首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The function of the hands is inextricably linked to cutaneous mechanosensation, both in touch and in how hand movement and posture (proprioception) are controlled. The structure and behavior of hands and distal forelimbs of other vertebrates have been evolutionarily shaped by these mechanosensory functions. The distal forelimb of tetrapod vertebrates is homologous to the pectoral fin rays and membrane of fishes. Fish fins demonstrate similar mechanosensory abilities to hands and other distal tetrapod forelimbs in touch and proprioception. These results indicate that vertebrates were using the core mechanosensory inputs, such as fast adapting and slow adapting nerve responses, to inform fin and limb function and behavior before their diversification in fish and tetrapod lineages.  相似文献   

2.
Batoids are a diverse clade of flat cartilaginous fishes that occur primarily in benthic marine habitats. The skates and rays typically use their flexible pectoral fins for feeding and propulsion via undulatory swimming. However, two groups of rays have adopted a pelagic or bentho‐pelagic lifestyle and utilize oscillatory swimming—the Myliobatidae and Gymnuridae. The myliobatids have evolved cephalic lobes, anteriorly extended appendages that are optimized for feeding, while their pectoral fins exhibit several modifications that likely arose in association with functional optimization of pelagic cruising via oscillatory flight. Here, we examine variation in fin ray distribution and ontogenetic timing of fin ray development in batoid pectoral fins in an evolutionary context using the following methods: radiography, computed tomography, dissections, and cleared and stained specimens. We propose an index for characterizing variation in the distribution of pectoral fin rays. While undulatory swimmers exhibit symmetry or slight anterior bias, we found a posterior shift in the distribution of fin rays that arose in two distinct lineages in association with oscillatory swimming. Undulatory and oscillatory swimmers occupy nonoverlapping morphospace with respect to fin ray distribution illustrating significant remodeling of pectoral fins in oscillatory swimmers. Further, we describe a derived skeletal feature in anterior pectoral fins of the Myliobatidae that is likely associated with optimization of oscillatory swimming. By examining the distribution of fin rays with clearly defined articulation points, we were able to infer evolutionary trends and body plan remodeling associated with invasion of the pelagic environment. Finally, we found that the number and distribution of fin rays is set early in development in the little skate, round stingray, and cownose ray, suggesting that fin ray counts from specimens after birth or hatching are representative of adults and therefore comparable among species.  相似文献   

3.
Despite diverging ~365 million years ago, tetrapod limbs and pectoral fins express similar genes that could be regulated by shared regulatory elements. In this study, we set out to analyze the ability of enhancers to maintain tissue specificity in these two divergent structures. We tested 22 human sequences that were previously reported as mouse limb enhancers for their enhancer activity in zebrafish (Danio rerio). Using a zebrafish enhancer assay, we found that 10/22 (45 %) were positive for pectoral fin activity. Analysis of the various criteria that correlated with positive fin activity found that both spatial limb activity and evolutionary conservation are not good predictors of fin enhancer activity. These results suggest that zebrafish enhancer assays may be limited in detecting human limb enhancers, and this limitation does not improve by the use of limb spatial expression or evolutionary conservation.  相似文献   

4.
Among osteichthyans, basal actinopterygian fishes (e.g. paddlefish and bowfins) have paired fins with three endoskeletal components (pro-, meso- and metapterygia) articulating with polybasal shoulder girdles, while sarcopterygian fishes (lungfish, coelacanths and relatives) have paired fins with one endoskeletal component (metapterygium) articulating with monobasal shoulder girdles. In the fin–limb transition, the origin of the sarcopterygian paired fins triggered new possibilities of fin articulation and movement, and established the proximal segments (stylopod and zeugopod) of the presumptive tetrapod limb. Several authors have stated that the monobasal paired fins in sarcopterygians evolved from a primitive polybasal condition. However, the fossil record has been silent on whether and when the inferred transition took place. Here we describe three-dimensionally preserved shoulder girdles of two stem sarcopterygians (Psarolepis and Achoania) from the Lower Devonian of Yunnan, which demonstrate that stem sarcopterygians have polybasal pectoral fin articulation as in basal actinopterygians. This finding provides a phylogenetic and temporal constraint for studying the origin of the stylopod, which must have originated within the stem sarcopterygian lineage through the loss of the propterygium and mesopterygium.  相似文献   

