首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Host manipulation is a common parasite strategy to alter host behavior in a manner to enhance parasite fitness usually by increasing the parasite's transmission to the next host. In nature, hosts often harbor multiple parasites with agreeing or conflicting interests over host manipulation. Natural selection might drive such parasites to cooperation, compromise, or sabotage. Sabotage would occur if one parasite suppresses the manipulation of another. Experimental studies on the effect of multi‐parasite interactions on host manipulation are scarce, clear experimental evidence for sabotage is elusive. We tested the effect of multiple infections on host manipulation using laboratory‐bred copepods experimentally infected with the trophically transmitted tapeworm Schistocephalus solidus. This parasite is known to manipulate its host depending on its own developmental stage. Coinfecting parasites with the same aim enhance each other's manipulation but only after reaching infectivity. If the coinfecting parasites disagree over host manipulation, the infective parasite wins this conflict: the noninfective one has no effect. The winning (i.e., infective) parasite suppresses the manipulation of its noninfective competitor. This presents conclusive experimental evidence for both cooperation in and sabotage of host manipulation and hence a proof of principal that one parasite can alter and even neutralize manipulation by another.  相似文献   

2.
Trophically transmitted parasites often alter their intermediate host's phenotype, thereby predisposing the hosts to increased predation. This is generally considered a parasite strategy evolved to enhance transmission to the next hosts. However, the adaptive value of host manipulation is not clear as it may be associated with costs, such as increased susceptibility to predators that are unsuitable next hosts for the parasites. We examined the ratio between the benefits and costs of host manipulation for transmission success of Acanthocephalus lucii (Acanthocephala), a parasite that alters the hiding behaviour and pigmentation of its isopod hosts. We experimentally compared the susceptibility of infected and uninfected isopods to predation by perch (Perca fluvialis; definitive host of the parasite) and dragonfly larvae (dead end). We found that the parasite predisposed the isopods to predation by both predators. However, the increased predation vulnerability of the infected isopods was higher towards perch. This suggests that, despite the costs due to non-host predation, host manipulation may still be advantageous for the parasite.  相似文献   

3.
Numerous parasites with complex life cycles are able to manipulate the behaviour of their intermediate host in a way that increases their trophic transmission to the definitive host. Pomphorhynchus laevis, an acanthocephalan parasite, is known to reverse the phototactic behaviour of its amphipod intermediate host, Gammarus pulex, leading to an increased predation by fish hosts. However, levels of behavioural manipulation exhibited by naturally-infected gammarids are extremely variable, with some individuals being strongly manipulated whilst others are almost not affected by infection. To investigate parasite age and parasite intensity as potential sources of this variation, we carried out controlled experimental infections on gammarids using parasites from two different populations. We first determined that parasite intensity increased with exposure dose, but found no relationship between infection and host mortality. Repeated measures confirmed that the parasite alters host behaviour only when it reaches the cystacanth stage which is infective for the definitive host. They also revealed, we believe for the first time, that the older the cystacanth, the more it manipulates its host. The age of the parasite is therefore a major source of variation in parasite manipulation. The number of parasites within a host was also a source of variation. Manipulation was higher in hosts infected by two parasites than in singly infected ones, but above this intensity, manipulation did not increase. Since the development time of the parasite was also different according to parasite intensity (it was longer in doubly infected hosts than in singly infected ones, but did not increase more in multi-infected hosts), individual parasite fitness could depend on the compromise between development time and manipulation efficiency. Finally, the two parasite populations tested induced slightly different degrees of behavioural manipulation.  相似文献   

4.
Trophically‐transmitted parasites are known for their ability to enhance predation of their intermediate host but they are less known for their ability to suppress predation. We review recent literature on host manipulation explaining why and when in its life cycle a parasite benefits from preventing the predation of its host. Predation suppression occurs in intermediate hosts as long as the parasite larva has not reached the developmental conditions allowing it to successfully establish in the next host (competency). We also examine the possibility that predation suppression may occur in hosts harbouring competent larvae (post competency) since some parasites have been shown to manipulate host behaviour in a way that decreases the risk of parasite death through non‐host predation (i.e. the consumption of its intermediate host by a predator that does not risk infection). Predation suppression when the parasite is competent has to be considered with respect to non‐host predation risk and is not mutually exclusive with predation enhancement. We use the recent theoretical advances in host manipulation to investigate the conditions under which predation suppression could evolve post competency.  相似文献   

