首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RecQ enzymes are broadly conserved Superfamily-2 (SF-2) DNA helicases that play critical roles in DNA metabolism. RecQ proteins use the energy of ATP hydrolysis to drive DNA unwinding; however, the mechanisms by which RecQ links ATPase activity to DNA-binding/unwinding are unknown. In many Superfamily-1 (SF-1) DNA helicases, helicase sequence motif III links these activities by binding both single-stranded (ss) DNA and ATP. However, the ssDNA-binding aromatic-rich element in motif III present in these enzymes is missing from SF-2 helicases, raising the question of how these enzymes link ATP hydrolysis to DNA-binding/unwinding. We show that Escherichia coli RecQ contains a conserved aromatic-rich loop in its helicase domain between motifs II and III. Although placement of the RecQ aromatic-rich loop is topologically distinct relative to the SF-1 enzymes, both loops map to similar tertiary structural positions. We examined the functions of the E.coli RecQ aromatic-rich loop using RecQ variants with single amino acid substitutions within the segment. Our results indicate that the aromatic-rich loop in RecQ is critical for coupling ATPase and DNA-binding/unwinding activities. Our studies also suggest that RecQ's aromatic-rich loop might couple ATP hydrolysis to DNA-binding in a mechanistically distinct manner from SF-1 helicases.  相似文献   

2.
We propose to design a small-size transmission-coupled antenna array, and corresponding radiation pattern, having high performance inspired by the female Ormia ochracea's coupled ears. For reproduction purposes, the female Ormia is able to locate male crickets' call accurately despite the small distance between its ears compared with the incoming wavelength. This phenomenon has been explained by the mechanical coupling between the Ormia's ears, which has been modeled by a pair of differential equations. In this paper, we first solve these differential equations governing the Ormia ochracea's ear response, and convert the response to the pre-specified radio frequencies. We then apply the converted response of the biological coupling in the array factor of a uniform linear array composed of finite-length dipole antennas, and also include the undesired electromagnetic coupling due to the proximity of the elements. Moreover, we propose an algorithm to optimally choose the biologically inspired coupling for maximum array performance. In our numerical examples, we compute the radiation intensity of the designed system for binomial and uniform ordinary end-fire arrays, and demonstrate the improvement in the half-power beamwidth, sidelobe suppression and directivity of the radiation pattern due to the biologically inspired coupling.  相似文献   

3.
This paper presents the design of a resonant system for in vitro studies to emulate the exposure of a monolayer of cells to a wireless power transfer system operating at 13.56 MHz. The design procedure targets a system, which maximizes the specific absorption rate (SAR) uniformity on the plane where the layer is cultured, as well as SAR efficiency (defined as SAR over the input power), within the size constraints of a standard incubator. Three resonant wireless power transfer systems with different commonly used loop/coil geometries (cylindrical with circular and square cross-sections and annular) were compared with assess the configuration maximizing the considered design criteria. The system performance in terms of reflection and transmission coefficients, as well as generated E- and H-fields, was characterized numerically and experimentally inside the incubator. Moreover, SAR was computed at the monolayer level. The system equipped with cylindrical coils with square cross-sections led to a high electromagnetic field uniformity in in vitro biological samples. In particular, the uniformities in E and SAR at the layer level were within 7.9% and 5.5%, respectively. This was achieved with the variation in H below the usually considered ±5% limit. © 2020 Bioelectromagnetics Society  相似文献   

4.
Kwaw I  Sun J  Kaback HR 《Biochemistry》2000,39(11):3134-3140
The N- and C-terminal halves of lactose permease, each with a single-Cys residue in a cytoplasmic loop, were coexpressed, and cross-linking was studied in the absence or presence of ligand. Out of the 68 paired-Cys mutants in cytoplasmic loops IV/V and VIII/IX or X/XI, three pairs in loop IV/V and X/XI, (i) Arg135 --> Cys/Thr338 --> Cys, (ii) Arg134 --> Cys/Val343 --> Cys, and (iii) Arg134 --> Cys/Phe345 --> Cys, form a spontaneous disulfide bond, indicating that loops IV/V and X/XI are in close proximity. In addition, specific paired-Cys residues in loop IV/V (132-138) and loop VIII/IX (282-290) or loop X/XI (335-345) cross-link with iodine and/or the homobifunctional cross-linking agents N, N'-o-phenylenedimaleimide, N,N'-p-phenylenedimaleimide, and 1, 6-bis(maleimido)hexane. The results demonstrate that loop IV/V is close to both loop VIII/IX and loop X/XI. On the other hand, similar though less extensive cross-linking studies indicate that neither the N terminus nor loop II/III appear to be close to loops VIII/IX or X/XI. The findings suggest that the longer cytoplasmic loops are highly flexible and interact in a largely random fashion. However, although a Cys residue at position 134 in loop IV/V, for example, is able to cross-link with a Cys residue at each position in loop VIII/IX or loop X/XI, Cys residues at other positions in loop IV/V exhibit markedly different cross-linking patterns. Therefore, although the domains appear to be very flexible, the interactions are not completely random, suggesting that there are probably at least some structural constraints that limit the degree of flexibility. In addition, evidence is presented suggesting that ligand binding induces conformational alterations between loop IV/V and loop VIII/IX or X/XI.  相似文献   