5.
Batoids differ from other elasmobranch fishes in that they possess dorsoventrally flattened bodies with enlarged muscled pectoral fins. Most batoids also swim using either of two modes of locomotion: undulation or oscillation of the pectoral fins. In other elasmobranchs (e.g., sharks), the main locomotory muscle is located in the axial myotome; in contrast, the main locomotory muscle in batoids is found in the enlarged pectoral fins. The pectoral fin muscles of sharks have a simple structure, confined to the base of the fin; however, little to no data are available on the more complex musculature within the pectoral fins of batoids. Understanding the types of fibers and their arrangement within the pectoral fins may elucidate how batoid fishes are able to utilize such unique swimming modes. In the present study, histochemical methods including succinate dehydrogenase (SDH) and immunofluoresence were used to determine the different fiber types comprising these muscles in three batoid species: Atlantic stingray (Dasyatis sabina), ocellate river stingray (Potamotrygon motoro) and cownose ray (Rhinoptera bonasus). All three species had muscles comprised of two muscle fiber types (slow-red and fast-white). The undulatory species, D. sabina and P. motoro, had a larger proportion of fast-white muscle fibers compared to the oscillatory species, R. bonasus. The muscle fiber sizes were similar between each species, though generally smaller compared to the axial musculature in other elasmobranch fishes. These results suggest that batoid locomotion can be distinguished using muscle fiber type proportions. Undulatory species are more benthic with fast-white fibers allowing them to contract their muscles quickly, as a possible means of escape from potential predators. Oscillatory species are pelagic and are known to migrate long distances with muscles using slow-red fibers to aid in sustained swimming.  相似文献   

6.
Ahn D  Ho RK 《Developmental biology》2008,322(1):220-233
During development of the limbs, Hox genes belonging to the paralogous groups 9-13 are expressed in three distinct phases, which play key roles in the segmental patterning of limb skeletons. In teleost fishes, which have a very different organization in their fin skeletons, it is not clear whether a similar patterning mechanism is at work. To determine whether Hox genes are also expressed in several distinct phases during teleost paired fin development, we re-analyzed the expression patterns of hox9-13 genes during development of pectoral fins in zebrafish. We found that, similar to tetrapod Hox genes, expression of hoxa/d genes in zebrafish pectoral fins occurs in three distinct phases, in which the most distal/third phase is correlated with the development of the most distal structure of the fin, the fin blade. Like in tetrapods, hox gene expression in zebrafish pectoral fins during the distal/third phase is dependent upon sonic hedgehog signaling (hoxa and hoxd genes) and the presence of a long-range enhancer (hoxa genes), which indicates that the regulatory mechanisms underlying tri-phasic expression of Hox genes have remained relatively unchanged during evolution. Our results suggest that, although simpler in organization, teleost fins do have a distal structure that might be considered comparable to the autopod region of limbs.  相似文献   

7.
Colour pattern characteristics and gonad histology were used to detect sexual dichromatisms in yellowfin grouper Mycteroperca venenosa and tiger grouper Mycteroperca tigris from the Campeche Bank, Mexico. Specimens were obtained from commercial catches between March and May during 2002 and 2004. All specimens were examined dead. Ninety-seven per cent of males had different sex-associated colour patterns. Male yellowfin grouper displayed a bright yellow blotch on both sides of the lower jaw while females retained a reddish lower jaw. Male tiger grouper had uniform dark pectoral fins while females had bright orange pectoral fins. In situ observations of live fishes at fishing sites showed the lower jaw and pectoral fin colourations to be clearly visible underwater at a depth of 35 m. All males of both species and most females (80% yellowfin grouper and 98% tiger grouper) were sexually active and probably caught during their spawning season. This suggests that distinct colourations observed for male M. venenosa and M. tigris may be seasonal displays associated with spawning. Both the lower jaw and pectoral fin colourations were still visible in dead fishes after several days on ice. Differences observed for ray length of exserted vertical fins in tiger grouper specimens were probably not a sex-associated characteristic.  相似文献   