5.
When parasites have different interests in regard to how their host should behave this can result in a conflict over host manipulation, i.e. parasite induced changes in host behaviour that enhance parasite fitness. Such a conflict can result in the alteration, or even complete suppression, of one parasite's host manipulation. Many parasites, and probably also symbionts and commensals, have the ability to manipulate the behaviour of their host. Non‐manipulating parasites should also have an interest in host behaviour. Given the frequency of multiple parasite infections in nature, potential conflicts of interest over host behaviour and manipulation may be common. This review summarizes the evidence on how parasites can alter other parasite's host manipulation. Host manipulation can have important ecological and medical consequences. I speculate on how a conflict over host manipulation could alter these consequences and potentially offer a new avenue of research to ameliorate harmful consequences of host manipulation.  相似文献   

6.
Trophically transmitted parasites often alter their intermediate host's phenotype, thereby predisposing hosts to increased predation. This is generally considered to be a parasite strategy evolved to enhance transmission to the next host. However, the adaptive value of host manipulation is not clear, as it may be associated with costs, such as increased susceptibility to predator species that are unsuitable next hosts for the parasites. Thus, it has been proposed that, to be adaptive, manipulation should be specific by predisposing hosts more strongly to predation by target hosts (next host in the life cycle) than to non-hosts. Here we formally evaluate this prediction, and show that manipulation does not have to be specific to be adaptive. However, when manipulation is nonspecific, it needs to effectively increase the overall predation risk of infected hosts if it is to increase the parasite transmission probability. Thus, when initial predation risk is low, even highly nonspecific manipulation strategies can be adaptive. However, when initial predation risk is high, manipulation needs to be more specific to increase parasite transmission success. Therefore, nonspecific host manipulation may evolve in nature, but the adaptive value of a certain manipulation strategy can vary among different parasite populations depending on the variation in initial predation risk.  相似文献   

7.
Trophically transmitted parasites start their development in an intermediate host, before they finish the development in their definitive host when the definitive host preys on the intermediate host. In intermediate–definitive host systems, two strategies of host manipulation have been evolved: increasing the rate of transmission to the definitive host by increasing the chance that the definitive host will prey on the intermediate host, or increasing the lifespan of the parasite in the intermediate host by decreasing the predation chance when the intermediate host is not yet infectious. As the second strategy is less well studied than the first, it is unknown under what conditions each of these strategies is prevailed and evolved. We analysed the effect of both strategies on the presence of parasites in intermediate–definitive host systems with a structured population model. We show that the parasite can increase the parameter space where it can persist in the intermediate–definitive host system using one of these two strategies of host manipulation. We found that when the intermediate host or the definitive host has life‐history traits that allow the definitive host to reach large population densities, that is high reproduction rate of the intermediate host or high conversion efficiency of the definitive host (efficiency at which the uninfected definitive host converts caught intermediate hosts into offspring), respectively, evolving manipulation to decrease the predation chance of the intermediate host will be more beneficial than manipulation to increase the predation chance to enhance transmission. Furthermore, manipulation to decrease the predation chance of the intermediate host results in higher population densities of infected intermediate hosts than manipulation that increases the predation chance to enhance transmission. Our study shows that host manipulation in early stages of the parasite development to decrease predation might be a more frequently evolved way of host manipulation than is currently assumed.  相似文献   

