首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 95 毫秒
1.
Mark-recapture methods cannot estimate both mortality and dispersal rates of a wild population simultaneously. However, when an artificially cultured population is released into an area, the initial population size and the initial population distribution are usually known. If artificially cultured individuals are released with marks or distinguished from wild individuals or if no wild individual exists in the study area, we can estimate both the mortality and dispersal rates of the artificial population. The numbers of dispersed and dead individuals are estimated from the dispersal rate from the diffusion model and the total decreasing rate estimated from a mark-recapture data. We can estimate both the time-dependent and time-independent dispersal rates from the data. We choose the best fit model that has the smallest value of Akaike's Information Criteria. We also consider ‘concentric circles approximation” of spatial distribution, in which the cumulative and frequency distributions are analytically obtained.  相似文献   

2.
Abandonment of traditional land-use practices can have strong effects on the abundance of species occurring in agricultural landscapes. However, the precise mechanisms by which individual performance and population dynamics are affected are still poorly understood. To assess how abandonment affects population dynamics of Succisa pratensis we used data from a 4-year field study in both abandoned and traditionally grazed areas in moist and mesic habitats to parameterize integral projection models. Abandoned populations had a lower long-term stochastic population growth rate (λ S = 0.90) than traditionally managed populations (λ S = 1.08), while λ S did not differ between habitat types. The effect of abandonment differed significantly between years and had opposed effects on different vital rates. Individuals in abandoned populations experienced higher mortality rates and lower seedling establishment, but had higher growth rates and produced more flower heads per plant. Population viability analyses, based on a population survey of the whole study area in combination with our demographic models, showed that 32 % of the populations face a high risk of extinction (>80 %) within 20 years. These results suggest that immediate changes in management are needed to avoid extinctions and further declines in population sizes. Stochastic elasticity analyses and stochastic life table response experiments indicated that management strategies would be most effective if they increase survival of small plants as well as seedling establishment, while maintaining a high seed production. This may be achieved by varying the grazing intensity between years or excluding grazers when plants are flowering.  相似文献   

3.
Today, we know that demographic rates can be greatly influenced by differences among individuals in their capacity to survive and reproduce. These intrinsic differences, commonly known as individual heterogeneity, can rarely be measured and are thus treated as latent variables when modeling mortality. Finite mixture models and mixed effects models have been proposed as alternative approaches for inference on individual heterogeneity in mortality. However, in general models assume that individual heterogeneity influences mortality proportionally, which limits the possibility to test hypotheses on the effect of individual heterogeneity on other aspects of mortality such as ageing rates. Here, we propose a Bayesian model that builds upon the mixture models previously developed, but that facilitates making inferences on the effect of individual heterogeneity on mortality parameters other than the baseline mortality. As an illustration, we apply this framework to the Gompertz–Makeham mortality model, commonly used in human and wildlife studies, by assuming that the Gompertz rate parameter is affected by individual heterogeneity. We provide results of a simulation study where we show that the model appropriately retrieves the parameters used for simulation, even for low variances in the heterogeneous parameter. We then apply the model to a dataset on captive chimpanzees and on a cohort life table of 1751 Swedish men, and show how model selection against a null model (i.e., without heterogeneity) can be carried out.  相似文献   

4.
According to theories on cave adaptation, cave organisms are expected to develop a lower metabolic rate compared to surface organisms as an adaptation to food scarcity in the subterranean environments. To test this hypothesis, we compared the oxygen consumption rates of the surface and subterranean populations of a surface‐dwelling species, the newt Calotriton asper, occasionally found in caves. In this study, we designed a new experimental setup in which animals with free movement were monitored for several days in a respirometer. First, we measured the metabolic rates of individuals from the surface and subterranean populations, both maintained for eight years in captivity in a natural cave. We then tested individuals from these populations immediately after they were caught and one year later while being maintained in the cave. We found that the surface individuals that acclimated to the cave significantly reduced their oxygen consumption, whereas individuals from the subterranean population maintained in the cave under a light/dark cycle did not significantly modify their metabolic rates. Second, we compared these metabolic rates to those of an obligate subterranean salamander (Proteus anguinus), a surface aquatic Urodel (Ambystoma mexicanum), and a fish species (Gobio occitaniae) as references for surface organisms from different phyla. As predicted, we found differences between the subterranean and surface species, and the metabolic rates of surface and subterranean C. asper populations were between those of the obligate subterranean and surface species. These results suggest that the plasticity of the metabolism observed in surface C. asper was neither directly due to food availability in our experiments nor the light/dark conditions, but due to static temperatures. Moreover, we suggest that this adjustment of the metabolic level at a temperature close to the thermal optimum may further allow individual species to cope with the food limitations of the subterranean environment.  相似文献   