5.
Recent studies have indicated that the tip links and kinocilial links of sensory hair bundles in the inner ear have similar properties and share a common epitope, and that cadherin 23 may also be a component of each link type. Transmission electron microscopy was therefore used to study and compare the fine structure of the tip links and kinocilial links in avian sensory hair bundles. Tannic acid treatment revealed a thin strand, 150-200 nm long and 8-11 nm thick, present in both link types. Fourier analysis of link images showed that the strand of both link types is formed from two filaments coiled in a helix-like arrangement with an axial period of 20-25 nm, with each filament composed of globular structures that are approximately 4 nm in diameter. Differences in the radius and period of the helix-like structure may underlie the observed variation in the length of tip and kinocilial links. The similar helix-like structure of the tip links and kinocilial links is in accord with the presence of a common cell-surface antigen (TLA antigen) and similarities in the physical and chemical properties of the two link types. The spacing of the globular structures comprising each filament of the two link types is similar to the 4.3 nm center-to-center spacing reported for the globular cadherin repeat, and is consistent with the suggestion that cadherin 23 is the tip link.  相似文献   

6.
Sun J  Voss J  Hubbell WL  Kaback HR 《Biochemistry》1999,38(10):3100-3105
Site-directed thiol cross-linking indicates that the first periplasmic loop (loop I/II) in the lactose permease of Escherichia coli is in close proximity to loops VII/VIII and XI/XII [Sun, J., and Kaback, H. R. (1997) Biochemistry 36, 11959-11965]. To determine whether thiol cross-linking reflects proximity as opposed to differences in the reactivity and/or dynamics of the Cys residues that undergo cross-linking, single-Cys mutants in loops I/II, VII/VIII, and XI/XII and double-Cys mutants in loop I/II and VII/VIII or XI/XII were purified and labeled with a sulfhydryl-specific nitroxide spin label. The labeled mutants were then analyzed by electron paramagnetic resonance (EPR) spectroscopy, and interspin distance was estimated from the extent of line shape broadening in the double-labeled proteins. Out of six paired double-Cys mutants that exhibit thiol cross-linking, five display significant spin-spin interaction. Furthermore, there is a qualitative correlation between distances estimated by site-directed cross-linking and EPR. Taken as a whole, the results are consistent with the conclusion that site-directed thiol cross-linking is primarily a reflection of proximity.  相似文献   

7.
Kai Zhu  Tyler Day 《Proteins》2013,81(6):1081-1089
Antibodies have the capability of binding a wide range of antigens due to the diversity of the six loops constituting the complementarity determining region (CDR). Among the six loops, the H3 loop is the most diverse in structure, length, and sequence identity. Prediction of the three‐dimensional structures of antibodies, especially the CDR loops, is an important step in the computational design and engineering of novel antibodies for improved affinity and specificity. Although it has been demonstrated that the conformation of the five non‐H3 loops can be accurately predicted by comparing their sequences against databases of canonical loop conformations, no such connection has been established for H3 loops. In this work, we present the results for ab initio structure prediction of the H3 loop using conformational sampling and energy calculations with the program Prime on a dataset of 53 loops ranging in length from 4 to 22 residues. When the prediction is performed in the crystal environment and including symmetry mates, the median backbone root mean square deviation (RMSD) is 0.5 Å to the crystal structure, with 91% of cases having an RMSD of less than 2.0 Å. When the prediction is performed in a noncrystallographic environment, where the scaffold is constructed by swapping the H3 loops between homologous antibodies, 70% of cases have an RMSD below 2.0 Å. These results show promise for ab initio loop predictions applied to modeling of antibodies. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
We have investigated loop-induced structural perturbation of the stem structure in hairpins d(GAATTCXnGAATTC) (X = A, T and n = 3, 4, 5 and 6) that contain an EcoRI restriction site in close proximity to the hairpin loop. Oligonucleotides containing either a T3 or a A3 loop were not hydrolyzed by the restriction enzyme and also showed only weak binding to EcoRI in the absence of the cofactor Mg2+. In contrast, hairpins with larger loops are hydrolyzed by the enzyme at the scission site next to the loop although the substrate with a A4 loop is significantly more resistant than the oligonucleotide containing a T4 loop. The hairpin structures with 3 loop residues were found to be thermally most stable while larger hairpin loops resulted in structures with lower melting temperatures. The T-loop hairpins are thermally more stable than the hairpins containing the same number of A residues in the loop. As judged from proton NMR spectroscopy and the thermodynamic data, the base pair closest to the hairpin loop did form in all cases studied. The hairpin loops did, however, affect the conformation of the stem structure of the hairpins. From 31P and 1H NMR spectroscopy we conclude that the perturbation of the stem structure is stronger for smaller hairpin loops and that the extent of the perturbation is limited to 2-3 base pairs for hairpins with T3 or A4 loops. Our results demonstrate that hairpin loops modulate the conformation of the stem residues close to the loop and that this in turn reduces the substrate activity for DNA sequence specific proteins.  相似文献   