8.
Several parasite species have the ability to modify their host's phenotype to their own advantage thereby increasing the probability of transmission from one host to another. This phenomenon of host manipulation is interpreted as the expression of a parasite extended phenotype. Manipulative parasites generally affect multiple phenotypic traits in their hosts, although both the extent and adaptive significance of such multidimensionality in host manipulation is still poorly documented. To review the multidimensionality and magnitude of host manipulation, and to understand the causes of variation in trait value alteration, we performed a phylogenetically corrected meta‐analysis, focusing on a model taxon: acanthocephalan parasites. Acanthocephala is a phylum of helminth parasites that use vertebrates as final hosts and invertebrates as intermediate hosts, and is one of the few parasite groups for which manipulation is predicted to be ancestral. We compiled 279 estimates of parasite‐induced alterations in phenotypic trait value, from 81 studies and 13 acanthocephalan species, allocating a sign to effect size estimates according to the direction of alteration favouring parasite transmission, and grouped traits by category. Phylogenetic inertia accounted for a low proportion of variation in effect sizes. The overall average alteration of trait value was moderate and positive when considering the expected effect of alterations on trophic transmission success (signed effect sizes, after the onset of parasite infectivity to the final host). Variation in the alteration of trait value was affected by the category of phenotypic trait, with the largest alterations being reversed taxis/phobia and responses to stimuli, and increased vulnerability to predation, changes to reproductive traits (behavioural or physiological castration) and immunosuppression. Parasite transmission would thereby be facilitated mainly by changing mainly the choice of micro‐habitat and the anti‐predation behaviour of infected hosts, and by promoting energy‐saving strategies in the host. In addition, infection with larval stages not yet infective to definitive hosts (acanthella) tends to induce opposite effects of comparable magnitude to infection with the infective stage (cystacanth), although this result should be considered with caution due to the low number of estimates with acanthella. This analysis raises important issues that should be considered in future studies investigating the adaptive significance of host manipulation, not only in acanthocephalans but also in other taxa. Specifically, the contribution of phenotypic traits to parasite transmission and the range of taxonomic diversity covered deserve thorough attention. In addition, the relationship between behaviour and immunity across parasite developmental stages and host–parasite systems (the neuropsychoimmune hypothesis of host manipulation), still awaits experimental evidence. Most of these issues apply more broadly to reported cases of host manipulation by other groups of parasites.  相似文献   

9.
Larvae of many trophically-transmitted parasites alter the behaviour of their intermediate host in ways that increase their probability of transmission to the next host in their life cycle. Before reaching a stage that is infective to the next host, parasite larvae may develop through several larval stages in the intermediate host that are not infective to the definitive host. Early predation at these stages results in parasite death, and it has recently been shown that non-infective larvae of some helminths decrease such risk by enhancing the anti-predator defences of the host, including decreased activity and increased sheltering. However, these behavioural changes may divert infected hosts from an optimal balance between survival and foraging (either seeking food or a mate). In this study, this hypothesis was tested using the intermediate host of the acanthocephalan parasite Pomphorhynchus laevis, the freshwater amphipod Gammarus pulex. We compared activity, refuge use, food foraging and food intake of hosts experimentally infected with the non-infective stage (acanthella), with that of uninfected gammarids. Behavioural assays were conducted in four situations varying in predation risk and in food accessibility. Acanthella-infected amphipods showed an increase in refuge use and a general reduction in activity and food intake. There was no effect of parasite intensity on these traits. Uninfected individuals showed plastic responses to water-borne cues from fish by adjusting refuge use, activity and food intake. They also foraged more when the food was placed outside the refuge. At the intra-individual level, refuge use and food intake were positively correlated in infected gammarids only. Overall, our findings suggest that uninfected gammarids exhibit risk-sensitive behaviour including increased food intake under predation risk, whereas gammarids infected with the non-infective larvae of P. laevis exhibit a lower motivation to feed, irrespective of predation risk and food accessibility.  相似文献   

10.
Parasites with complex life cycles are expected to manipulate the behaviour of their intermediate hosts (IHs), which increase their predation rate and facilitate the transmission to definitive hosts (DHs). This ability, however, is a double-edged sword when the parasite can also be transmitted vertically in the IH. In this situation, as the manipulation of the IH behaviour increases the IH death rate, it conflicts with vertical transmission, which requires healthy and reproducing IHs. The protozoan Toxoplasma gondii, a widespread pathogen, combines both trophic and vertical transmission strategies. Is parasite manipulation of host behaviour still adaptive in this situation? We model the evolution of the IH manipulation by T. gondii to study the conflict between these two routes of transmission under different epidemiological situations. Model outputs show that manipulation is particularly advantageous for virulent strains and in epidemic situations, and that different levels of manipulation may evolve depending on the sex of the IH and the transmission routes considered. These results may help to understand the variability of strain characteristics encountered for T. gondii and may extend to other trophically transmitted parasites.  相似文献   

