首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this study, we examined the ability of the hepatitis B virus (HBV) precore, envelope, and X gene products to modulate HBV replication in the livers of transgenic mice that replicate the virus. Hepatic HBV replication was not affected by overexpression of the envelope or X gene products when these animals were crossed with transgenic mice that express the corresponding viral genes in the hepatocyte. Overexpression of the precore protein, however, eliminated nucleocapsid particles from the cytoplasm of the hepatocytes and abolished HBV replication without affecting the hepatic steady-state content of pregenomic HBV RNA. These observations suggest that the precore protein can exert a dominant negative effect on HBV replication, presumably at the level of nucleocapsid particle maturation or stability, suggesting an important role for this enigmatic viral protein in the HBV life cycle.  相似文献   

3.
4.
5.
High-level hepatitis B virus replication in transgenic mice.   总被引:25,自引:0,他引:25       下载免费PDF全文
Hepatitis B virus (HBV) transgenic mice whose hepatocytes replicate the virus at levels comparable to that in the infected livers of patients with chronic hepatitis have been produced, without any evidence of cytopathology. High-level viral gene expression was obtained in the liver and kidney tissues in three independent lineages. These animals were produced with a terminally redundant viral DNA construct (HBV 1.3) that starts just upstream of HBV enhancer I, extends completely around the circular viral genome, and ends just downstream of the unique polyadenylation site in HBV. In these animals, the viral mRNA is more abundant in centrilobular hepatocytes than elsewhere in the hepatic lobule. High-level viral DNA replication occurs inside viral nucleocapsid particles that preferentially form in the cytoplasm of these centrilobular hepatocytes, suggesting that an expression threshold must be reached for nucleocapsid assembly and viral replication to occur. Despite the restricted distribution of the viral replication machinery in centrilobular cytoplasmic nucleocapsids, nucleocapsid particles are detectable in the vast majority of hepatocyte nuclei throughout the hepatic lobule. The intranuclear nucleocapsid particles are empty, however, suggesting that viral nucleocapsid particle assembly occurs independently in the nucleus and the cytoplasm of the hepatocyte and implying that cytoplasmic nucleocapsid particles do not transport the viral genome across the nuclear membrane into the nucleus during the viral life cycle. This model creates the opportunity to examine the influence of viral and host factors on HBV pathogenesis and replication and to assess the antiviral potential of pharmacological agents and physiological processes, including the immune response.  相似文献   

6.
We have previously shown that alpha/beta interferon (IFN-alpha/beta) and gamma interferon (IFN-gamma) inhibit hepatitis B virus (HBV) replication by eliminating pregenomic RNA containing viral capsids from the hepatocyte. We have also shown that HBV-specific cytotoxic T lymphocytes that induce IFN-gamma and tumor necrosis factor alpha (TNF-alpha) in the liver can inhibit HBV gene expression by destabilizing preformed viral mRNA. In order to further study the antiviral activity of IFN-alpha/beta, IFN-gamma, and TNF-alpha at the molecular level, we sought to reproduce these observations in an in vitro system. Accordingly, hepatocytes were derived from the livers of HBV-transgenic mice that also expressed the constitutively active cytoplasmic domain of the human hepatocyte growth factor receptor (c-Met). Here, we show that the resultant well-differentiated, continuous hepatocyte cell lines (HBV-Met) replicate HBV and that viral replication in these cells is efficiently controlled by IFN-alpha/beta or IFN-gamma, which eliminate pregenomic RNA-containing capsids from the cells as they do in the liver. Furthermore, we demonstrate that IFN-gamma, but not IFN-alpha/beta, is capable of inhibiting HBV gene expression in this system, especially when it acts synergistically with TNF-alpha. These cells should facilitate the analysis of the intracellular signaling pathways and effector mechanisms responsible for these antiviral effects.  相似文献   

7.
8.
Hepatitis B virus (HBV) infection afflicts >300 million people worldwide and is a leading cause of hepatocyte death, cirrhosis, and hepatocellular carcinoma. While the morphological characteristics of dying hepatocytes are well documented, the molecular mechanisms leading to the death of hepatocytes during HBV infection are not well understood. TRAIL, the TNF-related apoptosis-inducing ligand, has recently been implicated in the death of hepatocytes under certain inflammatory but not normal conditions. To determine the potential roles of TRAIL in HBV-induced hepatitis, we examined the effects of HBV and its X protein (HBx) on TRAIL-induced hepatocyte apoptosis both in vivo and in vitro. We found that hepatitis and hepatic cell death in HBV transgenic mice were significantly inhibited by a soluble TRAIL receptor that blocks TRAIL function. We also found that HBV or HBx transfection of a hepatoma cell line significantly increased its sensitivity to TRAIL-induced apoptosis. The increase in TRAIL sensitivity were associated with a dramatic up-regulation of Bax protein expression. Knocking down Bax expression using Bax-specific small interference RNA blocked HBV-induced hepatitis and hepatocyte apoptosis. The degradation of caspases 3 and 9, but not that of Bid or caspase-8, was preferentially affected by Bax knockdown. These results establish that HBV sensitizes hepatocytes to TRAIL-induced apoptosis through Bax and that Bax-specific small interference RNA can be used to inhibit HBV-induced hepatic cell death.  相似文献   