8.
Benthic animals live at the juncture of fluid and solid environments, an interface that shapes many aspects of their behavior, including their means of locomotion. Aquatic walking and similar substrate-dependent forms of underwater propulsion have evolved multiple times in benthic invertebrate and vertebrate taxa, including batoid elasmobranchs. Skates (Rajidae) use the pelvic fins to punt across the substrate, keeping the pectoral fin disc still. Other batoids combine pelvic fin motions with pectoral fin undulation in augmented punting, but the coordination of these two modes has not been described. In this study of an augmented punter, the freshwater stingray Potamotrygon orbignyi, we demonstrate the synchrony of pelvic and pectoral fin cycles. The punt begins as the pelvic fins, held in an anterior position, are planted into the substrate and used to push the body forward. Meanwhile, a wave of pectoral fin undulation begins, increasing to maximum height just before the cycle's halfway point, when the pelvic fins reach their furthest posterior extension. The pectoral fin wave subsides as the pelvic fins return to their starting position for subsequent punts. Despite definitive links between pectoral and pelvic fin activity, we find no significant relationship between pectoral fin kinematics (frequency, wave height, and wave speed) and punt performance. However, slip calculations indicate that pectoral undulation can produce thrust and augment punting. Pelvic fin kinematics (frequency and duty factor) have significant effects, suggesting that while both sets of fins contribute to thrust generation, the pelvic fins likely determine punt performance.  相似文献   

9.
Synopsis Ecomorphological correlates were sought among ten species of distantly related subtropical seagrass fishes. Morphometric data associated with feeding and microhabitat utilization were compared by principal components analysis, cluster analysis, and canonical correspondence analysis to dietary data. Morphology was generally a poor predictor of diet except for a group of mid-water planktotrophic filter feeders. Separation of the species along morphological axes appears to be related more to microhabitat utilization resulting in three major groups: (1) a group of planktotrophic, mid-water fishes specialized for cruising and seeking out evasive prey characterized by a compressed fusiform body, forked caudal fin, long, closely spaced gill rakers, short to intermediate! length pectoral fin, pointed pectoral fin, large lateral eye, short head, and a terminal or subterminal mouth; (2) slow swimming, less maneuverable epibenthic fishes that pick or suck their prey off the substrate. They are united by more rounded caudal and pectoral fins, and short or no gill rakers; and (3) a group of more mobile and maneuverable epibenthic foragers characterized by a more compressed, sub-gibbose body, long, pointed pectoral fins, forked caudal fins, large lateral eyes, subterminal mouth, and greater jaw protrusibility. Cases of convergence in trophic and microhabitat utilization characters were apparent in some of the groups.  相似文献   

10.
Tetrapods evolved from within the lobe‐finned fishes around 370 Ma. The evolution of limbs from lobe‐fins entailed a major reorganization of the skeletal and muscular anatomy of appendages in early tetrapods. Concurrently, a degree of similarity between pectoral and pelvic appendages also evolved. Here, we compared the anatomy of appendages in extant lobe‐finned fishes (Latimeria and Neoceratodus) and anatomically plesiomorphic amphibians (Ambystoma, Salamandra) and amniotes (Sphenodon) to trace and reconstruct the musculoskeletal changes that took place during the fins‐to‐limbs transition. We quantified the anatomy of appendages using network analysis. First, we built network models—in which nodes represent bones and muscles, and links represent their anatomical connections—and then we measured network parameters related to their anatomical integration, heterogeneity, and modularity. Our results reveal an evolutionary transition toward less integrated, more modular appendages. We interpret this transition as a diversification of muscle functions in tetrapods compared to lobe‐finned fishes. Limbs and lobe‐fins show also a greater similarity between their pectoral and pelvic appendages than ray‐fins do. These findings on extant species provide a basis for future quantitative and comprehensive reconstructions of the anatomy of limbs in early tetrapod fossils, and a way to better understand the fins‐to‐limbs transition.  相似文献   

11.
Aquatic organisms exposed to high flow regimes typically exhibit adaptations to decrease overall drag and increase friction with the substrate. However, these adaptations have not yet been examined on a structural level. Sculpins (Scorpaeniformes: Cottoidea) have regionalized pectoral fins that are modified for increasing friction with the substrate, and morphological specialization varies across species. We examined body and pectoral fin morphology of 9 species to determine patterns of body and pectoral fin specialization. Intact specimens and pectoral fins were measured, and multivariate techniques determined the differences among species. Cluster analysis identified 4 groups that likely represent differences in station-holding demand, and this was supported by a discriminant function analysis. Primarily, the high-demand group had increased peduncle depth (specialization for acceleration) and larger pectoral fins with less webbed ventral rays (specialization for mechanical gripping) compared to other groups; secondarily, the high-demand group had a greater aspect ratio and a reduced number of pectoral fin rays (specialization for lift generation) than other groups. The function of sculpin pectoral fins likely shifts from primarily gripping where demand is likely low, to an equal dependence on gripping and negative lift generation where demand is likely high. Specialization of the ventral pectoral fin region for gripping likely contributes to the recent diversification of some species into high-demand habitats.  相似文献   

