase (20 mU/ml) at room temperature.  相似文献   

8.
Polyphenoloxidase from mango(Mangifera indica) peel was purified to homogeneity by ammonium sulphate fractionation, chromatography on DEAE-Sephadex and gel filtration of Sephadex G-200. The enzyme had an apparent molecular weight of 136,000. Its pH and temperature optimum were 5.4 and 50‡C, respectively. The enzyme possessed catecholase activity and was specific too-dihydroxy phenols. The enzyme also exhibited peroxidase activity. Some non-oxidizable phenolic compounds inhibited the enzyme competitively. High inhibitory effects were also shown by some metal chelators and reducing agents, Mango peel polyphenol oxidase when immobilized onto DEAE Sephadex showed slightly higher Km for catechol and lower pH and temperature optima.  相似文献   

9.
Oxalate decarboxylase, an oxalate degradation enzyme used for medical diagnosis and decreasing the oxalate level in the food or paper industry, was covalently immobilized to Eupergit C. Different immobilization parameters, including ratio of enzyme to support, ammonia sulfate concentration, pH, and incubation time, were optimized. Under the condition of enzyme/support ratio at 1:20, pH 9, with 1.5 mol/L (NH4)2SO4, room temperature, and shaking at 30 rpm for 24 hr, activity recovery of immobilized Oxdc reached 90% with an apparent specific activity of 0.44 U/mg support. The enzymatic properties of immobilized Oxdc were investigated and compared with those of the soluble enzyme. Both shared a similar profile of optimum conditions; the optimum pH and temperature for soluble and immobilized Oxdc were 3.5 and 50°C, respectively. The immobilized enzyme was more stable at lower pH and higher temperatures. The kinetic parameters for soluble and immobilized enzyme were also determined.  相似文献   

10.
Comparative studies have been carried out on soluble and immobilized yeast hexokinase (ATP: D-hexose 6-phosphotransferase, EC 2.7.1.1). The enzyme was immobilized by covalent attachment to a polyacrylamide type support containing carboxylic functional groups. The effects of immobilization on the catalytic properties and stability of hexokinase were studied. As a result of immobilization, the pH optimum for catalytic activity was shifted in the alkaline direction to ~pH 9.7. The apparent optimum temperature of the immobilized enzyme was higher than that of the soluble enzyme. The apparent Km value with D-glucose as substrate increased, while that with ATP as substrate decreased, compared with the data for the soluble enzyme. Differences were found in the thermal inactivation processes and stabilities of the soluble and immobilized enzymes. The resistance to urea of the soluble enzyme was higher at alkaline pH values, while that for the immobilized enzyme was greatest at ~pH 6.0.  相似文献   

11.
A hydrogen peroxide permselective membrane with asymmetric structure was prepared and d-glucose oxidase (EC 1.1.3.4) was immobilized onto the porous layer. The activity of the immobilized d-glucose oxidase membrane was 0.34 units cm?2 and the activity yield was 6.8% of that of the native enzyme. Optimum pH, optimum temperature, pH stability and temperature stability were found to be pH 5.0, 30–40°C, pH 4.0–7.0 and below 55°C, respectively. The apparent Michaelis constant of the immobilized d-glucose oxidase membrane was 1.6 × 10?3 mol l?1 and that of free enzyme was 4.8 × 10?2 mol l?1. An enzyme electrode was constructed by combination of a hydrogen peroxide electrode with the immobilized d-glucose oxidase membrane. The enzyme electrode responded linearly to d-glucose over the concentration 0–1000 mg dl?1 within 10 s. When the enzyme electrode was applied to the determination of d-glucose in human serum, within day precision (CV) was 1.29% for d-glucose concentration with a mean value of 106.8 mg dl?1. The correlation coefficient between the enzyme electrode method and the conventional colorimetric method using a free enzyme was 0.984. The immobilized d-glucose oxidase membrane was sufficiently stable to perform 1000 assays (2 to 4 weeks operation) for the determination of d-glucose in human whole blood. The dried membrane retained 77% of its initial activity after storage at 4°C for 16 months.  相似文献   

12.
Oxalate decarboxylase, an oxalate degradation enzyme used for medical diagnosis and decreasing the oxalate level in the food or paper industry, was covalently immobilized to Eupergit C. Different immobilization parameters, including ratio of enzyme to support, ammonia sulfate concentration, pH, and incubation time, were optimized. Under the condition of enzyme/support ratio at 1:20, pH 9, with 1.5?mol/L (NH(4))(2)SO(4), room temperature, and shaking at 30?rpm for 24?hr, activity recovery of immobilized Oxdc reached 90% with an apparent specific activity of 0.44?U/mg support. The enzymatic properties of immobilized Oxdc were investigated and compared with those of the soluble enzyme. Both shared a similar profile of optimum conditions; the optimum pH and temperature for soluble and immobilized Oxdc were 3.5 and 50°C, respectively. The immobilized enzyme was more stable at lower pH and higher temperatures. The kinetic parameters for soluble and immobilized enzyme were also determined.  相似文献   