11.
Some parasites have been shown to manipulate host behavior so that parasite transmission to the next host is enhanced. Infection with Triaenophorus crassus Forel (Cestoda) caused alterations in the activity and microhabitat selection of the first intermediate host Cyclops strenuus Fischer (Copepoda) in the laboratory. Infected copepods made more starts to swim but spent less time swimming than uninfected copepods. These changes were independent of the intensity of infection. In a water column illuminated from above, infected copepods approached the surface, whereas uninfected ones remained close to the bottom. In the dark both infected and uninfected copepods stayed near the bottom. Finally, infection with T. crassus increased the probability of C. strenuus being eaten by the second intermediate host, whitefish (Coregonus lavaretus L. s.l.), in the laboratory. In experimental infections, 10-day-old procercoids had significantly lower infectivity for whitefish than older (12-, 14-, and 21-day-old) procercoids. Behavioral changes were detected in infected copepods containing procercoids 12 days old or older but not in experiments with 10-day-old procercoids. These results may indicate that T. crassus changes the behavior of the copepod host only after it has become infective to the next host, which is consistent with the active manipulation hypothesis.  相似文献   

12.
Many trophically transmitted parasites manipulate their intermediate host phenotype, resulting in higher transmission to the final host. However, it is not known if manipulation is a fixed adaptation of the parasite or a dynamic process upon which selection still acts. In particular, local adaptation has never been tested in manipulating parasites. In this study, using experimental infections between six populations of the acanthocephalan parasite Pomphorhynchus laevis and its amphipod host Gammarus pulex, we investigated whether a manipulative parasite may be locally adapted to its host. We compared adaptation patterns for infectivity and manipulative ability. We first found a negative effect of all parasite infections on host survival. Both parasite and host origins influenced infection success. We found a tendency for higher infectivity in sympatric versus allopatric combinations, but detailed analyses revealed significant differences for two populations only. Conversely, no pattern of local adaptation was found for behavioral manipulation, but manipulation ability varied among parasite origins. This suggests that parasites may adapt their investment in behavioral manipulation according to some of their host's characteristics. In addition, all naturally infected host populations were less sensitive to parasite manipulation compared to a naive host population, suggesting that hosts may evolve a general resistance to manipulation.  相似文献   

13.
Many parasites manipulate host behaviour to enhance parasite transmission and survival. A fascinating example is baculoviruses, which often induce death in caterpillar hosts at elevated positions (‘tree-top’ disease). To date, little is known about the underlying processes leading to this adaptive host manipulation. Here, we show that the baculovirus Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) triggers a positive phototactic response in S. exigua larvae prior to death and causes the caterpillars to die at elevated positions. This light-dependent climbing behaviour is specific for infected larvae, as movement of uninfected caterpillars during larval development was light-independent. We hypothesize that upon infection, SeMNPV captures a host pathway involved in phototaxis and/or light perception to induce this remarkable behavioural change.  相似文献   

14.
Parasites are known to manipulate the behavior of their hosts in ways that increase their probability of transmission. Theoretically, different evolutionary routes can lead to host manipulation, but much research has concentrated on the ‘manipulation hypothesis’ sensu stricto. Among the arsenal of host compensatory responses, however, some seem to be compatible with the parasite objectives. Another way for parasites to achieve transmission, therefore, would be to trigger specific host compensatory responses. In order to explore the conditions favoring this manipulative strategy, we developed a simulation model in which parasites may affect their hosts' behavior by using two nonmutually exclusive strategies: a manipulation sensu stricto strategy and a strategy based on the exploitation of host compensatory responses. Our model predicts that the exploitation of host compensatory responses can be evolutionary stable when the alteration improves the susceptibility to predation by final hosts without compromising host survival during parasite development. Inversely, when the behavioral modification resulting from a compensatory response conflicts with the host's interest we expect parasites to use both strategies. From this result, we conclude that the strategy based on the exploitation of host compensatory responses should be more common among nontrophically transmitted parasites. Furthermore, our findings indicate that the transmission rate of parasites in a definitive host is highest when each of the two strategies affects different traits, which supports the hypothesis that host manipulation is a multidimensional phenomenon in which each altered trait contributes independently to increase parasite transmission efficiency.  相似文献   