5.
The process of ageing was long thought to be too infrequent to affect life‐histories in natural populations. Long‐term studies have, however, recently demonstrated ageing to be ubiquitous even in the wild, although confounding factors, such as emigration instead of mortality, or inter‐population variation in rates of ageing have seldom been addressed. Here, we present analyses of female age‐specific reproductive performance in a Dutch island population of great tits Parus major. For this population with limited connectivity to surrounding areas, we show that, between individuals, reproductive lifespan positively co‐varies with recruit production, while within individuals performance improves up to 3 years of age, after which it gradually declines. We also show these patterns to be strikingly similar to those recently found in a less isolated British mainland population of great tits, characterised by different environmental conditions and life‐history strategies, in particular the frequency of multiple breeding. Our results therefore suggest patterns of age‐specific reproductive performance to be robust to both environmental and life‐history variation.  相似文献   

6.
7.
Most theoretical models for the evolution of senescence have assumed a very large, well mixed population. Here, we investigate how limited dispersal and kin competition might influence the evolution of ageing by deriving indicators of the force of selection, similar to Hamilton (Hamilton 1966 J. Theor. Biol. 12, 12–45). Our analytical model describes how the strength of selection on survival and fecundity changes with age in a patchy population, where adults are territorial and a fraction of juveniles disperse between territories. Both parent–offspring competition and sib competition then affect selection on age-specific life-history traits. Kin competition reduces the strength of selection on survival. Mutations increasing mortality in some age classes can even be favoured by selection, but only when fecundity deteriorates rapidly with age. Population structure arising from limited dispersal however selects for a broader distribution of reproduction over the lifetime, potentially slowing down reproductive senescence. The antagonistic effects of limited dispersal on age schedules of fecundity and mortality cast doubts on the generality of conditions allowing the evolution of ‘suicide genes’ that increase mortality rates without other direct pleiotropic effects. More generally, our model illustrates how limited dispersal and social interactions can indirectly produce patterns of antagonistic pleiotropy affecting vital rates at different ages.  相似文献   

8.
Conservation objectives for non‐breeding coastal birds (shorebirds and wildfowl) are determined from their population size at coastal sites. To advise coastal managers, models must predict quantitatively the effects of environmental change on population size or the demographic rates (mortality and reproduction) that determine it. As habitat association models and depletion models are not able to do this, we developed an approach that has produced such predictions thereby enabling policy makers to make evidence‐based decisions. Our conceptual framework is individual‐based ecology, in which populations are viewed as having properties (e.g. size) that arise from the traits (e.g. behaviour, physiology) and interactions of their constituent individuals. The link between individuals and populations is made through individual‐based models (IBMs) that follow the fitness‐maximising decisions of individuals and predict population‐level consequences (e.g. mortality rate) from the fates of these individuals. Our first IBM was for oystercatchers Haematopus ostralegus and accurately predicted their density‐dependent mortality. Subsequently, IBMs were developed for several shorebird and wildfowl species at several European sites, and were shown to predict accurately overwinter mortality, and the foraging behaviour from which predictions are derived. They have been used to predict the effect on survival in coastal birds of sea level rise, habitat loss, wind farm development, shellfishing and human disturbance. This review emphasises the wider applicability of the approach, and identifies other systems to which it could be applied. We view the IBM approach as a very useful contribution to the general problem of how to advance ecology to the point where we can routinely make meaningful predictions of how populations respond to environmental change.  相似文献   

