首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Among teleosts, only representatives of several tropical catfish families have evolved two sonic organs: pectoral spines for stridulation and swimbladder drumming muscles. Pectoral mechanisms differ in relative size between pimelodids, mochokids and doradids, whereas swimbladder mechanisms exhibit differences in origin and insertion of extrinsic muscles. Differences in vocalization among families were investigated by comparing distress calls in air and underwater. High frequency broad-band pulsed sounds of similar duration were emitted during abduction of pectoral spines in all three families. Adduction sounds were similar to abduction signals in doradids, shorter and of lower sound pressure in mochokids, and totally lacking in pimelodids. Simultaneously or successively with pectoral sounds, low frequency harmonic drumming sounds were produced by representatives of two families. Drumming sounds were of similar intensity as stridulatory sounds in pimelodids, fainter in doradids, and not present in mochokids. Swimbladder sounds were frequency modulated and the fundamental frequency was similar in pimelodids and doradids. The ratio of stridulatory to drumming sound amplitude was higher in air than underwater in both doradids and one of the pimelodids. Also, overall duration of pectoral sounds, compared to swimbladder sounds, was longer in air than underwater in one doradid and pimelodid species. This first comparison of vocalization within one major teleost order demonstrates a wide variation in occurrence, duration, intensity and spectral content of sounds and indicates family- and species-specific as well as context- (receiver-) dependent patterns of vocalization.  相似文献   

2.
There is a need for monitoring biodiversity at multiple spatial and temporal scales to aid conservation efforts. Autonomous recording units (ARUs) can provide cost-effective, long-term and systematic species monitoring data for sound-producing wildlife, including birds, amphibians, insects and mammals over large areas. Modern deep learning can efficiently automate the detection of species occurrences in these sound data with high accuracy. Further, citizen science can be leveraged to scale up the deployment of ARUs and collect reference vocalizations needed for training and validating deep learning models. In this study we develop a convolutional neural network (CNN) acoustic classification pipeline for detecting 54 bird species in Sonoma County, California USA, with sound and reference vocalization data collected by citizen scientists within the Soundscapes to Landscapes project (www.soundscapes2landscapes.org). We trained three ImageNet-based CNN architectures (MobileNetv2, ResNet50v2, ResNet100v2), which function as a Mixture of Experts (MoE), to evaluate the usefulness of several methods to enhance model accuracy. Specifically, we: 1) quantify accuracy with fully-labeled 1-min soundscapes for an assessment of real-world conditions; 2) assess the effect on precision and recall of additional pre-training with an external sound archive (xeno-canto) prior to fine-tuning with vocalization data from our study domain; and, 3) assess how detections and errors are influenced by the presence of coincident biotic and non-biotic sounds (i.e., soundscape components). In evaluating accuracy with soundscape data (n = 37 species) across CNN probability thresholds and models, we found acoustic pre-training followed by fine-tuning improved average precision by 10.3% relative to no pre-training, although there was a small average 0.8% reduction in recall. In selecting an optimal CNN architecture for each species based on maximum F(β = 0.5), we found our MoE approach had total precision of 84.5% and average species precision of 85.1%. Our data exhibit multiple issues arising from applying citizen science and acoustic monitoring at the county scale, including deployment of ARUs with relatively low fidelity and recordings with background noise and overlapping vocalizations. In particular, human noise was significantly associated with more incorrect species detections (false positives, decreased precision), while physical interference (e.g., recorder hit by a branch) and geophony (e.g., wind) was associated with the classifier missing detections (false negatives, decreased recall). Our process surmounted these obstacles, and our final predictions allowed us to demonstrate how deep learning applied to acoustic data from low-cost ARUs paired with citizen science can provide valuable bird diversity data for monitoring and conservation efforts.  相似文献   