12.
R. D. Ono 《Zoomorphology》1979,92(2):107-114
Summary With the use of a whole mount silver impregnation technique, sensory nerve endings were located in the connective tissue at the base of the modified pectoral fin ray in the gurnard,Aspitrigla cuculus, and within the perichondrium of the barbel in the goatfish,Mullus surmuletus. The location of these endings and their planar receptory fields in such highly mobile structures, suggests that the sensory endings are proprioceptive in nature and that they are associated in monitoring the positional state of the modified pectoral fin ray and barbel, respectively, during voluntary movement. This investigation addresses itself to the general problem of proprioception in teleost fishes and provides histological evidence for the presence of proprioceptive nerve endings.  相似文献   

13.
Bamboo sharks (Chiloscyllium plagiosum) are primarily benthic and use their relatively flexible pectoral and pelvic fins to rest on and move about the substrate. We examined the morphology of the pectoral fins and investigated their locomotory function to determine if pectoral fin function during both benthic station-holding and pelagic swimming differs from fin function described previously in leopard sharks, Triakis semifasciata. We used three-dimensional kinematics and digital particle image velocimetry (DPIV) to quantify pectoral fin function in five white-spotted bamboo sharks, C. plagiosum, during four behaviors: holding station on the substrate, steady horizontal swimming, and rising and sinking during swimming. During benthic station-holding in current flow, bamboo sharks decrease body angle and adjust pectoral fin angle to shed a clockwise fluid vortex. This vortex generates negative lift more than eight times that produced during open water vertical maneuvering and also results in an upstream flow that pushes against the posterior surface of the pectoral fin to oppose drag. In contrast, there is no evidence of significant lift force in the wake of the pectoral fin during steady horizontal swimming. The pectoral fin is held concave downward and at a negative dihedral angle during steady horizontal swimming, promoting maneuverability rather than stability, although this negative dihedral angle is much less than that observed previously in sturgeon and leopard sharks. During sinking, the pectoral fins are held concave upward and shed a clockwise vortex with a negative lift force, while in rising the pectoral fin is held concave downward and sheds a counterclockwise vortex with a positive lift force. Bamboo sharks appear to sacrifice maneuverability for stability when locomoting in the water column and use their relatively flexible fins to generate strong negative lift forces when holding position on the substrate and to enhance stability when swimming in the water column.  相似文献   

14.
During posthatching development the fins of fishes undergo striking changes in both structure and function. In this article we examine the development of the pectoral fins from larval through adult life history stages in the zebrafish (Danio rerio), describing in detail their pectoral muscle morphology. We explore the development of muscle structure as a way to interpret the fins' role in locomotion. Genetic approaches in the zebrafish model are providing new tools for examining fin development and we take advantage of transgenic lines in which fluorescent protein is expressed in specific tissues to perform detailed three-dimensional, in vivo fin imaging. The fin musculature of larval zebrafish is organized into two thin sheets of fibers, an abductor and adductor, one on each side of an endoskeletal disk. Through the juvenile stage the number of muscle fibers increases and muscle sheets cleave into distinct muscle subdivisions as fibers orient to the developing fin skeleton. By the end of the juvenile period the pectoral girdle and fin muscles have reoriented to take on the adult organization. We find that this change in morphology is associated with a switch of fin function from activity during axial locomotion in larvae to use in swim initiation and maneuvering in adults. The examination of pectoral fins of the zebrafish highlights the yet to be explored diversity of fin structure and function in subadult developmental stages. J. Morphol. (c) 2005 Wiley-Liss, Inc.  相似文献   

15.
The pelvic girdle and fin in certain Indian hill stream fishes   总被引:3,自引:0,他引:3  
This paper deals with the functional morphology of the pelvic girdle and fins in various genera of hill stream cyprinid and sisorid fishes. The pelvic plate of Pseudecheneis shows the greatest modification; it is unusually large and reaches the coracoids of the pectoral arch in front.
The elaborate working of the pelvic muscles and their function in bringing about effective adhesion by the pelvic fins is described in detail. The formation of a new muscle, M. pars retractor ischii of the M. mesioventralis, is reported in Garra and Psilorhynchus (Cyprinidae) and in Glyptothorax and Pseudecheneis (Sisoridae). In Pseudecheneis , the complete separation of this muscle from the M. mesioventral, and modification of the M. protractor ischii, are discussed in relation to the crawling habit of the genus. The appearance of the M. arrector pel vicalis ventralis in Glyptothorax and Pseudecheneis among sisorids has been associated with the adhesive function of the outer ray.  相似文献   