9.
Satu Ramula 《Oecologia》2014,174(4):1255-1264
Invaders generally show better individual performance than non-invaders and, therefore, vital rates (survival, growth, fecundity) could potentially be used to predict species invasiveness outside their native range. Comparative studies have usually correlated vital rates with the invasiveness status of species, while few studies have investigated them in relation to population growth rate. Here, I examined the influence of five vital rates (plant establishment, survival, growth, flowering probability, seed production) and their variability (across geographic regions, habitat types, population sizes and population densities) on population growth rate (λ) using data from 37 populations of an invasive, iteroparous herb (Lupinus polyphyllus) in a part of its invaded range in Finland. Variation in vital rates was often related to habitat type and population density. The performance of the populations varied from declining to rapidly increasing independently of habitat type, population size or population density, but differed between regions. The population growth rate increased linearly with plant establishment, and with the survival and growth of vegetative individuals, while the survival of flowering individuals and annual seed production were not related to λ. The vital rates responsible for rapid population growth varied among populations. These findings highlight the importance of both regional and local conditions to plant population dynamics, demonstrating that individual vital rates do not necessarily correlate with λ. Therefore, to understand the role of individual vital rates in a species ability to invade, it is necessary to quantify their effect on population growth rate.  相似文献   

10.
Populations often exhibit a pronounced degree of individual variability and this can be important when constructing ecological models. In this paper, we revisit the role of inter-individual variability in population persistence and stability under predation pressure. As a case study, we consider interactions between a structured population of zooplankton grazers and their predators. Unlike previous structured population models, which only consider variability of individuals according to the age or body size, we focus on physiological and behavioural structuring. We first experimentally demonstrate a high degree of variation of individual consumption rates in three dominant species of herbivorous copepods (Calanus finmarchicus, Calanus glacialis, Calanus euxinus) and show that this disparity implies a pronounced variation in the consumption capacities of individuals. Then we construct a parsimonious predator-prey model which takes into account the intra-population variability of prey individuals according to behavioural traits: effectively, each organism has a ‘personality’ of its own. Our modelling results show that structuring of prey according to their growth rate and vulnerability to predation can dampen predator-prey cycles and enhance persistence of a species, even if the resource stock for prey is unlimited. The main mechanism of efficient top-down regulation is shown to work by letting the prey population become dominated by less vulnerable individuals when predator densities are high, while the trait distribution recovers when the predator densities are low.  相似文献   

11.
While the concept of population growth rate has been of central importance in the development of the theory of population dynamics, few empirical studies consider the intrinsic growth rate in detail, let alone how it may vary within and between populations of the same species. In an attempt to link theory with data we take two approaches. First, we address the question ''what growth rate patterns does theory predict we should see in time-series?'' The models make a number of predictions, which in general are supported by a comparative study between time-series of harvesting data from 352 red grouse populations. Variations in growth rate between grouse populations were associated with factors that reflected the quality and availability of the main food plant of the grouse. However, while these results support predictions from theory, they provide no clear insight into the mechanisms influencing reductions in population growth rate and regulation. In the second part of the paper, we consider the results of experiments, first at the individual level and then at the population level, to identify the important mechanisms influencing changes in individual productivity and population growth rate. The parasitic nematode Trichostrongylus tenuis is found to have an important influence on productivity, and when incorporated into models with their patterns of distribution between individuals has a destabilizing effect and generates negative growth rates. The hypothesis that negative growth rates at the population level were caused by parasites was demonstrated by a replicated population level experiment. With a sound and tested model framework we then explore the interaction with other natural enemies and show that in general they tend to stabilize variations in growth rate. Interestingly, the models show selective predators that remove heavily infected individuals can release the grouse from parasite-induced regulation and allow equilibrium populations to rise. By contrast, a tick-borne virus that killed chicks simply leads to a reduction in the equilibrium. When humans take grouse they do not appear to stabilize populations and this may be because many of the infective stages are available for infection before harvesting commences. In our opinion, an understanding of growth rates and population dynamics is best achieved through a mechanistic approach that includes a sound experimental approach with the development of models. Models can be tested further to explore how the community of predators and others interact with their prey.  相似文献   