3.
  1. Applications in bioacoustics and its sister discipline ecoacoustics have increased exponentially over the last decade. However, despite knowledge about aquatic bioacoustics dating back to the times of Aristotle and a vast amount of background literature to draw upon, freshwater applications of ecoacoustics have been lagging to date.
  2. In this special issue, we present nine studies that deal with underwater acoustics, plus three acoustic studies on water-dependent birds and frogs. Topics include automatic detection of freshwater organisms by their calls, quantifying habitat change by analysing entire soundscapes, and detecting change in behaviour when organisms are exposed to noise.
  3. We identify six major challenges and review progress through this special issue. Challenges include characterisation of sounds, accessibility of archived sounds as well as improving automated analysis methods. Study design considerations include characterisation analysis challenges of spatial and temporal variation. The final key challenge is the so far largely understudied link between ecological condition and underwater sound.
  4. We hope that this special issue will raise awareness about underwater soundscapes as a survey tool. With a diverse array of field and analysis tools, this issue can act as a manual for future monitoring applications that will hopefully foster further advances in the field.
  相似文献   

4.
The current predation threat of domestic horses is generally low, and horses do not know predators' frightening cues. We studied whether horses still recognise predation threats. The aim of the study was to analyse the emotional response of purebred Arabian horses (Arabian) and Polish Konik horses (Konik) to an Arabian panther (Panthera pardus nimr) (panther) growl and a grey wolf (Canis lupus) (wolf) howl. Panther vocalisation was known to Arabian ancestors, whereas ancestors of Konik knew wolf vocalisation. The response to the howls of golden jackals (Canis aureus) (jackal), which did not prey on equids, was also studied comparatively. Two groups of 10 adult horses of each breed were subject to predator sounds of one predator daily for 5 min during a turn out on pasture. The test was performed for 18 days in total. The sound of each predator was interchangeably featured from one loudspeaker for 3 days followed by four loudspeakers simultaneously to imitate a group of predators for 3 days. The horses' emotional agitation in response to the sounds was measured based on the parameters of heart rate variability (HRV) using telemetric devices. The results showed that the predators' sounds were identified by horses as stressful or neutral. Horses generally retained their anti-predator responses even in the current habitat, which typically lacks predation cues. The results are not always coherent and may demonstrate that the response is somewhat attenuated. The wolf howl elicited a stronger response in Koniks. The panther growl more strongly influenced Arabians, whereas the jackal howl minimally elicited an agitation in the horses. The differentiated response of the two horse breeds to the three predator species suggests that the response is an innate adaptation to the predation risk in the habitat of the breed ancestors. This response occurs regardless of the emotional arousal specific to a breed, and the frightening cue is not the sound per se but the possible attack of predators. Horses display a type of understanding of the sound meaning. Their HRV response seems to be adequate for the threat signalised by the sound.  相似文献   

5.
Many fish species use active sound production for communication in numerous behaviors. Additionally, likely all fish can make passive or incidental sounds that may also serve some signal functions. Despite the ecological importance of fish sounds, their evident passive acoustic monitoring applications, and extensive endeavors to document soniferous fish diversity, the fields of bioacoustics and ichthyology have historically lacked an easily accessible, global inventory of known fish sound production. To alleviate this limitation, we developed http://FishSounds.net, a website that compiles and disseminates fish sound production information and recordings. FishSounds Version 1.0 launched in 2021, cataloging documented examinations for active and passive sound production for 1185 fish species from 837 references as well as 239 exemplary audio recordings. FishSounds allows users to search by taxa (e.g., family or common name), geographical distribution (e.g., region or water body), sound type, or reference. We have also made available the code used to create the website, so that it may be used in other data-sharing efforts—acoustic or otherwise. Subsequent versions of the website will update the data and improve the website functionality. FishSounds will advance research into fish behavior, passive acoustic monitoring, and human impacts on underwater soundscapes; serve as a resource for public outreach; and provide the foundation needed to investigate more of the 96% of fish species that lack published examinations of sound production. We further hope the FishSounds design, implementation, and engagement strategies will serve as a model for future data management and sharing efforts.  相似文献   