16.
Although the ray‐finned fishes are named for their bony, segmented lepidotrichia (fin rays), we are only beginning to understand the morphological and functional diversity of this key vertebrate structure. Fin rays support the fin web, and their material properties help define the function of the entire fin. Many earlier studies of fin ray morphology and function have focused on isolated rays, or on rays from only one or two fins. At the same time, relatively little is known about how different preservation techniques affect the material properties of many vertebrate structures, including fin rays. Here, we use three‐point bending tests to examine intra‐ and inter‐fin variation in the flexural stiffness of fin rays from yellow perch, Perca flavescens. We sampled fin rays from individuals that were assigned to one of three preservation treatments: fresh, frozen, and preserved with formalin. The flexural stiffness of the fin rays varied within and among fins. Pelvic‐fin rays were the stiffest, and pectoral fin rays the least stiff. The fin rays of the dorsal, anal, and caudal fins all had similar stiffness values, which were intermediate relative to those from the paired fins. The flexural stiffness of the fin rays was higher in rays that were at the leading edge of the fin. This variation in flexural stiffness was associated with variation in joint density and the relative length of the unsegmented proximal base of the fin rays. There was no significant difference in flexural stiffness between fresh and frozen specimens. In specimens preserved with formalin, there is a small but significant effect on stiffness in smaller fin rays.  相似文献   

17.
Ray‐finned fishes are notable for having flexible fins that allow for the control of fluid forces. A number of studies have addressed the muscular control, kinematics, and hydrodynamics of flexible fins, but little work has investigated just how flexible ray‐finned fish fin rays are, and how flexibility affects their response to environmental perturbations. Analysis of pectoral fin rays of bluegill sunfish showed that the more proximal portion of the fin ray is unsegmented while the distal 60% of the fin ray is segmented. We examined the range of motion and curvatures of the pectoral fin rays of bluegill sunfish during steady swimming, turning maneuvers, and hovering behaviors and during a vortex perturbation impacting the fin during the fin beat. Under normal swimming conditions, curvatures did not exceed 0.029 mm?1 in the proximal, unsegmented portion of the fin ray and 0.065 mm?1 in the distal, segmented portion of the fin ray. When perturbed by a vortex jet traveling at approximately 1 ms?1 (67 ± 2.3 mN s.e. of force at impact), the fin ray underwent a maximum curvature of 9.38 mm?1. Buckling of the fin ray was constrained to the area of impact and did not disrupt the motion of the pectoral fin during swimming. Flexural stiffness of the fin ray was calculated to be 565 × 10?6 Nm2. In computational fluid dynamic simulations of the fin‐vortex interaction, very flexible fin rays showed a combination of attraction and repulsion to impacting vortex dipoles. Due to their small bending rigidity (or flexural stiffness), impacting vortices transferred little force to the fin ray. Conversely, stiffer fin rays experienced rapid small‐amplitude oscillations from vortex impacts, with large impact forces all along the length of the fin ray. Segmentation is a key design feature of ray‐finned fish fin rays, and may serve as a means of making a flexible fin ray out of a rigid material (bone). This flexibility may offer intrinsic damping of environmental fluid perturbations encountered by swimming fish. J. Morphol. 274:1044–1059, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
Members of the teleost superorder Ostariophysi dominate freshwater habitats on all continents except Antarctica and Australia. Obligate benthic and rheophilic taxa from four different orders of the Ostariophysi (Gonorynchiformes, Cypriniformes, Characiformes, and Siluriformes) frequently exhibit thickened pads of skin along the ventral surface of the anteriormost ray or rays of horizontally orientated paired (pectoral and pelvic) fins. Such paired‐fin pads, though convergent, are externally homogenous across ostariophysan groups (particularly nonsiluriform taxa) and have been considered previously to be the result of epidermal modification. Histological examination of the pectoral and/or pelvic fins of 44 species of ostariophysans (including members of the Gonorynchiforms, Cypriniformes, Characiformes, and Siluriformes) revealed a tremendous and previously unrecognized diversity in the cellular arrangement of the skin layers (epidermis and subdermis) contributing to the paired‐fin pads. Three types of paired‐fin pads (Types 1–3) are identified in nonsiluriform ostariophysan fishes, based on differences in the cellular arrangement of the epidermis and subdermis. The paired‐fin pads of siluriforms may or may not exhibit a deep series of ridges and grooves across the surface. Two distinct patterns of unculus producing cells are identified in the epidermis of the paired‐fin pads of siluriforms, one of which is characterized by distinct bands of keratinization throughout the epidermis and is described in Amphilius platychir (Amphiliidae) for the first time. General histological comparisons between the paired fins of benthic and rheophilic ostariophysan and nonostariophysan percomorph fishes are provided, and the possible function(s) of the paired‐fin pads of ostariophysan fish are discussed. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Aquatic propulsion generated by the pectoral fins occurs in many groups of perciform fishes, including numerous coral reef families. This study presents a detailed survey of pectoral fin musculoskeletal structure in fishes that use labriform propulsion as the primary mode of swimming over a wide range of speeds. Pectoral fin morphological diversity was surveyed in 12 species that are primarily pectoral swimmers, including members of all labroid families (Labridae, Scaridae, Cichlidae, Pomacentridae, and Embiotocidae) and five additional coral reef fish families. The anatomy of the pectoral fin musculature is described, including muscle origins, insertions, tendons, and muscle masses. Skeletal structures are also described, including fin shape, fin ray morphology, and the structure of the radials and pectoral girdle. Three novel muscle subdivisions, including subdivisions of the abductor superficialis, abductor profundus, and adductor medialis were discovered and are described here. Specific functional roles in fin control are proposed for each of the novel muscle subdivisions. Pectoral muscle masses show broad variation among species, particularly in the adductor profundus, abductor profundus, arrector dorsalis, and abductor superficialis. A previously undescribed system of intraradial ligaments was also discovered in all taxa studied. The morphology of these ligaments and functional ramifications of variation in this connective tissue system are described. Musculoskeletal patterns are interpreted in light of recent analyses of fin behavior and motor control during labriform swimming. Labriform propulsion has apparently evolved independently multiple times in coral reef fishes, providing an excellent system in which to study the evolution of pectoral fin propulsion.  相似文献   