12.
13.
14.
Background: Previous studies have shown that migrants have lower cancer mortality rates compared to the Australian-born population, particularly for colorectal and breast cancers, which are associated with an affluent lifestyle. This study seeks to update knowledge in this field by examining mortality from colorectal, stomach, lung, melanoma, breast and bladder cancers, as well as all cancers combined between 1981 and 2007. Methods: Data were obtained from the Australian Bureau of Statistics. Average annual age and sex-standardised mortality rates were calculated for each region of birth, period of death registration and cancer site. Results: Generally, mortality rates declined over the study period for most conditions for the majority of migrant groups. Notable exceptions included migrants from South Eastern Europe and Eastern Europe who experienced a significant increase in mortality due to all cancers combined and Australian-born individuals who recorded a significant increase in mortality due to melanoma of the skin. Migrants generally had more favourable cancer mortality outcomes, particularly for colorectal cancer and melanoma. Migrants from Southern Europe, South Eastern Europe, Chinese Asia and Southern Asia had the greatest advantage. However, migrants displayed higher rates of stomach, lung and bladder cancers than the Australian-born population. Conclusion: The migrant advantage can in part be explained by the protective effects of diet, lifestyle and reproductive behaviours. Possible explanations for why some migrants display greater mortality from stomach and bladder cancer include the consumption of abrasive, salted and preserved foods and higher rates of smoking. Greater emphasis should be placed on targeting at-risk migrant groups through screening and education programs at migrant resource centres and community groups. The study calls for further research to explain the observed trends, which has the potential to uncover important risk and protective factors.  相似文献   

15.
History matters when individual prior conditions contain important information about the fate of individuals. We present a general framework for demographic models which incorporates the effects of history on population dynamics. The framework incorporates prior condition into the i-state variable and includes an algorithm for constructing the population projection matrix from information on current state dynamics as a function of prior condition. Three biologically motivated classes of prior condition are included: prior stages, linear functions of current and prior stages, and equivalence classes of prior stages. Taking advantage of the matrix formulation of the model, we show how to calculate sensitivity and elasticity of any demographic outcome. Prior condition effects are a source of inter-individual variation in vital rates, i.e., individual heterogeneity. As an example, we construct and analyze a second-order model of Lathyrus vernus, a long-lived herb. We present population growth rate, the stable population distribution, the reproductive value vector, and the elasticity of λ to changes in the second-order transition rates. We quantify the contribution of prior conditions to the total heterogeneity in the stable population of Lathyrus using the entropy of the stable distribution.  相似文献   

16.
Although partial migration, a phenomenon in which some individuals in a population conduct seasonal migrations while others remain resident, is common among animals, its importance in facilitating biological invasions has not been demonstrated. To illustrate how partial migration might facilitate invasions in spatially complex habitats, we developed an individual‐based model of common carp Cyprinus carpio in systems of lakes and winterkill‐prone marshes in the Upper Mississippi River Basin (UMRB). Our model predicted that common carp are unable to become invasive in lakes of the UMRB unless they conduct partial migrations into winterkill‐prone marshes in which recruitment rates are high in the absence of native predators that forage on carp eggs and larvae. Despite low dispersal rates of juveniles and higher mortality rates of migrants, partial migration was adaptive across a wide range of migration rates and winterkill frequencies. Partial migration rates as low as 10% and winterkill occurrence as infrequent as once in 20 years were sufficient to cause invasiveness because of carp's reproductive potential and longevity. Consistent with the results of our model, empirical data showed that lake connectivity to winterkill‐prone marshes was an important driver of carp abundance within the study region. Our results demonstrate that biological invasions may be driven by a small, migratory contingent of a population that exploits more beneficial reproductive habitats.  相似文献   

17.
High mountain ecosystems are extreme habitats, and adaptation strategies to this ecosystem are still poorly understood in most groups. To unravel such strategies, we performed a MRR study in the Hohe Tauern National Park (Salzburg, Austria) with two nymphalid butterfly species, Boloria pales and B. napaea. We analysed their population structure over one flight period by studying the development of population size and wing wear. B. pales had more individuals and a higher survival probability than B. napaea; the sensitivity to extreme weather conditions or other external influences was higher in B. napaea. We only observed proterandry in B. pales. Imagines of both species survived under snow for at least some days. Additionally, we observed a kind of risk-spreading, in that individuals of both species, and especially B. pales, have regularly emerged throughout the flight period. This emergence pattern divided the population's age structure into three phases: an initial phase with decreasing wing quality (emergence > mortality), followed by an equilibrium phase with mostly constant average wing condition (emergence = mortality) and a final ageing phase with strongly deteriorating wing condition (mortality » emergence). Consequently, neither species would likely become extinct because of particularly unsuitable weather conditions during a single flight period. The observed differences between the two species suggest a better regional adaptation of B. pales, which is restricted to high mountain systems of Europe. In contrast, the arctic-alpine B. napaea might be best adapted to conditions in the Arctic and not the more southern high mountain systems. However, this needs to be examined during future research in the Arctic.  相似文献   