13.
A hydrogen peroxide permselective membrane with asymmetric structure was prepared and -glucose oxidase (EC 1.1.3.4) was immobilized onto the porous layer. The activity of the immobilized -glucose oxidase membrane was 0.34 units cm−2 and the activity yield was 6.8% of that of the native enzyme. Optimum pH, optimum temperature, pH stability and temperature stability were found to be pH 5.0, 30–40°C, pH 4.0–7.0 and below 55°C, respectively. The apparent Michaelis constant of the immobilized -glucose oxidase membrane was 1.6 × 10−3 mol l−1 and that of free enzyme was 4.8 × 10−2 mol l−1. An enzyme electrode was constructed by combination of a hydrogen peroxide electrode with the immobilized -glucose oxidase membrane. The enzyme electrode responded linearly to -glucose over the concentration 0–1000 mg dl−1 within 10 s. When the enzyme electrode was applied to the determination of -glucose in human serum, within day precision (CV) was 1.29% for -glucose concentration with a mean value of 106.8 mg dl−1. The correlation coefficient between the enzyme electrode method and the conventional colorimetric method using a free enzyme was 0.984. The immobilized -glucose oxidase membrane was sufficiently stable to perform 1000 assays (2 to 4 weeks operation) for the determination of -glucose in human whole blood. The dried membrane retained 77% of its initial activity after storage at 4°C for 16 months.  相似文献   

14.
Milk-clotting enzyme from Bacillus licheniformis 5A1 was immobilized on Amberlite IR-120 by ionic binding. Almost all the enzyme activity was retained on the support. The immobilized milk-clotting enzyme was repeatedly used to produce cheese in a batch reactor. The production of cheese was repeated 5 times with no loss of activity. The specific activity calculated on a bound-protein basis was slightly higher than that of free enzyme. The free and immobilized enzyme were highly tolerant to repeated freezing and thawing. The optimum temperature for milk-clotting activity was 70 °C with the free enzyme whereas, it was ranged from 70 to 80 °C with the immobilized milk-clotting enzyme. The activation energy (E A) of the immobilized milk-clotting enzyme was lower than the free enzyme (E A = 1.59 and 1.99 Kcal mol−1 respectively). The immobilized milk-clotting enzyme exhibited great thermal stability. The milk-clotting optimum pH was 7.0 for both free and immobilized enzyme. The Michaelis constant K m of the immobilized milk-clotting enzyme was slightly lower than the free enzyme.  相似文献   

15.
The enzyme inulinase (2,1-β-d-fructan fructanohydrolase, EC 3.2.1.7), prepared from Kluyveromyces marxianus has been immobilized using an inorganic solid support, molecular sieve 4A via the metal link method. The immobilized enzyme had around 22 units of inulinase activity per g of the support with retention of 72% of the original activity. The optimum protein to molecular sieve ratio for the maximum retention of inulinase activity was 9 mg/g molecular sieve. The properties of soluble and immobilized enzyme differed in many respects. The optimum pH of the enzyme shifted from 6 to 5 and the optimum temperature of enzyme activity changed from 50 to 55°C. Km values were 6.7 mM for soluble enzyme and 10 mM for immobilized enzyme. The heat stability of the enzyme was improved by immobilization. Immobilized enzyme retained about 76% of the original activity after 40 days of storage at room temperature (30±2°C).  相似文献   

16.
Amyloglucosidase was immobilized on a copolymer of methyl methacrylate and 2-dimethylaminoethyl methacrylate. The resulting immobilized amyloglucosidase has 19% of the soluble enzyme specific activity. The pH optimum of immobilized amyloglucosidase is shifted towards acidity by 1.9 units. The temperature optimum of immobilized enzyme is shifted upward by 5°C. The immobilized amyloglucosidase has the maximum stability at pH 4.6, whereas the soluble enzyme has maximum stability at pH 5.5. While soluble amyloglucosidase has a maximum thermal stability at 50°C, the stability of the immobilized amyloglucosidase steadily decreases with the increase in temperature.  相似文献   