9.
Human liver infection is a major cause of death worldwide, but fundamental studies on infectious diseases affecting humans have been hampered by the lack of robust experimental models that accurately reproduce pathogen-host interactions in an environment relevant for the human disease. In the case of liver infection, one consequence of this absence of relevant models is a lack of understanding of how pathogens cross the sinusoidal endothelial barrier and parenchyma. To fill that gap we elaborated human 3D liver in vitro models, composed of human liver sinusoidal endothelial cells (LSEC) and Huh-7 hepatoma cells as hepatocyte model, layered in a structure mimicking the hepatic sinusoid, which enable studies of key features of early steps of hepatic infection. Built with established cell lines and scaffold, these models provide a reproducible and easy-to-build cell culture approach of reduced complexity compared to animal models, while preserving higher physiological relevance compared to standard 2D systems. For proof-of-principle we challenged the models with two hepatotropic pathogens: the parasitic amoeba Entamoeba histolytica and hepatitis B virus (HBV). We constructed four distinct setups dedicated to investigating specific aspects of hepatic invasion: 1) pathogen 3D migration towards hepatocytes, 2) hepatocyte barrier crossing, 3) LSEC and subsequent hepatocyte crossing, and 4) quantification of human hepatic virus replication (HBV). Our methods comprise automated quantification of E. histolytica migration and hepatic cells layer crossing in the 3D liver models. Moreover, replication of HBV virus occurs in our virus infection 3D liver model, indicating that routine in vitro assays using HBV or others viruses can be performed in this easy-to-build but more physiological hepatic environment. These results illustrate that our new 3D liver infection models are simple but effective, enabling new investigations on infectious disease mechanisms. The better understanding of these mechanisms in a human-relevant environment could aid the discovery of drugs against pathogenic liver infection.  相似文献   

10.
Over 350 million people are chronically infected with hepatitis B virus (HBV), and a significant number of chronically infected individuals develop primary liver cancer. HBV encodes seven viral proteins, including the nonstructural X (HBx) protein. The results of studies with immortalized or transformed cells and with HBx-transgenic mice demonstrated that HBx can interact with mitochondria. However, no studies with normal hepatocytes have characterized the precise mitochondrial localization of HBx or the effect of HBx on mitochondrial physiology. We have used cultured primary rat hepatocytes as a model system to characterize the mitochondrial localization of HBx and the effect of HBx expression on mitochondrial physiology. We now show that a fraction of HBx colocalizes with density-gradient-purified mitochondria and associates with the outer mitochondrial membrane. We also demonstrate that HBx regulates mitochondrial membrane potential in hepatocytes and that this function of HBx varies depending on the status of NF-kappaB activity. In primary rat hepatocytes, HBx activation of NF-kappaB prevented mitochondrial membrane depolarization; however, when NF-kappaB activity was inhibited, HBx induced membrane depolarization through modulation of the mitochondrial permeability transition pore. Collectively, these results define potential pathways through which HBx may act in order to modulate mitochondrial physiology, thereby altering many cellular activities and ultimately contributing to the development of HBV-associated liver cancer.  相似文献   

11.
The lack of a suitable small animal model for the analysis of hepatitis C virus (HCV) infection has hampered elucidation of the HCV life cycle and the development of both protective and therapeutic strategies against HCV infection. Human and mouse harbor a comparable system for antiviral type I interferon (IFN) induction and amplification, which regulates viral infection and replication. Using hepatocytes from knockout (ko) mice, we determined the critical step of the IFN-inducing/amplification pathways regulating HCV replication in mouse. The results infer that interferon-beta promoter stimulator (IPS-1) or interferon A receptor (IFNAR) were a crucial barrier to HCV replication in mouse hepatocytes. Although both IFNARko and IPS-1ko hepatocytes showed a reduced induction of type I interferons in response to viral infection, only IPS-1-/- cells circumvented cell death from HCV cytopathic effect and significantly improved J6JFH1 replication, suggesting IPS-1 to be a key player regulating HCV replication in mouse hepatocytes. We then established mouse hepatocyte lines lacking IPS-1 or IFNAR through immortalization with SV40T antigen. Expression of human (h)CD81 on these hepatocyte lines rendered both lines HCVcc-permissive. We also found that the chimeric J6JFH1 construct, having the structure region from J6 isolate enhanced HCV replication in mouse hepatocytes rather than the full length original JFH1 construct, a new finding that suggests the possible role of the HCV structural region in HCV replication. This is the first report on the entry and replication of HCV infectious particles in mouse hepatocytes. These mouse hepatocyte lines will facilitate establishing a mouse HCV infection model with multifarious applications.  相似文献   