18.
In most ecological studies, within-group variation is a nuisance that obscures patterns of interest and reduces statistical power. However, patterns of within-group variability often contain information about ecological processes. In particular, such patterns can be used to detect positive growth autocorrelation (consistent variation in growth rates among individuals in a cohort across time), even in samples of unmarked individuals. Previous methods for detecting autocorrelated growth required data from marked individuals. We propose a method that requires only estimates of within-cohort variance through time, using maximum likelihood methods to obtain point estimates and confidence intervals of the correlation parameter. We test our method on simulated data sets and determine the loss in statistical power due to the inability to identify individuals. We show how to accommodate nonlinear growth trajectories and test the effects of size-dependent mortality on our method''s accuracy. The method can detect significant growth autocorrelation at moderate levels of autocorrelation with moderate-sized cohorts (for example, statistical power of 80% to detect growth autocorrelation ρ 2 = 0.5 in a cohort of 100 individuals measured on 16 occasions). We present a case study of growth in the red-eyed tree frog. Better quantification of the processes driving size variation will help ecologists improve predictions of population dynamics. This work will help researchers to detect growth autocorrelation in cases where marking is logistically infeasible or causes unacceptable decreases in the fitness of marked individuals.  相似文献   

19.
Optimal life histories in a fluctuating environment are likely to differ from those that are optimal in a constant environment, but we have little understanding of the consequences of bounded fluctuations versus episodic massive mortality events. Catastrophic disturbances, such as floods, droughts, landslides and fires, substantially alter the population dynamics of affected populations, but little has been done to investigate how catastrophes may act as a selective agent for life-history traits. We use an individual-based model of population dynamics of the stream-dwelling salmonid marble trout (Salmo marmoratus) to investigate how trade-offs between the growth and mortality of individuals and density-dependent body growth can lead to the maintenance of a wide or narrow range of individual variation in body growth rates in environments that are constant (i.e., only demographic stochasticity), variable (i.e., environmental stochasticity), or variable with catastrophic events that cause massive mortalities (e.g., flash floods). We find that occasional episodes of massive mortality can substantially reduce persistent variability in individual growth rates. Lowering the population density reduces density dependence and allows for higher fitness of more opportunistic strategies (rapid growth and early maturation) during the recovery period.  相似文献   

20.
Plant-herbivore interactions influence the establishment context of plant species, as herbivores alter the community context in which individual species establish, and the spatial relationship between individuals and their source population as plants invade. This relationship can be described using an establishment kernel, which takes into account movement through seed dispersal, and subsequent establishment of adults. Mammalian herbivores are hypothesized to influence plant population growth and establishment through a combination of consumption of seeds and seedlings, and movement of seeds. While the movement abilities of plants are well known, we have very few empirical mechanistic tests of how biotic factors like mammalian herbivores influence this spread potential. As herbivores of all sizes are abundant on the landscape, we asked the question, how do mammalian herbivores influence the population growth, spatial establishment, and the community establishment context of an early-recruiting native prairie legume, Chamaecrista fasciculata? We planted C. fasciculata in source populations within a four-acre tallgrass prairie restoration in plots with and without herbivores, and monitored its establishment with respect to distance from the source populations. We found that herbivores decreased population growth, and decreased the mean and range establishment distance. Additionally, C. fasciculata established more often without herbivores, and when surrounded by weedy, annual species. Our results provide insight into how the interactions between plants and herbivores can alter the spatial dynamics of developing plant communities, which is vital for colonization and range spread with fragmentation and climate change. Mammalian herbivores have the potential to both slow rates of establishment, but also determine the types of plant communities that surround invading species. Therefore, it is essential to consider the herbivore community when attempting to restore functioning plant communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号