6.
The nursing vocalisation of lactating sows is an important part of the complex nursing and suckling behaviour of domestic pigs (Sus scrofa). It helps to lead the young through the several phases of a nursing episode. A total of 135 suckling piglets were investigated regarding their reactions to different vocalisations and sounds successively replayed in combined choice/open-field experiments. Two piglet samples were used to determine the impact of age (sample 1: weeks 1 and 5, n=93) and previous test experience of naive older piglets (sample 2: week 5, n=42) on their behavioural responses. In the 1st week after birth, the nursing vocalisation of sows released an initial generalised approach and contact response in the young, indicating high motivation to gain nutritional or social support. Close to the sound source, the piglets then strongly preferred the nursing vocalisation produced by their own mothers compared to that produced by another, unrelated and unfamiliar sow, or an artificial sound composed of similar frequencies as the nurse grunting, or a control without sound. However, at the end of the suckling period (5-week-old piglets) no clear differences in the reactions to the sounds could be identified. Moreover, the lack of a clear response at week 5 seems largely independent of any earlier test experience of the piglets. As well in the 1st as in the 5th week the piglets showed a decrease in open-field activity when sow grunting was present, indicating that the replay of the nursing vocalisation might have some calming effect. Communicated by K. Kotrschal  相似文献   

7.
Human use of the ocean and its ecosystems continues to degrade coastal habitats around the world. Assessing anthropogenic impacts on these environments can be costly and manpower-intensive; thus, the development of rapid, remote techniques to assess habitat quality is important. We employed autonomous hydrophone receivers to record the soundscapes of healthy, sponge-rich hard-bottom habitat in Florida Bay, Florida (USA) and hard-bottom areas impacted by sponge die-offs. We also recorded sounds emanating from individual sponges of three species that were isolated in underwater sound booths, and then enumerated the invertebrates (mostly snapping shrimp) dwelling within the canals of each sponge. From these recordings, a modified cylindrical sound propagation model was used to estimate distances to individual snapping shrimp snaps. Using the program Distance, we estimated snapping shrimp population density and abundance within both habitat types. More snapping shrimp snaps per unit time were recorded in healthy hard-bottom areas as compared to degraded hard-bottom areas. In addition, the average distance to a snap source was greater within degraded hard-bottom areas than within healthy hard-bottom areas. As a consequence, the estimated density and abundance of snapping shrimp were one to two orders of magnitude greater within healthy habitat than within degraded habitat. This study demonstrates the feasibility of using acoustic sampling and modeling to rapidly assess populations of soniferous benthic indicator species, whose vocalizations may yield indirect estimates of habitat quality.  相似文献   

8.
I examined the possible cause of night awakening among wild chimpanzees (Pan troglodytes) in Mahale Mountains National Park, Tanzania. Chimpanzee vocalizations and activity-related sounds (CVSs) were used to indicate awakening because I was unable to visually observe them. Over a 5-night observation period, CVSs (n = 128) were heard every night, and most (n = 91) were observed within 5 min of previous CVSs. Chimpanzees use CVSs as social communication to maintain spatial contact with other chimpanzees who occasionally travel at night. The first sound in a sequence of CVSs (CVS bout) was heard immediately following the vocalization or sound of another animal (n = 11), defecation or urination by a chimpanzee (n = 7), or unknown (n = 19). CVS bouts were longer when preceded by defecation or urination than when preceded by the vocalization or sound of other animals or an unknown factor. This suggests that the degree of wakefulness varies according to the possible cause of the disturbance. CVSs at night may be provoked by various factors, and awakening during the night is probably common among diurnal primates.  相似文献   

9.
Soundscapes are multidimensional spaces that carry meaningful information for many species about the location and quality of nearby and distant resources. Because soundscapes are the sum of the acoustic signals produced by individual organisms and their interactions, they can be used as a proxy for the condition of whole ecosystems and their occupants. Ocean acidification resulting from anthropogenic CO2 emissions is known to have profound effects on marine life. However, despite the increasingly recognized ecological importance of soundscapes, there is no empirical test of whether ocean acidification can affect biological sound production. Using field recordings obtained from three geographically separated natural CO2 vents, we show that forecasted end-of-century ocean acidification conditions can profoundly reduce the biological sound level and frequency of snapping shrimp snaps. Snapping shrimp were among the noisiest marine organisms and the suppression of their sound production at vents was responsible for the vast majority of the soundscape alteration observed. To assess mechanisms that could account for these observations, we tested whether long-term exposure (two to three months) to elevated CO2 induced a similar reduction in the snapping behaviour (loudness and frequency) of snapping shrimp. The results indicated that the soniferous behaviour of these animals was substantially reduced in both frequency (snaps per minute) and sound level of snaps produced. As coastal marine soundscapes are dominated by biological sounds produced by snapping shrimp, the observed suppression of this component of soundscapes could have important and possibly pervasive ecological consequences for organisms that use soundscapes as a source of information. This trend towards silence could be of particular importance for those species whose larval stages use sound for orientation towards settlement habitats.  相似文献   