12.
The hepatitis B virus (HBV) X protein (pX) is implicated in hepatocarcinogenesis of chronic HBV patients by an unknown mechanism. Activities of pX likely relevant to hepatocyte transformation include activation of the mitogenic RAS-RAF-MAPK and JNK pathways. To assess the importance of mitogenic pathway activation by pX in transformation, we employed a cellular model system composed of two tetracycline-regulated, pX-expressing cell lines, constructed in AML12-immortalized hepatocytes. This system includes the differentiated 3pX-1 and the de-differentiated 4pX-1 hepatocytes. Our studies have demonstrated that conditional pX expression transforms only 3pX-1 cells. Here, comparative in vitro kinase assays and various in vivo analyses demonstrate that pX affects an inverse activation of RAS-RAF-MAPK and JNK pathways in 3pX-1 versus 4pX-1 cells. Sustained pX-dependent RAS-RAF-MAPK pathway activation is observed in pX-transforming 3pX-1 cells, whereas sustained pX-dependent JNK pathway activation is observed in pX non-transforming 4pX-1 cells. This differential, pX-dependent mitogenic pathway activation affects differential activation of cAMP-response element-binding protein and c-Jun and determines the proliferative response of 3pX-1 and 4pX-1 cells. Furthermore, tetracycline-regulated, pX-NLS-expressing cell lines demonstrate that expression of the nuclear pX-NLS variant minimally activates the RAS-RAF-MAPK pathway and results in markedly reduced transformation. These results link sustained, pX-mediated activation of RAS-RAF-MAPK pathway to hepatocyte transformation.  相似文献   

13.
14.
15.
Tumor necrosis factor (TNF) has multiple biological effects such as participating in inflammation, apoptosis, and cell proliferation, but the mechanisms of its effects on epithelial cell proliferation have not been examined in detail. At the early stages of liver regeneration, TNF functions as a priming agent for hepatocyte replication and increases the sensitivity of hepatocytes to growth factors such as transforming growth factor alpha (TGFalpha); however, the mechanisms by which TNF interacts with growth factors and enhances hepatocyte replication are not known. Using the AML-12 hepatocyte cell line, we show that TNF stimulates proliferation of these cells through transactivation of the epidermal growth factor receptor (EGFR). The transactivation mechanism involves the release of TGFalpha into the medium through activation of the metalloproteinase TNFalpha-converting enzyme (also known as ADAM 17). Binding of the ligand to EGFR initiates a mitogenic cascade through extracellular signal-regulated kinases 1 and 2 and the partial involvement of protein kinase B. TNF-induced release of TGFalpha and activation of EGFR signaling were inhibited by TNFalpha protease inhibitor-1, an agent that interferes with TNFalpha-converting enzyme activity. We suggest that TNF-induced transactivation of EGFR may provide an early signal for the entry of hepatocytes into the cell cycle and may integrate proliferative and survival pathways at the start of liver regeneration.  相似文献   

16.
17.
18.
We have shown previously that hepatocyte proliferation in the late gestation fetal rat is mediated by growth factor-independent mechanisms that are distinct from the signaling pathways that promote proliferation of adult rat hepatocytes. In the present studies, we identified six candidate growth-regulating genes that are overexpressed in fetal rat liver (embryonic day 19, 2 days pre-term) relative to adult rat liver using suppressive subtractive hybridization. These included the following: Grb10, a growth factor receptor binding protein; eps15, a growth factor receptor substrate; nuc2+, a retinoblastoma protein binding protein; cdc25B, a cell cycle tyrosine phosphatase; the peroxisome proliferator-activated receptor PPAR alpha; and a deoxyuridine triphosphatase that functions as a PPAR alpha binding partner. In every case, the ontogeny of the expression of these genes declined postnatally in a manner consistent with the transition from a fetal to an adult hepatocyte phenotype. None were found to be cell cycle-dependent, in that they did not show expression that followed perinatal changes in hepatocyte cell cycle activity. Based on our identification of these genes and previous work characterizing their role in growth regulation, we conclude that they may contribute to the mitogenic signaling phenotype of fetal rat hepatocytes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号