9.
The structure of the contact network through which a disease spreads may influence the optimal use of resources for epidemic control. In this work, we explore how to minimize the spread of infection via quarantining with limited resources. In particular, we examine which links should be removed from the contact network, given a constraint on the number of removable links, such that the number of nodes which are no longer at risk for infection is maximized. We show how this problem can be posed as a non-convex quadratically constrained quadratic program (QCQP), and we use this formulation to derive a link removal algorithm. The performance of our QCQP-based algorithm is validated on small Erd?s–Renyi and small-world random graphs, and then tested on larger, more realistic networks, including a real-world network of injection drug use. We show that our approach achieves near optimal performance and out-performs other intuitive link removal algorithms, such as removing links in order of edge centrality.  相似文献   

10.
11.
Recognition of the microbial loop as an important part of aquatic ecosystems disrupted the notion of simple linear food chains. However, current research suggests that even the microbial loop paradigm is a gross simplification of microbial interactions due to the presence of mixotrophs-organisms that both photosynthesize and graze. We present a simple food web model with four trophic species, three of them arranged in a food chain (nutrients-autotrophs-herbivores) and the fourth as a mixotroph with links to both the nutrients and the autotrophs. This model is used to study the general implications of inclusion of the mixotrophic link in microbial food webs and the specific predictions for a parameterization that describes open ocean mixed layer plankton dynamics. The analysis indicates that the system parameters reside in a region of the parameter space where the dynamics converge to a stable equilibrium rather than displaying periodic or chaotic solutions. However, convergence requires weeks to months, suggesting that the system would never reach equilibrium in the ocean due to alteration of the physical forcing regime. Most importantly, the mixotrophic grazing link seems to stabilize the system in this region of the parameter space, particularly when nutrient recycling feedback loops are included.  相似文献   

12.
The lack of a rigorous analytical theory for DNA looping has caused many DNA-loop-mediated phenomena to be interpreted using theories describing the related process of DNA cyclization. However, distinctions in the mechanics of DNA looping versus cyclization can have profound quantitative effects on the thermodynamics of loop closure. We have extended a statistical mechanical theory recently developed for DNA cyclization to model DNA looping, taking into account protein flexibility. Notwithstanding the underlying theoretical similarity, we find that the topological constraint of loop closure leads to the coexistence of multiple classes of loops mediated by the same protein structure. These loop topologies are characterized by dramatic differences in twist and writhe; because of the strong coupling of twist and writhe within a loop, DNA looping can exhibit a complex overall helical dependence in terms of amplitude, phase, and deviations from uniform helical periodicity. Moreover, the DNA-length dependence of optimal looping efficiency depends on protein elasticity, protein geometry, and the presence of intrinsic DNA bends. We derive a rigorous theory of loop formation that connects global mechanical and geometric properties of both DNA and protein and demonstrates the importance of protein flexibility in loop-mediated protein-DNA interactions.  相似文献   