20.
Summary Paleontological and anatomical evidence suggests that the autopodium (hand or foot) is a novel feature that distinguishes limbs from fins, while the upper and lower limb (stylopod and zeugopod) are homologous to parts of the sarcopterygian paired fins. In tetrapod limb development Hoxa-11 plays a key role in differentiating the lower limb and Hoxa-13 plays a key role in differentiating the autopodium. It is thus important to determine the ancestral functions of these genes in order to understand the developmental genetic changes that led to the origin of the tetrapod autopodium. In particular it is important to understand which features of gene expression are derived in tetrapods and which are ancestral in bony fishes. To address these questions we cloned and sequenced the Hoxa-11 and Hoxa-13 genes from the North American paddlefish, Polyodon spathula, a basal ray-finned fish that has a pectoral fin morphology resembling that of primitive bony fishes ancestral to the tetrapod lineage. Sequence analysis of these genes shows that they are not orthologous to the duplicated zebrafish and fugu genes. This implies that the paddlefish has not duplicated its HoxA cluster, unlike zebrafish and fugu. The expression of Hoxa-11 and Hoxa-13 in the pectoral fins shows two main phases: an early phase in which Hoxa-11 is expressed proximally and Hoxa-13 is expressed distally, and a later phase in which Hoxa-11 and Hoxa-13 broadly overlap in the distal mesenchyme of the fin bud but are absent in the proximal fin bud. Hence the distal polarity of Hoxa-13 expression seen in tetrapods is likely to be an ancestral feature of paired appendage development. The main difference in HoxA gene expression between fin and limb development is that in tetrapods (with the exception of newts) Hoxa-11 expression is suppressed by Hoxa-13 in the distal limb bud mesenchyme. There is, however, a short period of limb bud development where Hoxa-11 and Hoxa-13 overlap similarly to the late expression seen in zebrafish and paddlefish. We conclude that the early expression pattern in tetrapods is similar to that seen in late fin development and that the local exclusion by Hoxa-13 of Hoxa-11 from the distal limb bud is a derived feature of limb developmental regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号