17.
This paper demonstrates the direct immobilization of peroxidase from ammonium sulfate fractionated white radish proteins on an inorganic support, Celite 545. The adsorbed peroxidase was crosslinked by using glutaraldehyde. The activity yield for white radish peroxidase was adsorbed on Celite 545 was 70% and this activity was decreased and remained 60% of the initial activity after crosslinking by glutaraldehyde. The pH and temperature-optima for both soluble and immobilized peroxidase was at pH 5.5 and 40°C. Immobilized peroxidase retained higher stability against heat and water-miscible organic solvents. In the presence of 5.0 mM mercuric chloride, immobilized white radish peroxidase retained 41% of its initial activity while the free enzyme lost 93% activity. Soluble enzyme lost 61% of its initial activity while immobilized peroxidase retained 86% of the original activity when exposed to 0.02 mM sodium azide for 1 h. The Km values were 0.056 and 0.07 mM for free and immobilized enzyme, respectively. Immobilized white radish peroxidase exhibited lower Vmax as compared to the soluble enzyme. Immobilized peroxidase preparation showed better storage stability as compared to its soluble counterpart.  相似文献   

18.
The dynamics of β-xylosidase biosynthesis from Aspergillus niger B 03 was investigated in laboratory bioreactor. Maximum xylosidase activity 5.5 U/ml was achieved after 80 h fermentation at medium pH 4.0. The isolated β-xylosidase was immobilized on polyamide membrane support and the basic characteristics of the immobilized enzyme were determined. Maximum immobilization and activity yield obtained was 30.0 and 6.8%, respectively. A shift in temperature optimum and pH optimum was observed for immobilized β-xylosidase compared to the free enzyme. Immobilized enzyme exhibited maximum activity at 45 °C and pH 4.5 while its free counterpart at 70 °C and pH 3.5, respectively. Thermal stability at 40 and 50 °C and storage stability of immobilized β-xylosidase were investigated at pH 5.0. Kinetic parameters Km, Vmax and Ki were determined for both enzyme forms. Free and immobilized β-xylosidase were tested for xylose production from birchwood xylan. The substrate was preliminarily depolymerized with xylanase to xylooligosaccharides and the amount of xylose obtained after their hydrolysis with free and immobilized β-xylosidase was determined by HPLC analysis. Continuous enzyme hydrolysis of birchwood xylan was performed with xylanase and free or immobilized β-xylosidase. The maximum extent of hydrolysis was 25 and 30% with free and immobilized enzyme, respectively. Immobilized preparation was also examined for reusability in 20 consecutive cycles at 40 °C.  相似文献   

19.
—Samples of South Vietnamese soils intensely treated with Agent Orange defoliant were tested for the presence of fungi and actinomycetes with an elevated phenol oxidase activity. As a result, a fast-growing nonsporulating strain producing neutral phenol oxidases was isolated and identified asMycelia sterilia INBI2-26. The strain formed extracellular phenol oxidases during surface growth on a liquid medium in the presence of guayacol and copper sulfate, as well as during submerged cultivation in liquid medium containing wheat bran and sugar beet pulp. Isoelectric focusing of the culture liquid revealed two major catechol oxidases (PO1 and PO2) with pI 3.5 and 8, respectively. The enzymes were purified by Ultrafiltration, ion exchange chromatography, and exclusion HPLC. Both were stable between pH 3 and 8. At pH 8 and 40°C., they retained at least 50% of activity after incubation for 50 h. At 50°C., PO2 was more stable and retained 40% of activity after 50 h, whereas PO1 was inactivated in 3–6 h. The pH-optimutns for PO1 and PO2 toward catechol were 6 and 6.5; and theK m values were 1.5±0.35 and 1.25±0.2 mM, respectively. PO1 and PO2 most optimally oxidized 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) at pH 3 withK m values 1.6±0.18 and 0.045±0.01 mM, respectively, but displayed no activity toward tyrosine. The PO2 absorbance spectrum had a peak at 600 nm, thus indicating the enzyme to be a member of the laccase family.  相似文献   

20.
Cellulase extracted from seeds of Cowpea (Vigna sinensis L var VITA-4) was partially purified and immobilized on brick dust as solid support via glutaraldehyde. The percentage retention of the enzyme activity on brick dust was nearly 85%. After immobilization specific activity of the enzyme increased from 0.275 to 0.557 U mg?1 protein with about 2 fold enrichment. The optimum pH and temperature of soluble enzyme were determined as pH 4.6 and WC, respectively whereas immobilized enzyme showed at pH 5.0 and 37°C, respectively. The Vmax values for soluble and immobilized enzyme were determined as 6.67 and 1.25 mg min?1, respectively whereas Km values were 4.35 and 4.76 mg ml?1, respectively. The immobilized enzyme displayed higher thermal stability than soluble enzyme and retained about 50% of its initial activity after 12 reuses. Immobilized enzyme was packed in an indigenously designed double walled glass bed reactor for continuous production of reducing sugars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号