15.
Trophically-transmitted parasites often change the phenotype of their intermediate hosts in ways that increase their vulnerability to definitive hosts, hence favouring transmission. As a “collateral damage”, manipulated hosts can also become easy prey for non-host predators that are dead ends for the parasite, and which are supposed to play no role in transmission strategies. Interestingly, infection with the acanthocephalan parasite Polymorphus minutus has been shown to reduce the vulnerability of its gammarid intermediate hosts to non-host predators, whose presence triggered the behavioural alterations expected to favour trophic transmission to bird definitive hosts. Whilst the behavioural response of infected gammarids to the presence of definitive hosts remains to be investigated, this suggests that trophic transmission might be promoted by non-host predation risk. We conducted microcosm experiments to test whether the behaviour of P. minutus-infected gammarids was specific to the type of predator (i.e. mallard as definitive host and fish as non-host), and mesocosm experiments to test whether trophic transmission to bird hosts was influenced by non-host predation risk. Based on the behaviours we investigated (predator avoidance, activity, geotaxis, conspecific attraction), we found no evidence for a specific fine-tuned response in infected gammarids, which behaved similarly whatever the type of predator (mallard or fish). During predation tests, fish predation risk did not influence the differential predation of mallards that over-consumed infected gammarids compared to uninfected individuals. Overall, our results bring support for a less sophisticated scenario of manipulation than previously expected, combining chronic behavioural alterations with phasic behavioural alterations triggered by the chemical and physical cues coming from any type of predator. Given the wide dispersal range of waterbirds (the definitive hosts of P. minutus), such a manipulation whose efficiency does not depend on the biotic context is likely to facilitate its trophic transmission in a wide range of aquatic environments.  相似文献   

16.
Trophically transmitted parasites may increase their transmission efficiency by altering the behaviour of infected hosts to increase their susceptibility to predation by target hosts (the next host in the life cycle). The parasite Diplostomum spathaceum (Trematoda) reduces the vision of its fish intermediate hosts: its metacercariae lodge themselves in the eyes of fish and induce cataract formation, which gives them the opportunity to affect fish behaviour. We examined whether D. spathaceum eye flukes change the preference of fish for the surface layers of the water column or their escape behaviour, which could make the fish more vulnerable to predation by bird hosts. We also studied the influence of parasites on the susceptibility of fish to artificial aerial predators that were able to catch fish from the water surface. Infected and control fish did not differ in their preference for the surface layers but infected fish showed less escape behaviour when a black plate was drawn over the water surface. They were also more easily caught by human ‘predators’ dipping a net into the tank. Thus, infected fish should be easier prey for gulls and terns, implying that the ability of D. spathaceum eye flukes to alter fish behaviour may be a parasite strategy evolved to enhance transmission.  相似文献   

17.
Why should the hosts of brood parasites accept and raise parasitic offspring that differ dramatically in appearance from their own? There are two solutions to this evolutionary enigma. (1) Hosts may not yet have evolved the capability to discriminate against the parasite, or (2) parasite-host systems have reached an evolutionary equilibrium. Avian brood parasites may either gain renesting opportunities or force their hosts to raise parasitic offspring by destroying or preying upon host eggs or nestlings following host ejection of parasite offspring. These hypotheses may explain why hosts do not remove parasite offspring because only then will hosts avoid clutch destruction by the cuckoo. Here we show experimentally that if the egg of the parasitic great spotted cuckoo Clamator glandarius is removed from nests of its magpie Pica pica host, nests suffer significantly higher predation rates than control nests in which parasite eggs have not been removed. Using plasticine model eggs resembling those of magpies and observations of parasites, we also confirm that great spotted cuckoos that have laid an ejected egg are indeed responsible for destruction of magpie nests with experimentally ejected parasite eggs. Cuckoos benefit from destroying host offspring because they thereby induce some magpies to renest and subsequently accept a cuckoo egg.  相似文献   