13.
Binding of a neurotransmitter to its membrane receptor opens an integral ion conducting pore. However, prolonged exposure to the neurotransmitter drives the receptor to a refractory state termed desensitization, which plays an important role in shaping synaptic transmission. Despite intensive research in the past, the structural mechanism of desensitization is still elusive. Using mutagenesis and voltage clamp in an oocyte expression system, we provide several lines of evidence supporting a novel hypothesis that uncoupling between binding and gating machinery is the underlying mechanism for α7 nicotinic receptor (nAChR) desensitization. First, the decrease in gate tightness was highly correlated to the reduced desensitization. Second, nonfunctional mutants in three important coupling loops (loop 2, loop 7, and the M2-M3 linker) could be rescued by a gating mutant. Furthermore, the decrease in coupling strength in these rescued coupling loop mutants reversed the gating effect on desensitization. Finally, coupling between M1 and hinge region of the M2-M3 linker also influenced the receptor desensitization. Thus, the uncoupling between N-terminal domain and transmembrane domain, governed by the balance of coupling strength and gate tightness, underlies the mechanism of desensitization for the α7 nAChR.  相似文献   

14.
Flexible loop regions of proteins play a crucial role in many biological functions such as protein–ligand recognition, enzymatic catalysis, and protein–protein association. To date, most computational methods that predict the conformational states of loops only focus on individual loop regions. However, loop regions are often spatially in close proximity to one another and their mutual interactions stabilize their conformations. We have developed a new method, titled CorLps, capable of simultaneously predicting such interacting loop regions. First, an ensemble of individual loop conformations is generated for each loop region. The members of the individual ensembles are combined and are accepted or rejected based on a steric clash filter. After a subsequent side‐chain optimization step, the resulting conformations of the interacting loops are ranked by the statistical scoring function DFIRE that originated from protein structure prediction. Our results show that predicting interacting loops with CorLps is superior to sequential prediction of the two interacting loop regions, and our method is comparable in accuracy to single loop predictions. Furthermore, improved predictive accuracy of the top‐ranked solution is achieved for 12‐residue length loop regions by diversifying the initial pool of individual loop conformations using a quality threshold clustering algorithm. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Cartilage proteoglycan monomers associate with hyaluronic acid to form proteoglycan aggregates. Link protein, a glycoprotein interacting with both hyaluronic acid and proteoglycan, serves to stabilize the aggregate structure. The primary structure of the link protein has been determined with a view to defining its interaction with both hyaluronic acid and proteoglycan. Thus, the link protein has been digested with staphylococcal V8 protease, trypsin, and chymotrypsin and the resulting peptides characterized by amino acid composition and sequence. We have determined that the link protein is a single peptide with 339 amino acid residues. The protein core has a molecular weight of 38,564. There is one N-linked oligosaccharide at residue 41 with a molecular weight of approximately 2,500. There are five disulfide bonds which define three loops within the amino acid sequence. The loop nearest to the NH2-terminal contains 78 amino acids and is followed by a section of 42 amino acids between it and the second loop. The second and third loops display considerable homology with each other; they consist of 71 and 70 amino acids, respectively, each contain two disulfide bonds, and both loops possess, approximately centrally, an epitope for the species nonspecific anti-link protein monoclonal antibody, 8A4. These loops are separated by a short section of 27 amino acids. We speculate that these loops are functionally important in the interaction of link protein with hyaluronic acid, as they appear to be the most conserved regions of link protein between species.  相似文献   

16.
Loops are integral components of protein structures, providing links between elements of secondary structure, and in many cases contributing to catalytic and binding sites. The conformations of short loops are now understood to depend primarily on their amino acid sequences. In contrast, the structural determinants of longer loops involve hydrogen-bonding and packing interactions within the loop and with other parts of the protein. By searching solved protein structures for regions similar in main chain conformation to the antigen-binding loops in immunoglobulins, we identified medium-sized loops of similar structure in unrelated proteins, and compared the determinants of their conformations. For loops that form compact substructures the major determinant of the conformation is the formation of hydrogen bonds to inward-pointing main chain atoms. For loops that have more extended conformations, the major determinant of their structure is the packing of a particular residue or residues against the rest of the protein. The following picture emerges: Medium-sized loops of similar conformation are stabilized by similar interactions. The groups that interact with the loop have very similar spatial dispositions with respect to the loop. However, the residues that provide these interactions may arise from dissimilar parts of the protein: The conformation of the loop requires certain interactions that the protein may provide in a variety of ways.  相似文献   