10.
In this study, we describe the monitoring of young broiler chicken vocalisation, with sound recorded and assessed at regular intervals throughout the life of the birds from day 1 to day 38, with a focus on the first week of life. We assess whether there are recognisable, and even predictable, vocalisation patterns based on frequency and sound spectrum analysis, which can be observed in birds at different ages and stages of growth within the relatively short life of the birds in commercial broiler production cycles. The experimental trials were carried out in a farm where the broiler where reared indoor, and audio recording procedures carried out over 38 days. The recordings were made using two microphones connected to a digital recorder, and the sonic data was collected in situations without disturbance of the animals beyond that created by the routine activities of the farmer. Digital files of 1 h duration were cut into short files of 10 min duration, and these sound recordings were analysed and labelled using audio analysis software. Analysis of these short sound files showed that the key vocalisation frequency and patterns changed in relation to increasing age and the weight of the broilers. Statistical analysis showed a significant correlation (P<0.001) between the frequency of vocalisation and the age of the birds. Based on the identification of specific frequencies of the sounds emitted, in relation to age and weight, it is proposed that there is potential for audio monitoring and comparison with ‘anticipated’ sound patterns to be used to evaluate the status of farmed broiler chicken.  相似文献   

11.
Synopsis Males of two freshwater Italian gobies, the common goby, Padogobius martensii and the panzarolo goby, Knipowitschia punctatissima, emit trains of low-frequency pulses, i.e. drumming sounds, in the presence of a ripe female in the nest. In P, martensii the drumming sound is usually followed by a tonal sound (complex sound). Examination of the pulse structure suggests that these sounds are produced by muscles acting on the swimbladder. Both species exhibited high emission rates of spawning sounds, especially before the beginning of oviposition. Moreover, spawning sound production ceased only after the female abandoned the nest, which always occurred at the end of oviposition. This is the first study reporting the production among fishes of distinct sounds during protracted spawning. Unlike sounds produced just before mating by fishes with planktonic or demersal zygotes, the spawning sound production of these gobies does not function to coordinate mating events in the nest. The presence of a two-part vocalization by male P. martensii even suggests a functional dichotomy of spawning sounds in this species.  相似文献   

12.
In captive adult Zambian mole-rats 14 different sounds (13 true vocalizations) have been recorded during different behavioural contexts. The sound analysis revealed that all sounds occurred in a low and middle frequency range with main energy below 10 kHz. The majority of calls contained components of 1.6–2 kHz, 0.63–0.8 kHz, and/or 5–6.3 kHz. The vocalization range thus matched well the hearing range as established in other studies. The frequency content of courtship calls in two species of Zambian Cryptomys was compared with that in naked mole-rats (Heterocephalus glaber) and blind mole-rats (Spalax ehrenbergi) as described in the literature. The frequency range of maximum sound energy is negatively correlated with the body weight and coincides with the frequencies of best hearing in the respective species. In general, the vocalization range in subterranean mammals is shifted towards low frequencies which are best propagated in underground burrows. Accepted: 16 September 1996  相似文献   

13.
Yamamoto K  Kawabata H 《PloS one》2011,6(12):e29414

Background

We ordinarily perceive our voice sound as occurring simultaneously with vocal production, but the sense of simultaneity in vocalization can be easily interrupted by delayed auditory feedback (DAF). DAF causes normal people to have difficulty speaking fluently but helps people with stuttering to improve speech fluency. However, the underlying temporal mechanism for integrating the motor production of voice and the auditory perception of vocal sound remains unclear. In this study, we investigated the temporal tuning mechanism integrating vocal sensory and voice sounds under DAF with an adaptation technique.