18.
Competition between parasites within a host can influence the evolution of parasite virulence and host resistance, but few studies examine the effects of unrelated parasites with conflicting transmission strategies infecting the same host. Vertically transmitted (VT) parasites, transmitted from mother to offspring, are in conflict with virulent, horizontally transmitted (HT) parasites, because healthy hosts are necessary to maximize VT parasite fitness. Resolution of the conflict between these parasites should lead to the evolution of one of two strategies: avoidance, or sabotage of HT parasite virulence by the VT parasite. We investigated two co-infecting parasites in the amphipod host, Gammarus roeseli: VT microsporidia have little effect on host fitness, but acanthocephala modify host behaviour, increasing the probability that the amphipod is predated by the acanthocephalan's definitive host. We found evidence for sabotage: the behavioural manipulation induced by the Acanthocephala Polymorphus minutus was weaker in hosts also infected by the microsporidia Dictyocoela sp. (roeselum) compared to hosts infected by P. minutus alone. Such conflicts may explain a significant portion of the variation generally observed in behavioural measures, and since VT parasites are ubiquitous in invertebrates, often passing undetected, conflict via transmission may be of great importance in the study of host-parasite relationships.  相似文献   

19.
Many complex life cycle parasites rely on predator–prey interactions for transmission, whereby definitive hosts become infected via the consumption of an infected intermediate host. As such, these trophic parasites are embedded in the larger community food web. We postulated that exposure to infection and, hence, parasite transmission are inherently linked to host foraging ecology, and that perturbation of the host-resource dynamic will impact parasite transmission dynamics. We employed a field manipulation experiment in which natural populations of the eastern chipmunk (Tamias striatus) were provisioned with a readily available food resource in clumped or uniform spatial distributions. Using replicated longitudinal capture-mark-recapture techniques, replicated supplemented and unsupplemented control sites were monitored before and after treatment for changes in infection levels with three gastro-intestinal helminth parasites. We predicted that definitive hosts subject to food supplementation would experience lower rates of exposure to infective intermediate hosts, presumably because they shifted their diet away from the intermediate host towards the more readily available resource (sunflower seeds). As predicted, prevalence of infection by the trophically transmitted parasite decreased in response to supplemental food treatment, but no such change in infection prevalence was detected for the two directly transmitted parasites in the system. The fact that food supplementation only had an impact on the transmission of the trophically transmitted parasite, and not the directly transmitted parasites, supports our hypothesis that host foraging ecology directly affects exposure to parasites that rely on the ingestion of intermediate hosts for transmission. We concluded that the relative availability of different food resources has important consequences for the transmission of parasites and, more specifically, parasites that are embedded in the food web. The broader implications of these findings for food web dynamics and disease ecology are discussed.  相似文献   

20.
Manipulation by parasites is a catchy concept that has been applied to a large range of phenotypic alterations brought about by parasites in their hosts. It has, for instance, been suggested that the carotenoid-based colour of acanthocephalan cystacanths is adaptive through increasing the conspicuousness of infected intermediate hosts and, hence, their vulnerability to appropriate final hosts such as fish predators. We revisited the evidence in favour of adaptive coloration of acanthocephalan parasites in relation to increased trophic transmission using the crustacean amphipod Gammarus pulex and two species of acanthocephalans, Pomphorhynchus laevis and Polymorphus minutus. Both species show carotenoid-based colorations, but rely, respectively, on freshwater fish and aquatic bird species as final hosts. In addition, the two parasites differ in the type of behavioural alteration brought to their common intermediate host. Pomphorhynchus laevis reverses negative phototaxis in G. pulex, whereas P. minutus reverses positive geotaxis. In aquaria, trout showed selective predation for P. laevis-infected gammarids, whereas P. minutus-infected ones did not differ from uninfected controls in their vulnerability to predation. We tested for an effect of parasite coloration on increased trophic transmission by painting a yellow-orange spot on the cuticle of uninfected gammarids and by masking the yellow-orange spot of infected individuals with inconspicuous brown paint. To enhance realism, match of colour between painted mimics and true parasite was carefully checked using a spectrometer. We found no evidence for a role of parasite coloration in the increased vulnerability of gammarids to predation by trout. Painted mimics did not differ from control uninfected gammarids in their vulnerability to predation by trout. In addition, covering the place through which the parasite was visible did not reduce the vulnerability of infected gammarids to predation by trout. We discuss alternative evolutionary explanations for the origin and maintenance of carotenoid-based colorations in acanthocephalan parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号