17.
Specific domains of the G-protein alpha subunit have been shown to control coupling to heptahelical receptors. The extreme N and C termini and a region between alpha4 and alpha5 helices of the G-protein alpha subunit are known to determine selective interaction with the receptors. The metabotropic glutamate receptor 2 activated both mouse Galpha(15) and its human homologue Galpha(16), whereas metabotropic glutamate receptor 8 activated Galpha(15) only. The extreme C-terminal 20 amino acid residues are identical between the Galpha(15) and Galpha(16) and are therefore unlikely to be involved in coupling selectivity. Our data reveal two regions on Galpha(16) that inhibit its coupling to metabotropic glutamate receptor 8. On a three-dimensional model, both regions are found in a close proximity to the extreme C terminus of Galpha(16). One module comprises alpha4 helix, alpha4-beta6 loop (L9 Loop), beta6 sheet, and alpha5 helix. The other, not described previously, is located within the loop that links the N-terminal alpha helix to the beta1 strand of the Ras-like domain of the alpha subunit. Coupling of Galpha(16) protein to the metabotropic glutamate receptor 8 is partially modulated by each module alone, whereas both modules are needed to eliminate the coupling fully.  相似文献   

18.
It is well known that noise is inevitable in gene regulatory networks due to the low-copy numbers of molecules and local environmental fluctuations. The prediction of noise effects is a key issue in ensuring reliable transmission of information. Interlinked positive and negative feedback loops are essential signal transduction motifs in biological networks. Positive feedback loops are generally believed to induce a switch-like behavior, whereas negative feedback loops are thought to suppress noise effects. Here, by using the signal sensitivity (susceptibility) and noise amplification to quantify noise propagation, we analyze an abstract model of the Myc/E2F/MiR-17-92 network that is composed of a coupling between the E2F/Myc positive feedback loop and the E2F/Myc/miR-17-92 negative feedback loop. The role of the feedback loop on noise effects is found to depend on the dynamic properties of the system. When the system is in monostability or bistability with high protein concentrations, noise is consistently suppressed. However, the negative feedback loop reduces this suppression ability (or improves the noise propagation) and enhances signal sensitivity. In the case of excitability, bistability, or monostability, noise is enhanced at low protein concentrations. The negative feedback loop reduces this noise enhancement as well as the signal sensitivity. In all cases, the positive feedback loop acts contrary to the negative feedback loop. We also found that increasing the time scale of the protein module or decreasing the noise autocorrelation time can enhance noise suppression; however, the systems sensitivity remains unchanged. Taken together, our results suggest that the negative/positive feedback mechanisms in coupled feedback loop dynamically buffer noise effects rather than only suppressing or amplifying the noise.  相似文献   

19.
Ab initio modeling of small, medium, and large loops in proteins.   总被引:1,自引:0,他引:1  
This study presents different procedures for ab initio modeling of peptide loops of different sizes in proteins. Small loops (up to 8--12 residues) were generated by a straightforward procedure with subsequent "averaging" over all the low-energy conformers obtained. The averaged conformer fairly represents the entire set of low-energy conformers, root mean square deviation (RMSD) values being from 1.01 A for a 4-residue loop to 1.94 A for an 8-residue loop. Three-dimensional (3D) structures for several medium loops (20--30 residues) and for two large loops (54 and 61 residues) were predicted using residue-residue contact matrices divided into variable parts corresponding to the loops, and into a constant part corresponding to the known core of the protein. For each medium loop, a very limited number of sterically reasonable C(alpha) traces (from 1 to 3) was found; RMSD values ranged from 2.4 to 5.9 A. Single C(alpha) traces predicted for each of the large loops possessed RMSD values of 4.5 A. Generally, ab initio loop modeling presented in this work combines elements of computational procedures developed both for protein folding and for peptide conformational analysis.  相似文献   

20.
Wan  Ming-Li  Sun  Xiao-Jun  Song  Yue-Li  Ji  Peng-Fei  Zhang  Xiao-Peng  Ding  Pei  He  Jin-Na 《Plasmonics (Norwell, Mass.)》2017,12(5):1555-1560

Plasmon-induced transparency (PIT), an analog of electromagnetically induced transparency, originates from destructive interference of plasmonic resonators with different quality factors and brings about the extreme dispersion within the narrow transparency window, promising remarkable potential for slow light, nonlinear optics and biochemical sensors. However, sometimes a broad transmission frequency band is more desirable for other applications such as bandpass filters. In general, strong coupling between bright and dark plasmon modes in coupled resonant systems leads to wide transparency bandwidth at the PIT resonance. Based on multi-oscillator coupling theory, a metasurface structure consisting of three perpendicularly connected metallic nanobars is purposefully designed and numerically demonstrated to support broadband PIT spectral response. The near-field patterns indicate that the broadening of the transparent band results from the constructive interference of dual excitations of the single non-radiative (dark) resonator by the two radiative (bright) antennas. These results show that this scheme of bright-dark-bright mode coupling is significantly beneficial for designing filters operating over a broad frequency range.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号