Methods and Findings

Participants produced a single voice sound repeatedly with specific delay times of DAF (0, 66, 133 ms) during three minutes to induce ‘Lag Adaptation’. They then judged the simultaneity between motor sensation and vocal sound given feedback. We found that lag adaptation induced a shift in simultaneity responses toward the adapted auditory delays. This indicates that the temporal tuning mechanism in vocalization can be temporally recalibrated after prolonged exposure to delayed vocal sounds. Furthermore, we found that the temporal recalibration in vocalization can be affected by averaging delay times in the adaptation phase.

Conclusions

These findings suggest vocalization is finely tuned by the temporal recalibration mechanism, which acutely monitors the integration of temporal delays between motor sensation and vocal sound.  相似文献   

14.
The depletion and overexploitation of several fish stock demands for a valorisation of non-target and discarded species. Nonetheless, such species are often poorly studied, and information on their biological parameters must be gathered for effective population management. For 1 year, the reproductive strategy of the piper gurnard Trigla lyra and the red gurnard Chelidonichthys cuculus was studied by monthly samples obtained from commercial boats operating on western Portuguese coast. Both species showed a biased sex ratio towards females, especially for larger length classes. Length at first maturity could be estimated only for red gurnard (22.1 and 19.9 cm for females and males, respectively) because all piper gurnard individuals caught were mature. Piper gurnard showed determinate fecundity and a short spawning season, from November to February with a peak in January, whereas red gurnard showed indeterminate fecundity and a wide spawning season, from late December to May. The relative annual fecundity estimated for red gurnard (1893 ± 728 oocytes × g−1 eviscerated weight [EW]) was higher than the one estimated for piper gurnard (1018 ± 250 oocytes×g−1 EW). Although important information for understanding the species dynamics is presented in this study, additional information on other life-history parameters and of species landings is required.  相似文献   

15.
Although sound production in teleost fish is often associated with territorial behaviour, little is known of fish acoustic behaviour in other agonistic contexts such as competitive feeding and how it changes during ontogeny. The grey gurnard, Eutrigla gurnardus, frequently emits knock and grunt sounds during competitive feeding and seems to adopt both contest and scramble tactics under defensible resource conditions. Here we examine, for the first time, the effect of fish size on sound production and agonistic behaviour during competitive feeding. We have made sound (alone) and video (synchronized image and sound) recordings of grey gurnards during competitive feeding interactions. Experimental fish ranged from small juveniles to large adults and were grouped in four size classes: 10–15, 15–20, 25–30 and 30–40 cm in total length. We show that, in this species, both sound production and feeding behaviour change with fish size. Sound production rate decreased in larger fish. Sound duration, pulse duration and the number of pulses increased whereas the peak frequency decreased with fish size, in both sound types (knocks and grunts). Interaction rate and the frequency of agonistic behaviour decreased with increasing fish size during competitive feeding sessions. The proportion of feeding interactions accompanied by sound production was similar in all size classes. However, the proportion of interactions accompanied by knocks (less aggressive sounds) and by grunts (more aggressive) increased and decreased with fish size, respectively. Taken together, these results suggest that smaller grey gurnards compete for food by contest tactics whereas larger specimens predominantly scramble for food, probably because body size gives an advantage in locating, capturing and handling prey. We further suggest that sounds emitted during feeding may potentially give information on the motivation and ability of the individual to compete for food resources.  相似文献   

16.
P. HANSEN 《Bioacoustics.》2013,22(3):241-248
ABSTRACT

We examined vocalisations of a solitary subterranean rodent, the Silvery Mole-rat Heliophobius argenteocinereus (Bathyergidae). Seven true vocalisations and one mechanical vocalisation were identified. The main frequencies of the analysed sounds (0.34–13.17 kHz) match to a great extent the frequency range suitable for transmission in underground burrows. Due to the narrow frequency range of vocalisations, motivation is predominantly expressed by the rate of tonality rather than by frequency changes. The vocal repertoire of the Silvery Mole-rat perfectly matches to Morton's MS rules, i.e. that low-frequency and harsh vocalisations indicate hostility whereas high tonal calls signalise appeasement or fear. In comparison with social species, this solitary bathyergid produces fewer calls. It lacks contact and alarm calls, but has a rich repertoire of mating calls (mating ends with duet vocalization of male and female). Acoustic signals seem to play a major role in lowering natural aggressiveness during the mating period.  相似文献   

17.
Environmental assessments of underwater noise on marine species must be based on species-specific hearing abilities. This study was to assess the potential impact of underwater noise from the East China Sea Bridge wind farm on the acoustic communication of the marbled rockfish. Here, the 1/3 octave frequency band of underwater noise was 125 Hz with the level range of 78–96 dB re 1 μPa, recorded at distances between 15-20m from the foundation at wind speed of 3–5 m/s. Auditory evoked potential (AEP) and passive acoustic techniques were used to determine the hearing abilities and sound production of the fish. The resultes showed the lowest auditory threshold of Sebastiscus marmoratus was 70 dB at 150 Hz matching the disturbance sound ranging 140–180 Hz, which indicating the acoustic communication used in this species. However, the frequency and level of turbine underwater noise overlapped the auditory sensitivity and vocalization of Sebastiscus marmoratus. The wind turbine noise could be detected by fish and may have a masking effect on their acoustic communication. This result can be applied for further to the assessent of fish species released into offshore wind farm marine ranch.  相似文献   

18.

Background

Sound production is widespread among fishes and accompanies many social interactions. The literature reports twenty-nine cichlid species known to produce sounds during aggressive and courtship displays, but the precise range in behavioural contexts is unclear. This study aims to describe the various Oreochromis niloticus behaviours that are associated with sound production in order to delimit the role of sound during different activities, including agonistic behaviours, pit activities, and reproduction and parental care by males and females of the species.

Methodology/Principal Findings

Sounds mostly occur during the day. The sounds recorded during this study accompany previously known behaviours, and no particular behaviour is systematically associated with sound production. Males and females make sounds during territorial defence but not during courtship and mating. Sounds support visual behaviours but are not used alone. During agonistic interactions, a calling Oreochromis niloticus does not bite after producing sounds, and more sounds are produced in defence of territory than for dominating individuals. Females produce sounds to defend eggs but not larvae.

Conclusion/Significance

Sounds are produced to reinforce visual behaviours. Moreover, comparisons with O. mossambicus indicate two sister species can differ in their use of sound, their acoustic characteristics, and the function of sound production. These findings support the role of sounds in differentiating species and promoting speciation. They also make clear that the association of sounds with specific life-cycle roles cannot be generalized to the entire taxa.  相似文献   

19.
ABSTRACT

Underwater sound recording of animals uses specialized techniques to obtain faithful copies of sounds produced by animals during their normal activities underwater. Techniques have to be unobtrusive as well as nondisturbing to avoid changing the animal behaviors. The first scientific recording of underwater sounds from a marine mammal at sea was by William E. Schevill and Barbara Lawrence in 1948. Although the equipment has changed considerably since then, the techniques, approaches to animals and environmental impediments have remained essentially the same. However, the frequency and dynamic ranges of underwater sounds can easily exceed terrestrial sounds, so the selection of suitable equipment is critical. The elements of a useful system for bioacoustic recording of marine animals include the hydrophone, impedance transformer/preamplifier, cable, signal amplifier, recorder and sound monitor. The important criteria for each of these is discussed, along with directional listening systems, and the need for calibrations to verify the performance of the entire underwater recording system. For each situation, the ideal system is the one with the best compromise of interactive components to record that particular sound spectrum.  相似文献   

20.
Weddell seal vocalizations from Davis Station showed similarities to those from McMurdo Sound and Palmer Peninsula, but none were identical. One vocalization, DD1, was unique to Davis Station. At all sites trills, or territorial defense calls, were the most common and had more types than other calls. Chugs, an aggressive sound, were common at all sites. Weddell seal calls from Davis Station showed similarities to sounds from McMurdo by sharing the use of prefixes and suffixes. Sounds from Davis Station shared the use of both ascending and descending trills and whistles with calls from Palmer Peninsula.Commonalities in underwater vocalizations may indicate the degree of mixing between breeding populations, in which case, Weddell seals in the Davis area probably are from a breeding population distinct from those at either McMurdo Sound or Palmer Peninsula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号